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Abstract (Italiano) 

Durante la pianificazione di trial clinici pediatrici è necessario far fronte 

a numerosi problemi, in particolare a difficoltà di tipo etico, di fattibilità e 

di efficienza. Allo stesso tempo c’è l’esigenza di garantire ai pazienti 

pediatrici dei trattamenti farmacologici il più adeguati possibile, spesso non 

disponibili sul mercato.  

Al fine di assicurare una protezione idonea a questa popolazione 

vulnerabile, è di grande importanza l’impiego di metodologie innovative 

come il modeling matematico, l’estrapolazione e i disegni di studio 

alternativi. Questa tesi è incentrata sull’utilizzo di queste tecniche 

innovative con lo scopo di facilitare lo sviluppo pediatrico del farmaco. 

L’estrapolazione è un approccio strategico che consiste nell’estendere 

informazioni e conclusioni sul farmaco oggetto di studio da una particolare 

popolazione di pazienti (detta popolazione sorgente) ad un’altra 

popolazione di pazienti (detta popolazione target), allo scopo di giustificare 

in quest’ultima l’utilizzo del farmaco e permettendo quindi di ridurre la 

quantità di dati da generare nella popolazione target. L’elaborazione di un 

piano di estrapolazione dovrebbe basarsi su di una sintesi sistematica 

dell’informazione disponibile con l’intenzione di formulare delle ipotesi 

esplicite e quantitative riguardo le similarità tra la popolazione sorgente e 

quella target in termini di patofisiologia della malattia, relazione 

farmacocinetica-farmacodinamica e risposta clinica. Diversi approcci sono 

stati applicati per la definizione di un piano di estrapolazione nello 

sviluppo pediatrico di un farmaco. Tra questi, il modeling matematico è 

sicuramente uno dei più attraenti ed è riconosciuto avere un ruolo chiave in 

questo contesto, motivo per cui dovrebbe essere alla base – ogniqualvolta è 

possibile farlo – di un solido piano di estrapolazione. 

Come caso di studio, in questa tesi viene presentato l’utilizzo del 

modeling matematico nella selezione della dose di un trial clinico 

pediatrico per la prevenzione della sindrome da lisi tumorale basato 

sull’estrapolazione di dati di uno studio di fase III nel paziente adulto. 

Prendendo in considerazione le similarità della sindrome da lisi tumorale 

tra la popolazione pediatrica e quella adulta, l’efficacia e la sicurezza del 

farmaco nella popolazione target possono essere in parte estrapolate a 

partire da quelle osservata nell’adulto, consentendo così di evitare un 

classico sviluppo clinico a favore di un più flessibile studio 

farmacocinetico-farmacodinamico di fase I/II, con una conseguente analisi 

di simulazione per l’ottimizzazione della dose se richiesto. Per la selezione 

delle dosi da testare nello studio viene proposto un approccio basato sul 

modeling matematico che consente di mirare, nella popolazione target, alle 
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esposizioni al farmaco dimostrate essere efficaci nell’adulto, assicurando 

così che il paziente pediatrico non sia sotto o sovra esposto al farmaco 

stesso. 

Infine, in questa tesi vengono presentati disegni di studio alternativi che, 

rispetto al classico disegno parallelo, possono potenzialmente incrementare 

la fattibilità dei trial pediatrici. Viene proposto un framework basato sulla 

simulazione di trial clinici per la valutazione ed il confronto del disegno 

parallelo con disegni di studio alternativi quali i disegni sequenziali, il 

disegno crossover ed il disegno “randomized withdrawal”. Oltre a questi 

disegni di stampo frequentista, vengono indagate anche le performance di 

disegni di studio Bayesiani come il Bayesiano parallelo e due 

implementazioni alternative del Bayesiano sequenziale, una di tipo non-

gerarchico e una semi-gerarchica, nei quali l’informazione a priori è 

ricavata da studi nell’adulto e pesata sulla base delle similarità attese nella 

risposta al trattamento tra la popolazione pediatrica e quella adulta. I 

disegni di studio sono valutati in termini di: errore di tipo I e di tipo II, 

sample size per gruppo, durata totale del trial, esposizione ai vari tipi di 

trattamento (ovvero trattamento attivo, controllo o nessuno dei due) e 

precisione della stima del parametro di effetto del trattamento. I risultati 

ottenuti mostrano che il disegno crossover richiede il minor sample size e 

la minor durata, sebbene implichi una maggiore esposizione sia al placebo 

che a all’assenza di alcun trattamento. Il randomized withdrawal 

massimizza l’esposizione al trattamento attivo, minimizzando 

contemporaneamente quella al placebo, anche se richiede il maggior 

numero di pazienti. Il sample size dei disegni sequenziali può in qualche 

circostanza essere minore di quello del crossover, anche se in tali casi non è 

garantita una robusta stima dell’effetto del trattamento. Riguardo ai disegni 

Bayesiani, non si osservano differenze sostanziali tra quello sequenziale 

non- e semi-gerarchico, ed entrambi richiedono un sample size ed una 

durata minore rispetto al Bayesiano parallelo, che d’altra parte garantisce 

una stima più precisa dell’effetto del trattamento. In generale, gli approcci 

Bayesiani sembrano avere perfomance migliori delle loro controparti 

frequentiste anche quando viene dato poco peso all’informazione a priori 

dall’adulto. 

Complessivamente, il framework farmacometrico proposto permette un 

confronto multilivello di disegni di studio alternativi che può essere 

utilizzato per la selezione di trial clinici futuri nella popolazione pediatrica. 
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Abstract (English) 

When planning pediatric clinical trials, issues such as feasibility, ethical 

challenges and efficiency implications must be addressed, whilst ensuring 

that the unmet medical needs will still be satisfied. In order to guarantee 

adequate protection, innovative methodological approaches such as 

modeling and simulation, extrapolation and alternative study designs are of 

great importance. This thesis focuses on the implementation of these 

innovative techniques as a tool to facilitate pediatric drug development. 

Extrapolation is a strategic approach which consists of extending drug-

related information and conclusions available from one particular patient 

population (source population) to another patient population (target 

population), in order to justify the use of the drug in the latter, thus 

reducing the need to generate additional information in the target 

population. The development of an extrapolation plan should build upon a 

systematic synthesis of available information with the aim of providing 

explicit (quantitative) hypotheses regarding the similarity of the disease 

pathophysiology and the similarity of pharmacodynamics and clinical 

response to the intervention between the source and target populations. 

Various approaches have been applied to define an extrapolation plan 

within paediatric drug development programs. Among these, modeling and 

simulation is recognised as a mean of outstanding value upon which the 

extrapolation process should be underpinned whenever possible.  

As case study, the use of modeling and simulation for dose selection in a 

pediatric trial for tumor lysis syndrome prevention based on the 

extrapolation of adult phase III data is presented in this thesis. Considering 

tumor lysis syndrome similarities between the pediatric and adult 

population, drug efficacy and safety in the target population can be partly 

extrapolated from those observed in adults and a standard development 

plan can be skipped in favor of a more flexible phase I/II pharmacokinetic-

pharmacodynamic study, with a following modeling and simulation 

analysis for dose optimization if needed. A model-based approach is 

proposed for dose selection for the pediatric study, which allows targeting 

the efficacious drug exposure observed in adults whilst ensuring that 

children will be not under/over-exposed to the drug. 

Finally, alternative study designs which can increase the feasibility of 

pediatric trials when compared to classical parallel designs are presented in 

this thesis. A model-based clinical trial simulation framework is proposed 

as a tool for the comparison of the parallel design with the alternative 

sequential, crossover and randomized withdrawal designs. Besides these 

frequentist designs, the performance of a fixed-sample Bayesian design and 
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two alternative Bayesian sequential designs, i.e. a non-hierarchical and a 

semi-hierarchical one – where prior information is elicited from adult trials 

and weighted based on the expected similarity of response to treatment 

between the pediatric and adult population – are also investigated. Study 

designs are evaluated in terms of: type I and II errors, sample size per arm, 

trial duration, treatments exposures and parameter estimate precision. The 

results obtained show that the crossover requires the lowest sample size and 

trial duration, although it implies higher placebo and no treatment 

exposures. The randomized withdrawal design maximizes exposure to 

active treatment while minimizing that to placebo, but requires the largest 

sample size. Sample size of sequential designs can sometimes be smaller 

than the crossover one, although with poorer estimate precision. With 

respect to Bayesian designs, no substantial differences were observed 

between non-hierarchical and semi-hierarchical Bayesian sequential 

designs. The sequential implementation of Bayesian designs requires on 

average smaller sample size and trial duration compared to the standard 

one, which on the other hand guarantees higher estimate precision. When 

large differences between children and adults are expected, Bayesian 

sequential designs can return very large sample size. Overall, Bayesian 

approaches appear to outperform their frequentist counterparts in the design 

of pediatric trials even when little weight is given to prior information from 

adults. In general, the proposed pharmacometric framework allows a 

multiscale comparison of alternative study designs which can be used for 

design selection in future pediatric trials. 
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Chapter 1 

1 Introduction 

The implementation of pediatric trials is challenging and often difficult 

to accomplish due to ethical, practical and even financial considerations. 

The design, analysis and interpretation of clinical studies in the pediatric 

population require specific techniques to ensure accurate decision-making 

regarding the pharmacokinetics, pharmacodynamics, safety and efficacy of 

drugs, as also supported by the guideline on clinical trials in small 

populations set by the European Medicine Agency, which states that “crude 

(simple) methods may often be adequate when we have huge amounts of 

data, but when there are very few data, it is imperative that the most 

efficient and informative analytical methods should be used”. 

Extrapolation is a strategic approach that may allow one to circumvent 

some of the aforementioned difficulties: it consists in extending 

information and conclusions available from studies in one or more 

subgroups of the patient population (source population), or in related 

conditions or with related medicinal products, to make inferences for 

another subgroup of the population (target population), or condition or 

product, thus reducing the need to generate additional information. 

A very useful methodological tool that naturally fits into the context of 

extending information from a source population to make inferences for 

another population is Modeling and Simulation (M&S). The added value of 

M&S in pediatric clinical research has been extensively documented, and 

its weight at a regulatory level in supporting extrapolation has constantly 

been increasing in the last years.  

Finally, the current way of designing efficacy trials in pediatrics is still 

largely traditional and do not go beyond standard approaches such as the 

parallel design. Due to ethical and methodological hurdles (e.g. the 

invasiveness related to pain/anxiety and blood loss, and the limited volume 

and number of blood samples that can be withdrawn in pediatric patients), 

identification, recruitment and enrolment of a number of children that could 

guarantee a sufficient statistical power are often difficult to accomplish. 
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Conversely, alternative study designs possess favourable features which 

can address part of the issues related to paediatric clinical research, 

especially when compared to the current standard practice. 

This thesis deals with the use of M&S, extrapolation and alternative 

study designs to facilitate pediatric drug development, and it is structured 

as follows. Chapter 2 aims to review, explain and motivate the use of the 

extrapolation approach in pediatric drug development with a focus on the 

regulatory point of view. Chapter 3 presents a case study dealing with a 

model-based dose selection in a pediatric clinical trial for tumor lysis 

syndrome prevention based on the extrapolation of adult phase III data, 

with an emphasis on the use of pharmacokinetic-pharmacodynamic (PK-

PD) M&S as a protocol optimization and data analsysis tool. Chapter 4 

presents a PK-PD-based clinical trial simulation framework whose aim is to 

assess the performance of alternative study designs in pediatric trials across 

different metrics of comparison. While Chapter 4 deals with alternative 

designs of frequentist nature, Chapter 5 focuses on Bayesian approaches 

where prior information is elicited from historical adult data. The thesis 

ends with an overall conclusion in Chapter 6. 
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Chapter 2 

2 The extrapolation approach 

2.1. Definition and concept 

Optimizing the development of medicinal products for children can lead 

to many dilemmas. On the one hand, there is a clear medical, ethical and 

regulatory need for rigorous evaluation of medicinal products for children. 

This is strongly supported in Europe by the “Regulation on medicinal 

products for pediatric use” [1]. On the other hand, children are vulnerable 

and must be protected without being exposed to unnecessary trials  this 

includes protection from the potential harm (where possible) of the clinical 

investigations required for appropriate evaluation. Hence, when planning 

pediatric clinical trials, issues such as feasibility, ethical challenges and 

efficiency implications must be addressed, whilst ensuring that the unmet 

medical needs will still be addressed.  

To ensure adequate protection, different approaches may be adopted: for 

example, appropriate preventative or adapted technical procedures may be 

undertaken, or innovative methodological approaches can be used, such as 

extrapolation. 

Extrapolation is a strategic approach, which consists of extending drug-

related information and conclusions available from one particular patient 

population (source population) to another patient population (target 

population), in order to justify the use of this drug in the latter, thus 

reducing the need to generate additional information in the target 

population. 

The ICH E 11 guideline on clinical investigation of medicinal products 

in the pediatric population [2] provides general recommendations on what 

type of studies should be performed in children based on the 

differences/similarities with older populations, with the aim of reducing the 

amount of data that needs to be generated in the pediatric population to 

provide adequate information for pediatric use. The Food and Drug 

Administration (FDA) initially translated such recommendations into a 
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decision tree (Figure 2.1) published in the FDA guidance on exposure-

response relationship [3]. Subsequently, FDA released two pediatric-

specific draft guidance, one on general clinical pharmacology 

considerations [4] and one on extrapolation for pediatric uses of medical 

devices [5]. However, despite providing an overview of the possible 

scenarios and the general clinical development to be followed, the decision 

tree does not address several important issues. 

A slightly different approach from the FDA decision tree is adopted by 

the European Medicines Agency (EMA), which is trying to integrate more 

pharmacology and maturation, and delineate a broader strategy for the 

definition of an extrapolation plan [6]. For example, the FDA decision tree 

applies only to extrapolation between age-classes, whereas in the EMA 

concept paper extrapolation across conditions and drug classes is also 

considered. 

 

Figure 2.1: FDA pediatric decision tree [3]. 

The development of an extrapolation plan should build upon a 

systematic synthesis of all available information, which collects data from 

literature information, non-clinical studies, adult clinical studies and 

existing pediatric data - if already available in different age groups, 

conditions or the same class of drugs. 

The extrapolation process must be developed with the aim of providing 

explicit (quantitative) hypotheses regarding the similarity of the disease 

pathophysiology and the similarity of pharmacodynamic response to the 

intervention between the source and target population. The uncertainty of 

each assumption should be qualified and quantified, for example in terms 

of its limitations, together with its potential clinical impact. The 

uncertainties should guide the extrapolation plan and will influence the set 
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of rules and methodological tools for the reduction of data requirements in 

the target population. In order to successfully complete the extrapolation 

process, the hypotheses must be pre-specified and based on the outcome of 

the assessment in the source and target populations, with consideration of 

the similarity/dissimilarity of the two populations, and the assumptions that 

should underpin the expected biological, pathophysiological and 

pharmacological differences.  

Firstly, a clear understanding of the target disease, along with its  

subtypes, has to be documented in terms of etiology, pathophysiology and 

symptoms; moreover, similarities and differences in disease progression 

should be addressed where a spontaneous evolution pattern has already 

been identified in the natural history of the disease (e.g. in the evolution of 

cognitive or motor functions).  

Secondly, the pharmacology of the drug has to be comprehensively 

described in relation to the mechanism of action, pharmacokinetics (PK), 

pharmacodymanics (PD) and dose-exposure-response relationship. 

Particular emphasis should be put on the developmental changes due to 

organ maturation and the ontogeny of enzymes, transporters, and receptors, 

especially in children younger than 2-3 years of age [7]. 

Finally, the degree of similarity/heterogeneity in PD and clinical 

response between the two populations has to be quantified. Should the 

nature of the target population be such that definite clinical endpoints 

cannot be measured, PD endpoints or biomarkers suitable to predict clinical 

response in children must be considered early during adult drug 

development whenever possible. In this way, extrapolation can become an 

integrative part of drug development based on prospectively collected data, 

contrasting with the tendency of retrospectively planning extrapolation ad-

hoc based on available information. 

The extrapolation process is primarily clinically-related and should be 

supported  by the use of innovative tools such as  modeling and simulation 

(M&S) and statistical methods. M&S is a tool of particular interest for 

extending information from a source population to make inferences about 

another population whenever applicable. The added value of M&S in 

pediatric clinical research has been extensively documented [8-12], and its 

weight in supporting extrapolation at regulatory level has steadily increased 

in recent years, both in Europe and the US [13-15]. 

However, M&S should not be identified as synonymous with 

extrapolation. Extrapolation is a strategic clinically-related approach to 

pediatric drug development, broader than M&S, which is a corroborating 

tool that can be utilized for optimal data analysis, predictions of results and 

dosing regimens recommendations [16].  

 

Full, partial or no extrapolation  

 

On the basis of the degree of similarity - or dissimilarity - between the 

source and target population and the uncertainty of hypotheses, three 
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general categories should be considered: full, partial, and no extrapolation 

[6]. 

Complete or full extrapolation of efficacy between the source and the 

target population (e.g. from adults to children) can be acceptable with 

quantified assumptions that are supported by robust data indicating small  or 

negligible differences between the two populations, yet some supportive 

data to validate the extrapolation concept may still be necessary. This 

situation is likely when extrapolating between very similar populations 

[17]. 

If, on the contrary, it is not possible to assume that children have a 

similar natural history of the disease or response to intervention when 

compared to adults (e.g. for diseases specific to children) and/or for 

conditions in which a validated clinical endpoint cannot be assessed in the 

target population (e.g. 6-Minute Walking Test), a complete set of data in 

the target population is typically necessary; this could be described as a 

situation of “no extrapolation”. 

More frequently, the extent to which extrapolation can be applied lies in 

between these two extreme situations; efficacy is then extrapolated based 

on a reduced set of data in the target population, depending on the 

magnitude of expected differences and the uncertainty of the assumptions. 

This situation is referred to as “partial extrapolation”, and two principal 

scenarios may be considered: (i) bridging using PK or PK/PD in the target 

population to extrapolate efficacy. This approach would be based on the 

concept that matching drug exposure-response to the source population will 

be associated with similar efficacy in the target population. (ii) Some 

efficacy data are considered necessary in the target population, the nature 

of which depends on the degree of extrapolation from the source 

population. Such a scenario could be supported by statistical approaches 

using prior information from the source population(s) [18]. 

For example, gabapentin was approved for the treatment of partial onset 

seizures (POS) in children aged 6 years and above although trial results did 

not show a statistically significant difference in the 50% responder rate 

[19-20]. Indeed, the clinical trial of adjunctive treatment of POS in 

pediatric subjects (aged 3 to 12 years) showed a numerical but not 

statistically significant superiority in the 50% responder rate of gabapentin  

over placebo. In spite of these results, taking into consideration the 

adequate safety profile and the medical need in this pediatric population, 

the following indication was granted: “Gabapentin is indicated as 

adjunctive therapy in the treatment of partial seizures with and without 

secondary generalization in adults and children aged 6 years and above.” 

On the basis of ethical and feasibility issues, as well as resource 

allocation, clear justification is always needed as to why extrapolation is 

being undertaken rather than a complete set of prospective studies. 

Extrapolation will increase the results uncertainty, which needs to be 

quantitatively and statistically estimated, and requires potential risks to be 

addressed in a risk management plan. For populations in which trial 

feasibility is not an obstacle, extrapolation may still be appropriate in order 
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to optimize the clinical development of the compound and/or to avoid 

unnecessarily exposing children and their families to the burden of a 

clinical trial.  

Once a rationale is provided to support the selected extrapolation plan, 

there is the need to define a set of rules and methodological tools for the 

reduction of data requirements (types of studies, design modifications, 

number of patients) in accordance with the degree of expected similarities 

between the two populations (source and target). The data generated in the 

target population should validate the extrapolation concept and complement 

those data that may be extrapolated from the source population. Studies 

should focus on specific areas, e.g. age subsets, where the largest  

differences to the source population are expected. 

2.2. Types of source data 

Extrapolation for drug disposition data 

Several methods are available for dose/clearance scaling of a drug from 

a source population to children [21], and many examples and reviews can 

be found in the literature, either of extrapolation from older subjects [22-

26] or, less frequently, from animal studies [27, 28]. In principle, 

regardless of the method selected, it is important to have a clear 

understanding of the differences in drug absorption, distribution, 

metabolism and excretion between the two populations, in relation to the 

various aspects of developmental pharmacology [29]. 

Simple linear dose/clearance scaling on a mg/kg basis has been deemed 

suboptimal and may lead to sub-therapeutic drug exposures, especially in 

the very young patients [30, 31]. Allometric approaches offer a sound basis 

for scaling doses from older to younger patients, since they are supported 

by a well-established theory [30]. However, allometry can only capture 

differences in drug disposition and effect due to size variation, without 

addressing the influence of developmental changes related to target organs 

maturation. As a result, the allometric principle is usually coupled with a 

so-called maturation function aimed at describing the development of the 

relevant biological system (e.g. CYP450 enzyme activities, kidney, etc.) in 

relation to age [26]. Physiologically-based pharmacokinetic (PBPK) 

models are system-specific models characterizing human physiology that 

enable to incorporate distinct types of data (e.g. in vitro, preclinical, 

clinical), thereby naturally fitting in a context of data synthesis, especially 

for a “first in children” trial [32, 33]. Although it may be argued that, in 

contrast to allometric scaling, PBPK models do not have a theoretical 

foundation as they are based solely on empiricism [26], their inherent 

mechanistic nature allows the movement from one drug to another with 

more flexibility than the combination of allometric scaling with a 

maturation function [34]. Maharajand and Edginton [35] proposed a 

workflow for scaling adult PBPK models to children, while Johnson et al. 
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[36] predicted the clearance of 11 drugs in neonates, infants and children 

adapting information from the literature into different PBPK models. 

In pediatric drug development these techniques are usually planned at 

the design stage. Exploiting available information at the time of trial 

design, the three assumptions of the extrapolation concept are assumed to 

be true and bridging takes place, i.e. the dose that will be used in the 

confirmatory pediatric trial is the one that leads to drug exposure levels 

considered to be efficacious in adults, assuming similar plasma exposure 

would translate into a similar clinical response [37-39]. Dose definition is 

usually supported by PK simulations with a PK or PBPK model (see 

Chapter 3). This can be viewed more as an optimization process rather than 

an actual extrapolation, which would instead be applied for drug 

registration. 

Extrapolation for efficacy disposition 

The source population from which efficacy is extrapolated may be the 

adult one [40]. In epilepsy, for example, POS are similar in children and in 

adults, and extrapolation can be achieved provided that the dose is adjusted 

according to age-specific drug disposition [41]. For the Pediatric 

Investigation Plan (PIP) of brivaracetam, the EMA has considered whether 

it would be acceptable not to request specific new data in children on the 

basis of extrapolation results. This type of epilepsy usually responds 

relatively well to drug therapy [42]. However, other epileptic syndromes in 

children do not exist in adults and extrapolation from adults is not possible, 

therefore pediatric data are required. These types of epilepsy are usually 

resistant to available drug therapy and are associated with poor 

psychomotor development in affected children. 

There were some circumstances in which extrapolation was applied 

without the collection of new pediatric data in the target indication. 

Topiramate [43] and oxcarbazepine [44] monotherapy dosage regimens 

were bridged from the adjunctive setting in the treatment of POS. The 

evidence gap relating to monotherapy treatment in children was filled in 

using pediatric/adult data from adjunctive therapy and adult monotherapy 

data (left panel of Figure 2.2).  

Similarly, approval of darunavir co-administered with ritonavir in 3 to 

<12 year-old HIV-1 infected patients naïve to antiretroviral (ARV) therapy 

leveraged data from >3 years old ARV-experienced patients and from 12 to 

<18 years old ARV-naïve patients [45] (right panel of Figure 2.2). 
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Figure 2.2: Examples for which extrapolation was applied without the 

collection of new pediatric data in the target indication (light blue boxes). 

Dark blue boxes represent data from the source population(s). 

Extrapolation for demonstration of safety 

The extrapolation of safety should always be viewed with caution. 

Although children’s therapeutic (beneficial) responses  to treatment may be 

similar to those of adults, adverse event (AE) profiles can vary 

substantially between these two populations [46]. An illustrative example is 

the increased sensitivity to sotalol-induced QTc interval prolongation in 

neonates compared with older children and adolescents [47]. Age-specific 

adverse events are present across the whole pediatric age-range, from 

conception to post-puberty (Table 2.1). Despite many safety concerns relate 

to neonates and infants (especially due to off-label use in these age 

subsets), excluding older children from appropriate safety evaluations may 

lead to serious consequences. This was exemplified by the 2007 FDA 

warning after ascertaining that children, adolescents and young adults 

taking antidepressant therapies were at increased risk of suicidal thinking 

and behavior compared to those taking placebo [48]. 

Examples presented in Table 2.1 show that extrapolation of safety from 

adults to children cannot be taken for granted, due to the potential for 

serious, adverse drug reactions which can affect both growth and 

maturation. However, in some instances, extrapolation may depend on the 

level of maturity of the physiological functions: extrapolation can be 

possible when the relevant physiological functions have reached full 

maturity. For example kidneys are fully matured at 3 years of age [85], thus 

safety data on the renal system may not specifically be collected if the 

target population is older than 3 years. Nevertheless, exemptions should 

always be justified based upon a clear understanding of the maturational 

time profile of the relevant physiological functions. 
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Table 2.1: Examples of age-specific adverse events across the whole 

pediatric age-range. 

Drug/class of 

drugs 

Adverse event Time of 

exposure 

Age-range at 

diagnosis 

Ref. 

Thalidomide Phocomelia In utero Neonatal [49] 

Nonsteroidal anti-

inflammatory 

drugs (NSAIDs) 

Closure of ductus 

arteriosus In utero 

In utero  

(foetal death) 

 

[50] 

Renal failure Neonatal [51, 52] 

ACE inhibitors 

(ACEIs) 
Renal failure 

In utero Birth [53] 

Postnatal Neonatal [54] 

Selective serotonin 

re-uptake inhibitors 

(SSRIs) 

Withdrawal 

syndrome 
Prenatal Neonatal [55, 56] 

Antidepressants Suicidality Childhood 
Childhood -

adolescence 
[48] 

Methadone 

Neonatal 

abstinence 

syndrome 

Prenatal Neonatal [57, 58] 

β-Blockers 

Being born small 

for gestational age 

(SGA), preterm 

birth and perinatal 

mortality 

Prenatal Neonatal [59] 

Neonatal 

hypoglycaemia 
In utero Neonatal [60] 

Anti-epileptic 

drugs (AEDs) 

Haemorrhage Prenatal Neonatal [61-63] 

Anatomic and 

cognitive 

impairments 

Prenatal 
Childhood -

adolescence 
[64, 65] 

Worsening of 

juvenile epilepsy 
Postnatal 

Childhood -

adolescence 
[66-68] 

Glucocorticoids Growth suppression Postnatal Childhood [69, 70] 

Propofol 

(prolonged 

infusion) 

Rhabdomyolysis, 

hypoxia and 

myocardial failure 

Postnatal Childhood [71, 72] 

Oxygen 
Retrolental 

fibroplasia 
Postnatal Infancy [73] 

Erythromycin Pyloric stenosis Postnatal Infancy [74, 75] 

Diethylstilbestrol 

Adenocarcinoma of 

the vagina and 

cervix 

In utero Childhood [76] 
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Tetracyclines Enamel hypoplasia 
Postnatal-

childhood 

Children <8 

years 
[77] 

Anthracyclines 
Delayed symptoms 

of cardiotoxicity 

Postnatal-

childhood 
Young adults [78, 79] 

Busulfan 
Ovarian 

dysfunction 

Postnatal-

childhood 
Young adults [80, 81] 

Chemotherapy Impaired fertility 
Postnatal-

childhood 
Young adults [82] 

Topiramate 
Cognitive 

dysfunction 

Postnatal-

childhood 

Children-

adolescents 
[83, 84] 

Extrapolation from non-clinical studies 

Non-clinical studies in the development of pediatric medicinal products 

offer an opportunity to start addressing potential differences in safety 

profiles between children and adults. However, in circumstances where 

developing organs may be affected, juvenile toxicity studies may be needed 

[86-88] in order to avoid both short- and long-term delayed adverse events 

such as the anatomic and cognitive impairments in children exposed to 

anti-epileptic drugs (AEDs) in utero [64, 65] and glucocorticoid-induced 

growth suppression in children [69, 70]. In addition, the use of PBPK 

models to address safety issues may be considered, as they facilitate the 

estimation of drug concentrations in target organs [89]. However, the 

assumptions regarding the dose-exposure-response relationship still need to 

be verified and this must not be forgotten at a time when the ongoing 

physiological development may modify the response of developing organs 

with regards to both efficacy and safety. 

Moreover, animal data can be used to optimise dose selection during 

early development in pediatrics. Hope and Drusano [90] proposed a 

framework for animal in vivo-to-human bridging of antifungals PK-PD 

relationship. The authors used a case study to show the application of such 

an approach, based on echinocandin therapy in neonates with 

haematogenous Candida meningoencephalitis (HCME) [91]; this represents 

one of the very few examples of extrapolation of PK-PD from animal data. 

In this analysis, a PK-PD model of micafungin in rabbits and a neonatal PK 

model were integrated to estimate the doses leading to near-maximal 

antifungal effect in neonates. The fact that no a priori information was 

available on the appropriate dosage of micafungin for neonatal HCME 

permitted tolerance of strong assumptions regarding the similarity of 

exposure-response relationship and tissue penetration of the drug between 

rabbits and neonates. A similar approach for dose selection has been 

adopted for the PIP of vancomycin for the treatment of late-onset bacterial 

sepsis in neonates and infants aged under 3 months [92]. 

To further refine this approach, the influence of immaturity and the 

development of the immune system in early life should also be considered 

when defining a dosing rationale based on the PK-PD relationship (as was 
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indeed acknowledged by the authors) [93-95]. Unfortunately, however, 

while age-related differences in PK have been extensively studied and are 

increasingly well-characterized, a remarkable knowledge gap persists in the 

field of developmental PD. The scarce data available to date come 

predominantly from animal studies, and although they provide valuable 

insights, extrapolation to children is marred by uncertainty, especially in 

the absence of clinical data [96]. Therefore, there is an urgent need for new 

data on developmental PD in order to facilitate the expansion of optimal 

pharmacotherapy for children. 

Extrapolation from another medicinal product 

Another useful source of information is represented by data coming 

from another authorized medicinal product in the same condition. Jadhav et 

al. [97] presented a case study for leveraging prior quantitative knowledge 

for trial design of a new anti-hypertensive agent X for immediate blood 

pressure control, wherein the authors borrowed information on the placebo 

response and exposure-response relationship in children from pediatric 

labelling information for fenoldopam, another drug approved for a similar 

indication in both adults and children. The Sponsor and FDA used this 

information to perform clinical trial simulations (CTS) with the aim of 

enhancing the design of a trial for drug X with the correct sample size and 

dose ranges. In particular, placebo data from 16 pediatric patients in the 

fenoldopam trial were used to develop an empirical placebo model for 

CTS. As to drug effect simulations, Jadhav and colleagues took advantage 

of an Emax model for drug X based on adult data. Because the fenoldopam 

trial experience suggested that the pediatric population is less sensitive and 

less responsive than the adult one, the impact of different scenarios (in 

terms of different Emax and EC50 values) on the final sample size of the 

pediatric study was investigated. This led to an acceptable trial design, 

rational dosing recommendations and useful labelling information in 

pediatrics. 

Extrapolation from another disease 

If the treatment to be investigated in the target population is already 

approved for another disease, clinical data from studies in that disease may 

be used to support dosing extrapolation to the new indication.  

A dose-response study of losartan in hypertensive children from 6 to 16 

years of age concluded that a starting dose of 0.75 mg/kg given once a day 

effectively reduced diastolic blood pressure, and a once-daily dosage up to 

1.44 mg/kg was generally well tolerated [98]. The design of a subsequent 

study for the use of losartan in children with proteinuria took advantage of 

this information [99]. In particular, dose selection was based on these 

previous findings and in the new trial children randomized to the losartan 

arm received a starting dose of approximately 0.7 mg/kg that was up-

titrated to a maximum of 1.4 mg/kg. 
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2.3. Methods of use 

2.3.1. Class-specific examples 

This section now addresses some specific examples of therapeutic classes 

and the principles of extrapolation relevant to these medicines are 

considered in turn. 

Anti-epileptic agents 

As already mentioned, the treatment of POS has been deemed to be 

similar between children and adults and it may be reasonable to extrapolate 

efficacy from adults to children. In response to a regulatory request from 

the EMA for the approval of brivaracetam, Pellock et al. [42] performed a 

systematic review of published efficacy trials in the treatment of POS and 

primary generalised tonic-clonic seizures (PGTCS) in adults and children. 

They compared 52 efficacy trials of 5 different anti-epileptic drugs in 

children and adults by means of forest plots of the treatment effect size in 

terms of both the median percent seizure reduction and ≥ 50% responder 

rate. By showing that confidence intervals overlap each other in the two 

populations, the authors advocated that, overall, the effect measures were 

comparable between adult and pediatric studies. Although the evidence 

collected thus far suggests that extrapolation of efficacy is appropriate, 

safety data are still to be generated. In addition, such analysis is valid only 

for the adjunctive treatment of POS in children older than 2 years of age. 

Indeed, the paucity of historical data on adjunctive therapy for POS in 

children younger than 2 years, and on monotherapy for POS and 

monotherapy/adjunctive therapy for PGTCS in the whole pediatric age 

range did not allow the postulation of any similarities between the two 

populations in terms of response to treatment. Thus, collection of new 

clinical data is needed in these subsets of the pediatric population. 

Besides showing no substantial differences between children and adults 

in terms of response to treatment, adjunctive therapy for POS was also 

deemed to satisfy the assumption on the similarity of the PK-PD 

relationship [43, 44]. The latter conclusion was reached by identifying two 

different PK-PD models in pediatric and adult patients and statistically 

testing whether the parameter describing the concentration-effect 

relationship was significantly different in the two models. As this was not 

the case, the PK-PD relationship was assumed to be independent of age, 

making the application of extrapolation in adjunctive treatment of POS 

straightforward. 
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Anti-infectious agents (antibiotics, antibacterials, antifungals 

and antivirals) 

Traditionally, antimicrobial activity extrapolation was viewed as a 

relatively straightforward exercise. This perception arose because the PK-

PD targets of therapy (summarized in Table 2.2 for antibacterials) were 

considered to be directly comparable between adults, children, and 

neonates. For many older antibiotics such as penicillins, the standard adult 

doses were scaled down for children and infants according to weight (in a 

simple linear fashion) or age, and frequently detailed pediatric or neonatal 

studies were omitted [100]. Since the clearance-body weight relationship is 

non-linear whereas the volume-body weight relationship is linear, the shape 

of the PK curve differs in children of different weights. In children aged 

under 2 years, maturation further complicates matters. This brings two 

potential problems in extrapolation: firstly, the dose to achieve the indices 

in Table 2 will not be linear mg/kg, and secondly, recent evidence suggests 

that PK curve shape - independent of AUC, for example - may be important 

in antimicrobial resistance development [101]. 

In addition to PK differences, extrapolation should ideally account for 

PD. Neonates, and particularly pre-term neonates, are functionally 

immunocompromised so the assumed dynamics of the “host – bug – drug” 

interactions may not hold. Likewise, the impact of ontogeny and 

developmental pharmacology also play an important role in drug safety. 

Some well-known examples, where the impact of antimicrobial 

pharmacology on safety has been apparent, include (i) the former use of 

chloramphenicol in neonates – which precipitated the potentially fatal gray 

baby syndrome – due to the immaturity of the neonatal UDP-glucuronyl 

transferase enzyme system; and (ii) the risks of sulphonamide use during 

the neonatal period, which can lead to kernicterus, because the drug 

displaces bilirubin from albumin binding sites; it is necessary to consider 

these historical examples when making recommendations for extrapolation 

of antimicrobial PK-PD data, in order to mitigate the risks of such adverse 

events.  

A more recent example of antifungal pharmacology shows the 

application – and occasional limitation – of linear extrapolation of dosing 

regimens on a mg/kg basis, when voriconazole (a potent, broad-spectrum, 

tri-azole) was investigated in children. A 2004 study [103] aimed to 

generate a drug exposure in children similar to that achieved in adults, with  

the understanding that this should prove efficacious – assuming the PD 

aspects were equivalent. It became apparent during the study that pediatric 

patients actually had a greater voriconazole elimination capacity (per kg 

body weight) than healthy adult volunteers; so, to generate adequate 

exposure, children required 4 mg/kg (rather than the 3 mg/kg recommended 

in adults) [103]. However, a later study then suggested that 7 mg/kg twice 

daily were actually needed to reach the median AUC (area under the curve) 

values of adults (that was achieved with 3 to 4 mg/kg twice daily) [104]. 

Voriconazole's non-linear PK further complicated the development of 
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rational pediatric dosing guidelines, and provided a good example of where 

dedicated pediatric PK studies led to the evolution of dose guidelines, 

which were not predicted with extrapolation from adults – this example is 

discussed further below in the section on PK bridging and the evaluation of 

extrapolation.  

Table 2.2: PKPD indices for major classes of antibacterial agents, 

reproduced from Barker et al. ADDR2014, (Open access under CC BY-NC-

ND license) [102]. 

PD 
Class of 

Antibacterial 

Specific 

drug (where 

applicable) 

PD 

parameter 

PD 

Target of 

therapy 

Time-

dependent 

Beta-lactams - %T>MIC 

Max %T in the 

dosing interval 

>MIC 

Macrolides 

Conventional 

macrolides 
%T>MIC 

Max %T in the 

dosing interval 

>MIC 

Azithromycin AUC/MIC 
Optimal daily 

amount 

Glycopeptides - AUC/MIC 
Optimal daily 

amount 

Tetracyclines - AUC/MIC 
Optimal daily 

amount 

Oxazolidinones 

Conventional 

oxazolidinones 
%T>MIC 

Max %T in the 

dosing interval 

>MIC 

Linezolid AUC/MIC 
Optimal daily 

amount 

Concentratio

n-dependent 

Aminoglycoside

s 
- 

Cmax/MIC 

or AUC/MIC 

Max peak 

concentration 

or optimal 

daily amount 

(Fluoro)quinolo

nes 
- 

Cmax/MIC 

or AUC/MIC 

Max peak 

concentration 

or optimal 

daily amount 

Metronidazole - 
Cmax/MIC 

or AUC/MIC 

Max peak 

concentration 

or optimal 

daily amount 

 

Another pivotal consideration for antimicrobial therapy extrapolation is 

whether the Minimum Inhibitory Concentration (MIC) distribution of the 

causative pathogen is the same in children and adults; this assumption has 

generally underpinned most previous studies. Two UK groups have now 

obtained data (H Hill et al (unpublished at the time of writing), and A Kent 

at al.) suggesting that this may always not be the case. In the study by Kent 

et al. [105], it was also shown that higher gentamicin MICs were associated 

with increased neonatal mortality – even when the MIC was within the 
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susceptible range according to current EUCAST susceptibility breakpoints. 

This reinforces the need for further research into PD in neonates. In the 

short term it is likely that researchers will continue to use the standard 

antimicrobial PK-PD target indices in children and adults, and aim to 

achieve similar drug exposures, after appropriate pediatric PK 

investigations. However, with improved understanding of antimicrobial PD 

including clinical factors to determine the resolution of infection (and thus 

appropriate duration of treatment) and advances in diagnostic technologies 

(e.g. to quantify bacterial DNA loads in real-time), the methods for 

extrapolation and dosing regimen design will have to become more 

sophisticated in the coming years. 

Anticoagulants 

Lala et al. [38] defined a genetic-based warfarin pediatric dosage 

regimen. They started from the evidence that drugs with a similar 

mechanism of action do not show a significantly different PK-PD 

relationship between pediatric and adult populations, thus justifying the use 

of an adult PK-PD model for bridging purposes. Nevertheless the authors 

highlighted that there are some data showing intrinsic developmental 

differences in the coagulation system in the very young (<2 years) [106], 

thereby making the previous hypothesis unreliable in this subset of the 

pediatric population. The PK was allometrically adjusted for body size in 

children, while the effect of enzymatic ontogeny on clearance was 

accounted for by linking clearance with age following a validated method 

based on warfarin data [36]. The final PK-PD model was then visually 

validated on data from 26 pediatric subjects, comparing the predicted 

individual International Normalised Ratio (INR) versus the observed one.  

Based on these results the authors claimed that the model can be used 

for CTS, which ultimately led to the definition of a pediatric genetic-based 

warfarin dosing regimen (based on reaching the target INR). 

The main limitation of the study, as acknowledged also by the authors, is 

depicted by the paucity of available clinical data. Accordingly, a 

multicentre pediatric warfarin pharmacogenetic trial sponsored by the FDA 

is now underway. Thus, an extrapolation concept has been formulated and 

partially validated on some clinical data. However, the quantity of clinical 

data did not allow complete confirmation of the assumptions made, so the 

extrapolation concept will be further evaluated and possibly refined with 

the collection of more clinical data. Nonetheless, the proposed 

methodology was suitable in helping to identify the right dose for the 

subsequent larger trial. 

A similar analysis was done by Hamberg et al [107], who bridged an 

adult PK-PD warfarin model to children to account for maturational 

changes in PK parameters (both allometrically and through the same 

maturation function used by Lala and colleagues). Interestingly, both the 

adapted model by Lala et al and Hamberg et al’s model appear to 

overestimate pediatric INR. More specifically, Hamberg’s team highlighted 
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that the overestimation seen in children <2 years old is not negligible, 

confirming that the assumptions made do not hold in this age subset.  

2.3.2. PD measurements that can be used to predict 
efficacy 

There exist clinical endpoints that have been validated in adults which 

are not measurable in the pediatric population or a subset thereof, making 

extrapolation difficult. In order to address this issue, new clinical measures 

known to predict efficacy that can be assessed in children should be 

explored during adult development and subsequently validated in the 

pediatric population. Such an approach was successfully exploited in the 

definition of a pediatric sildenafil dosage for pulmonary arterial 

hypertension (PAH) [108]. In adults, treatment effect in terms of exercise 

capacity is assessed through the 6-minute walk distance test (6MWDT). 

The test cannot be consistently measured across age groups of children due 

to their variability in cooperation and/or capability to perform the test 

[109]. An FDA analysis using data from drugs approved for adult PAH 

found a linear relationship between the 6MWDT and the pulmonary 

vascular resistance index (PVRI), a measure that can be easily assessed in 

children. Based on these findings, the sponsor verified the consistency of 

exercise improvement and PVRI improvement between children and adults 

and defined the pediatric dosage regimen by determining the dose leading 

to a PVRI improvement corresponding to a target 6MWDT improvement.  

2.3.3. Extrapolation process 

Irrespective of the methodology adopted, the use of extrapolation for the 

approval of new medicines for pediatric use should be planned early on 

during adult development. This enables ad-hoc data collection which 

ultimately facilitates the formulation of the extrapolation concept and 

allows reliable conclusions to be reached on the safe and effective use of 

the medicine in children.  

Even though the methodologies presented so far highlighted the benefits 

of the extrapolation approach for a specific aim within the entire drug 

development, the extrapolation process should be perceived as an iterative 

one where hypotheses are challenged and subsequently confirmed or 

refined. The approval of olmesartan medoxomil in hypertensive pediatric 

patients in the US appropriately reflects this concept and shows how 

extrapolation underpins the whole pediatric drug development roadmap 

[37]. First, a virtual population of pediatric patients with hypertension was 

simulated (in terms of age, height, weight and baseline blood pressure 

(BP)) based on published demographic and BP data. Second, two 

assumptions were made on the PK and PK-PD relationship of the drug in 

children: (i) an adult PK model was used on the grounds that body weight 
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was identified as an important covariate for clearance, which was 

allometrically scaled and (ii) the exposure-response relationship between 

children and adults was considered similar, thus an adult PK-PD model was 

used to describe the response to treatment in pediatric patients. Third, the 

development of olmesatran medoxomil in children foresaw a three-arm trial 

to estimate the dose-response relationship, as requested by the FDA. The 

sponsor therefore leveraged the aforementioned PK and PK-PD models to 

design the forthcoming trial: with the PK model the expected pediatric drug 

exposures were simulated for the dosages to be used in the trial, while the 

PK-PD model was used to perform CTS. The results of this first 

extrapolation were twofold: the PK simulation showed that the designated 

doses would have generated appropriate olmesartan exposures in children, 

while CTS indicated that two dose groups would have been sufficient to 

estimate a dose-response relationship, thus allowing the reduction of the 

total sample size by one-third. 

The FDA accepted the sponsor’s analyses and conclusions, and the 

actual trial was run with two arms, together with an accompanying phase I 

single-dose study. The clinical data obtained from these two studies 

validated the extrapolation concept. On the one hand, a new pediatric PK 

model was built based on the PK study, which confirmed the 

appropriateness of allometrically scaling adult clearance by body weight. 

Most importantly, the two-arm trial was able to detect a statistically 

significant dose-response relationship of olmesartan medoxomil in 

children, thereby leading to pediatric approval of the drug. 

2.4. Evaluation of extrapolation applications 

The extrapolation concept should ideally be evaluated on clinical data 

from the target population. If such data do not confirm the assumptions 

made, these need to be reformulated and the extrapolation concept adjusted 

accordingly. Thus, an iterative process consisting of a testing-learning loop 

takes place – similar to the standard, well-established ‘learn-confirm’ 

paradigm of clinical drug development [110]. 

An illustrative example of a testing-learning loop is depicted by 

voriconazole pediatric development for fungal infections, where PK 

bridging formed the basis of the extrapolation plan. Based on data from 

three open-label PK and safety pediatric studies, with a total of 82 patients, 

a PK model was built in order to define the optimal dosage regimen in 

children [104]. However, no consensus was reached on the model-based 

proposed pediatric dosages, and more data were requested by regulators to 

confirm that the pediatric dosages proposed would lead to the efficacious 

voriconazole exposures observed in adults. Thus, a further PK study was 

performed to better characterize the PK and safety of voriconazole in 

children and to assess the suitability of the proposed dosage regimens 

[111]. The results revealed that the previously proposed pediatric 

intravenous dosing regimens - based on population PK modeling - actually 
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led to lower exposures than those observed in adults, suggesting that such 

regimens needed to be further modified. Consequently, an integrated 

population PK M&S exercise was performed based on pooled data from 

previous studies in children, adolescents and healthy adults [112]. Findings 

from this M&S analysis facilitated the appropriate adjustment of the 

previous regimens and thus enabled provision of suitable voriconazole 

dosage recommendations for children aged 2 to <12 years. 

The higher the degree of similarity assumed between source and target 

population the smaller the set of data that needs to be collected in the latter; 

consequently, the more the source data are extrapolated, the fewer the data 

available to evaluate the extrapolation concept. As a result, the risk of false 

conclusions concerning the efficacy and safety of the new treatment in the 

target population is potentially increased. In order to mitigate such risks, 

supporting measures should be implemented. Such measures could embrace 

both premarketing and post-marketing studies depending, among other 

factors, on the type of measure(s) to be assessed (e.g. long-term safety and 

efficacy based on real-world data in a post-marketing setting). Moreover, 

observational approaches such as case-control studies nested in parallel 

cohort studies can provide a unique insight for the evaluation of rare AEs 

in specific pediatric subpopulations [113, 114]. 

2.5. Discussion 

2.5.1. Limitations, future developments and perspectives 

An attempt to build a framework for extrapolation from adults to 

children is represented by the FDA pediatric decision tree [3]. It has 

provided an algorithm for the selection of the type of study to be conducted 

in pediatric patients on the basis of ICH E-11 guideline recommendations. 

However, the decision tree does not take into account PK and PD 

maturation per se. The assumption of a proportional relationship between 

the parameters of interest and age does not allow considering nonlinearities 

that are inherently present in developing children, primarily in neonates 

and infants. Consequently the lower age cut-offs for age down-

extrapolation from adults and children have not been considered.  

Second, the PD of the compounds is overlooked and the extrapolation is 

solely based on the exposure-response relationship assuming this 

relationship is constant between adults and children and within children 

regardless of age or other factors of PD variability.  

Third, extrapolation is described when the source and target populations 

differ with respect to age only, whereas extrapolation across diseases (same 

mechanism of action of the drug) and/or across drug classes (same 

‘disease’) is not considered.  

Finally, no recommendations can be given when the disease is specific 

to children, when the medicine is a first-in-class (no known response), or 
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when clinical efficacy endpoints in adults cannot be assessed in children. 

For example, juvenile epileptic encephalopathies are specific to children 

and no data can be borrowed from adults because of more severe 

symptoms, drug resistance and severe cognitive prognosis. As a 

consequence, full efficacy studies should be performed in these populations 

due to unmet medical needs. Given the small numbers of children affected 

by each type of epilepsy and the high number of different types of epilepsy, 

resulting in recruitment problems, standard parallel designs are not 

feasible. Recommendations on different study designs suitable to overcome 

this obstacle are necessary [41]. Furthermore, some endpoints used in 

adults cannot be used in children through the whole pediatric age-span 

because the active participation of young children cannot be obtained. 

Below a certain age cut-off (which varies according to the endpoint) there 

is a need to replace the endpoint used in adults by another one specific to 

children, which in turn jeopardizes a monotonous quantitative description 

of the endpoint as a function of age, and consequently hamper the 

extrapolation process. For example pain, assessed in adults and in children 

above 6 years by auto-evaluation using the Visual Analogue Scale (VAS), 

can only be quantified in young infants and neonates using hetero-

evaluation and age-appropriate and condition-appropriate validated pain 

scales in the form of lists of items filled in by health professionals. 

Moreover, although there are a number of measures available for the 

assessment of muscular strength in Duchene Muscular Dystrophy, 

regulators tempt to accept only the 6MWDT (primarily because of its 

reproducibility and clinical relevance), which cannot be reliably quantified 

in children. 

Importantly, extrapolation efforts are limited by current insufficient 

knowledge on developmental PK-PD relevant to any specific medicine 

(physiology-receptor pharmacology). For example, the pathophysiology of 

Gastro-Esophageal Reflux Disease (GERD) in infants (related to lower 

oesophageal sphincter relaxation) is different from that of older children 

and adults (acid mediated), likely because of the maturation of the lower 

esophageal sphincter, which is fully reached at 13 months of age [115]. 

Misspecification of such a difference may have contributed to the failure of 

four clinical trials in infants with GERD [116]. 

Building up a final and comprehensive framework for extrapolation is 

not trivial and is fraught with issues that have yet to be solved such as: the 

definition of the impact of extrapolation in drug development and 

regulatory reviews; how to account for feasibility and ethical restrictions 

for studies in specific populations; how to formally define and quantify 

similarities and differences of disease, PK/PD and clinical response to 

treatment and of safety; how to decide on the quality and quantity of 

existing data, to weigh the strength of prior information; how to integrate 

expert judgement in the extrapolation concept; how to validate assumptions 

made in the extrapolation concept; how to deal with the uncertainty and 

risks of extrapolation assumptions, especially in the regulatory review and 
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approval process, and how to collect, analyse and report post-authorisation 

data to support the extrapolation concept.  

The extrapolation process should not be confused with M&S. Although 

the two are undoubtedly intertwined, extrapolation is primarily a reflection 

process based upon available knowledge across the preclinical, clinical, 

biological, pathophysiological, pharmacological and regulatory domains.  

In many cases, the extrapolation process should be underpinned by 

M&S. M&S can be used to quantify the magnitude of differences between 

the source and target population, as well as contributing to study protocol 

design and data analysis (Figure 2.3). Descriptive and quantitative 

information should be collected in order to enable rational model 

development. 

 

 
Figure 2.3: Role of modeling and simulation in pediatric drug development 

(adapted from Manolis and Pons [13]). 

Collecting quantitative data to describe the maturational profiles of 

physiological processes involving drug disposition (PK) and drug effect 

(PD) as a function of age should allow knowledge gaps to be filled. 

Although drug disposition is routinely assessed, an alarming lack of PD 

information in the entire age range of the pediatric population continues to 

exist. As stated by Holford “testing for PK without testing for PD in 

children is unethical” [7]. Increasing the current knowledge on 

developmental pharmacodynamics would boost the building of exposure-

response models specific for the pediatric population, a practice that has 

unfortunately been very limited so far (a 2008 review found that less than 

10% of all published models were on PK-PD [9]). Most importantly, such 

models (including mechanistic PD models) would enable testing of the 

hypothesis of similar concentration-response relationship, which seems to 

be over-assumed and appears to be one of the major reasons for trial 

failures in pediatrics [116]. Surrogate markers to be used both in children 

and in adults regardless of age/maturation also need to be developed to be 
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able to bridge age-subsets in which only different clinical endpoints can be 

used (e.g. bridging above and below 6 years-old children for a similar 

quantification of pain). 

Moreover, collecting quantitative longitudinal data on the natural history 

of some diseases in children from public database and disease/patients 

registries may identify evolution patterns in natural history of these 

diseases that can be helpful in modeling the evolution profile. Not only 

such models could be used for assessing similarities between source and 

target population, but also they could characterise diseases specific to 

children and therefore be used to inform trial design in these peculiar 

populations. 

The extrapolation working group at EMA, including representatives 

from the Pediatric Committee (PDCO), the Committee for Medicinal 

Products for Human Use (CHMP), and the Scientific Advice Working 

Party (SAWP), is drafting a reflection paper on extrapolation of efficacy 

and safety in medicine development. A pivotal milestone would be the 

creation of a database of case examples from various therapeutic areas and, 

eventually, the creation of an algorithm (or set of approaches) for 

extrapolation and an inventory of methodological rules. Consultation of, 

and contribution from stakeholders (e.g. pharmacologists, methodologists, 

industry, academia) and discussion and harmonisation with the FDA shall 

also be implemented. The ultimate final goal is to develop common 

regulatory guidance on extrapolation for medicines development. 

Extrapolation is a pivotal strategy to avoid unnecessary studies in 

children, to allocate resources to areas where studies are most needed and 

to overcome ethical and feasibility problems encountered in executing trials 

in very small populations such as the pediatric one. Although major 

regulators have not yet agreed on a shared view of the problem, FDA and 

EMA are working towards harmonization regarding the use of the 

extrapolation approach for the evaluation of medicinal products in children 

(as part of global harmonization of the regulatory pediatric drug 

development). Such collaboration has already led to positive results in a 

number of diseases such as diabetes [117], ulcerative colitis [118, 119] and 

Gaucher disease [120].  

Although in this Chapter a number of issues to consider on the use of 

extrapolation in the evaluation of medicinal products for children were 

raised, it is likely that the acceptability of extrapolation will remain a case-

by-case decision. Medicines developers are encouraged to engage in 

interaction with regulators as early as possible, in order to optimise 

pediatric development with respect to adult development. 

 



 

 23 

References 

[1] EU. Regulation on medicinal products for paediatric use 

Official Journal of the European Union. 2006. 

[2] E11 I. Guideline on clinical investigation of medicinal products 

in the paediatric population. 2000. 

[3] FDA. Guidance for Industry: Exposure-Response Relationships: 

Study Design, Data Analysis, and Regulatory Applications. 

2003. 

[4] FDA. General Clinical Pharmacology Considerations for 

Paediatric Studies for Drugs and Biological Products. 2014. 

[5] FDA. Leveraging Existing Clinical Data for Extrapolation to 

Paediatric Uses of Medical Devices. 2015. 

[6] EMA. Concept paper on extrapolation of efficacy and safety in 

medicine development 2012. 

[7] Holford N. Dosing in children. Clinical pharmacology and 

therapeutics. 2010;87(3):367-70. 

[8] Bellanti F, Della Pasqua O. Modelling and simulation as 

research tools in paediatric drug development. European journal 

of clinical pharmacology. 2011;67 Suppl 1:75-86.  

[9] Tod M, Jullien V, Pons G. Facilitation of drug evaluation in 

children by population methods and modelling. Clinical 

pharmacokinetics. 2008;47(4):231-43. 

[10]  De Cock RF, Piana C, Krekels EH, Danhof M, Allegaert K, 

Knibbe CA. The role of population PK-PD modelling in 

paediatric clinical research. European journal of clinical 

pharmacology. 2011;67 Suppl 1:5-16. 

[11] van Hasselt JG, van Eijkelenburg NK, Beijnen JH, Schellens 

JH, Huitema AD. Optimizing drug development of anti-cancer 

drugs in children using modelling and simulation. British 

journal of clinical pharmacology. 2013;76(1):30-47. 



The extrapolation approach 

 

 24 

[12] Laer S, Barrett JS, Meibohm B. The in silico child: using 

simulation to guide paediatric drug development and manage 

paediatric pharmacotherapy. Journal of clinical pharmacology. 

2009;49(8):889-904. 

[13] Manolis E, Pons G. Proposals for model-based paediatric 

medicinal development within the current European Union 

regulatory framework. British journal of clinical pharmacology. 

2009;68(4):493-501. 

[14] Marier J, Mangum B, Reid B, Barrett JS. A Modeling and 

Simulation Framework to Support Global Regulatory Strategies 

for Pediatrc Drug Development Programs. Therapeutic 

Innovation & Regulatory Science. 2013;47(5):550-6.  

[15] Harnisch L, Shepard T, Pons G, Della Pasqua O. Modeling and 

simulation as a tool to bridge efficacy and safety data in special 

populations. CPT: pharmacometrics & systems pharmacology. 

2013;2:e28. 

[16] Manolis E, Osman TE, Herold R, Koenig F, Tomasi P, 

Vamvakas S, et al. Role of modeling and simulation in 

paediatric investigation plans. Paediatric anaesthesia. 

2011;21(3):214-21. 

[17] Dunne J, Rodriguez WJ, Murphy MD, Beasley BN, Burckart 

GJ, Filie JD, et al. Extrapolation of adult data and other data in 

paediatric drug-development programs. Paediatrics. 

2011;128(5):e1242-9. 

[18] Schoenfeld DA, Hui Z, Finkelstein DM. Bayesian design using 

adult data to augment paediatric trials. Clinical trials. 

2009;6(4):297-304. 

[19] EMA. Neurontin Summary of Product Characteristics. 2006. 

[20] Appleton R, Fichtner K, LaMoreaux L, Alexander J, Halsall G, 

Murray G, et al. Gabapentin as add-on therapy in children with 

refractory partial seizures: a 12-week, multicentre, double-blind, 

placebo-controlled study. Gabapentin Paediatric Study Group. 

Epilepsia. 1999;40(8):1147-54. 

[21] Mahmood I. Dosing in children: a critical review of the 

pharmacokinetic allometric scaling and modelling approaches 

in paediatric drug development and clinical settings. Clinical 

pharmacokinetics. 2014;53(4):327-46. 



The extrapolation approach 

 

 25 

[22] Cella M, Knibbe C, Danhof M, Della Pasqua O. What is the 

right dose for children? British journal of clinical 

pharmacology. 2010;70(4):597-603. 

[23] Mahmood I. Allometric extrapolation of factors VII, VIII and 

IX clearance in children from adults. Journal of thrombosis and 

haemostasis : JTH. 2012;10(8):1609-13. 

[24] De Cock RFW, Allegaert K, Sherwin CMT, Nielsen EI, De 

Hoog M, Van Den Anker JN, et al. A Neonatal amikacin 

covariate model can be used to predict ontogeny of other drugs 

eliminated through glomerular filtration in neonates. 

Pharmaceutical Research. 2014;31(3):754-67. 

[25] Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic 

approach for the scaling of clearance in children. Clinical 

pharmacokinetics. 2006;45(7):683-704. 

[26] Holford N, Heo YA, Anderson B. A pharmacokinetic standard 

for babies and adults. Journal of pharmaceutical sciences. 

2013;102(9):2941-52. 

[27] Knibbe CA, Zuideveld KP, Aarts LP, Kuks PF, Danhof M. 

Allometric relationships between the pharmacokinetics of 

propofol in rats, children and adults. British journal of clinical 

pharmacology. 2005;59(6):705-11. 

[28] Zhao W, Le Guellec C, Benjamin DK, Jr., Hope WW, 

Bourgeois T, Watt KM, et al. First Dose in Neonates: Are 

Juvenile Mice, Adults and In Vitro-In Silico Data Predictive of 

Neonatal Pharmacokinetics of Fluconazole. Clinical 

pharmacokinetics. 2014. 

[29] Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, 

Leeder JS, Kauffman RE. Developmental pharmacology--drug 

disposition, action, and therapy in infants and children. The 

New England journal of medicine. 2003;349(12):1157-67. 

[30] Holford NH. A size standard for pharmacokinetics. Clinical 

pharmacokinetics. 1996;30(5):329-32. 

[31] Cella M, Gorter de Vries F, Burger D, Danhof M, Della Pasqua 

O. A model-based approach to dose selection in early paediatric 

development. Clinical pharmacology and therapeutics. 

2010;87(3):294-302. 



The extrapolation approach 

 

 26 

[32] Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B. 

Physiologically based pharmacokinetic (PBPK) modeling in 

children. Clinical pharmacology and therapeutics. 

2012;92(1):40-9. 

[33] Leeder JS, Brown JT, Soden SE. Individualizing the use of 

medications in children: making goldilocks happy. Clinical 

pharmacology and therapeutics. 2014;96(3):304-6. 

[34] Strougo A, Eissing T, Yassen A, Willmann S, Danhof M, 

Freijer J. First dose in children: physiological insights into 

pharmacokinetic scaling approaches and their implications in 

paediatric drug development. Journal of pharmacokinetics and 

pharmacodynamics. 2012;39(2):195-203. 

[35] Maharaj AR, Edginton AN. Physiologically based 

pharmacokinetic modeling and simulation in paediatric drug 

development. CPT: pharmacometrics & systems pharmacology. 

2014;3:e150. 

[36] Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of 

the clearance of eleven drugs and associated variability in 

neonates, infants and children. Clinical pharmacokinetics. 

2006;45(9):931-56. 

[37] Salazar DE, Song SH, Shi J, Rohatagi S, Heyrman R, Wada 

DR, et al. The use of modeling and simulation to guide clinical 

development of olmesartan medoxomil in paediatric subjects. 

Clinical pharmacology and therapeutics. 2012;91(2):250-6. 

[38] Lala M, Burckart GJ, Takao CM, Pravica V, Momper JD, 

Gobburu JV. Genetics-based paediatric warfarin dosage 

regimen derived using pharmacometric bridging. The journal of 

paediatric pharmacology and therapeutics : JPPT : the official 

journal of PPAG. 2013;18(3):209-19. 

[39] Johnson TN. Modelling approaches to dose estimation in 

children. British journal of clinical pharmacology. 

2005;59(6):663-9. 

[40] Hampson LV, Herold R, Posch M, Saperia J, Whitehead A. 

Bridging the gap: a review of dose investigations in paediatric 

investigation plans. British journal of clinical pharmacology. 

2014;78(4):898-907. 

[41] Chiron C, Dulac O, Pons G. Antiepileptic drug development in 

children: considerations for a revisited strategy. Drugs. 

2008;68(1):17-25. 



The extrapolation approach 

 

 27 

[42] Pellock JM, Carman WJ, Thyagarajan V, Daniels T, Morris DL, 

D'Cruz O. Efficacy of antiepileptic drugs in adults predicts 

efficacy in children: a systematic review. Neurology. 

2012;79(14):1482-9. 

[43] Girgis IG, Nandy P, Nye JS, Ford L, Mohanty S, Wang S, et al. 

Pharmacokinetic-pharmacodynamic assessment of topiramate 

dosing regimens for children with epilepsy 2 to <10 years of 

age. Epilepsia. 2010;51(10):1954-62. 

[44] Nedelman JR, Rubin DB, Sheiner LB. Diagnostics for 

confounding in PK/PD models for oxcarbazepine. Statistics in 

medicine. 2007;26(2):290-308. 

[45] Brochot A, Kakuda TN, Van De Casteele T, Opsomer M, 

Tomaka FL, Vermeulen A, et al. Model-Based Once-Daily 

Darunavir/Ritonavir Dosing Recommendations in Paediatric 

HIV-1-Infected Patients Aged >/=3 to <12 Years. Clinical 

Pharmacology & Therapeutics: pharmacometrics & systems 

pharmacology. 2015;4(7):406-14. 

[46] Stephenson T. How children's responses to drugs differ from 

adults. British Journal of Clinical Pharmacology. 

2005;59(6):670-3. 

[47] Laer S, Elshoff JP, Meibohm B, Weil J, Mir TS, Zhang W, et al. 

Development of a safe and effective paediatric dosing regimen 

for sotalol based on population pharmacokinetics and 

pharmacodynamics in children with supraventricular 

tachycardia. Journal of the American College of Cardiology. 

2005;46(7):1322-30. 

[48] FDA. Antidepressant Use in Children, Adolescents, and Adults. 

http://wwwfdagov/Drugs/DrugSafety/InformationbyDrugClass/

UCM096273. 2007. 

[49] Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects 

and the effective treatment of disease. Toxicological sciences : 

an official journal of the Society of Toxicology. 2011;122(1):1-

6. 

[50] Koren G, Florescu A, Costei AM, Boskovic R, Moretti ME. 

Nonsteroidal antiinflammatory drugs during third trimester and 

the risk of premature closure of the ductus arteriosus: a meta-

analysis. The Annals of pharmacotherapy. 2006;40(5):824-9. 



The extrapolation approach 

 

 28 

[51] Benini D, Fanos V, Cuzzolin L, Tato L. In utero exposure to 

nonsteroidal anti-inflammatory drugs: neonatal renal failure. 

Paediatric nephrology. 2004;19(2):232-4. 

[52] Cuzzolin L, Dal Cere M, Fanos V. NSAID-induced 

nephrotoxicity from the fetus to the child. Drug safety. 

2001;24(1):9-18. 

[53] Tabacova SA, Kimmel CA. Enalapril: 

pharmacokinetic/dynamic inferences for comparative 

developmental toxicity. A review. Reproductive toxicology. 

2001;15(5):467-78. 

[54] Chevalier RL. Mechanisms of fetal and neonatal renal 

impairment by pharmacologic inhibition of angiotensin. Current 

medicinal chemistry. 2012;19(27):4572-80. 

[55] Sanz EJ, De-las-Cuevas C, Kiuru A, Bate A, Edwards R. 

Selective serotonin reuptake inhibitors in pregnant women and 

neonatal withdrawal syndrome: a database analysis. Lancet. 

2005;365(9458):482-7. 

[56] Stiskal JA, Kulin N, Koren G, Ho T, Ito S. Neonatal paroxetine 

withdrawal syndrome. Archives of disease in childhood Fetal 

and neonatal edition. 2001;84(2):F134-5. 

[57] Cleary BJ, Donnelly J, Strawbridge J, Gallagher PJ, Fahey T, 

Clarke M, et al. Methadone dose and neonatal abstinence 

syndrome-systematic review and meta-analysis. Addiction. 

2010;105(12):2071-84. 

[58] Cleary BJ, Donnelly JM, Strawbridge JD, Gallagher PJ, Fahey 

T, White MJ, et al. Methadone and perinatal outcomes: a 

retrospective cohort study. American journal of obstetrics and 

gynecology. 2011;204(2):139 e1-9. 

[59] Meidahl Petersen K, Jimenez-Solem E, Andersen JT, Petersen 

M, Brodbaek K, Kober L, et al. beta-Blocker treatment during 

pregnancy and adverse pregnancy outcomes: a nationwide 

population-based cohort study. BMJ open. 2012;2(4). 

[60] Davis R, Andrade S, Rubanowice D, McPhillips H, Boudreau 

D, Raebel M, et al. C-A4-03: Risks to the Newborn Associated 

With In-Utero Exposure to Beta-Blockers and Calcium-Channel 

Blockers. Clinical Medicine & Research. 2010;8(1):57-. 

[61] Bleyer WA, Skinner AL. Fatal Neonatal Hemorrhage After 

Maternal Anticonvulsant Therapy. Jama. 1976;235(6):626. 



The extrapolation approach 

 

 29 

[62] Kazmin A, Wong RC, Sermer M, Koren G. Antiepileptic drugs 

in pregnancy and hemorrhagic disease of the newborn: an 

update. Canadian family physician Medecin de famille 

canadien. 2010;56(12):1291-2. 

[63] Mountain KR, Hirsh J, Gallus AS. Neonatal coagulation defect 

due to anticonvulsant drug treatment in pregnancy. Lancet. 

1970;1(7641):265-8. 

[64] Meador KJ. Neurodevelopmental effects of antiepileptic drugs. 

Current neurology and neuroscience reports. 2002;2(4):373-8. 

[65] Dean JC, Hailey H, Moore SJ, Lloyd DJ, Turnpenny PD, Little 

J. Long term health and neurodevelopment in children exposed 

to antiepileptic drugs before birth. Journal of medical genetics. 

2002;39(4):251-9. 

[66] Gelisse P, Genton P, Kuate C, Pesenti A, Baldy-Moulinier M, 

Crespel A. Worsening of seizures by oxcarbazepine in juvenile 

idiopathic generalized epilepsies. Epilepsia. 2004;45(10):1282-

6.  

[67] Genton P, Gelisse P, Thomas P, Dravet C. Do carbamazepine 

and phenytoin aggravate juvenile myoclonic epilepsy? 

Neurology. 2000;55(8):1106-9.  

[68] Horn CS, Ater SB, Hurst DL. Carbamazepine-exacerbated 

epilepsy in children and adolescents. Paediatric neurology. 

1986;2(6):340-5. 

[69] Allen DB. Growth suppression by glucocorticoid therapy. 

Endocrinology and metabolism clinics of North America. 

1996;25(3):699-717. 

[70] Mazziotti G, Giustina A. Glucocorticoids and the regulation of 

growth hormone secretion. Nature reviews Endocrinology. 

2013;9(5):265-76. 

[71] Bray RJ. Propofol infusion syndrome in children. Paediatric 

anaesthesia. 1998;8(6):491-9. 

[72] Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia 

associated with prolonged propofol infusion in children. 

Neurology. 1998;50(1):301-3.  

[73] Patz A. The role of oxygen in retrolental fibroplasia. 

Paediatrics. 1957;19(3):504-24.  



The extrapolation approach 

 

 30 

[74] Cooper WO, Griffin MR, Arbogast P, Hickson GB, Gautam S, 

Ray WA. Very early exposure to erythromycin and infantile 

hypertrophic pyloric stenosis. Archives of paediatrics & 

adolescent medicine. 2002;156(7):647-50. 

[75] Hauben M, Amsden GW. The association of erythromycin and 

infantile hypertrophic pyloric stenosis: causal or coincidental? 

Drug safety. 2002;25(13):929-42. 

[76] Melnick S, Cole P, Anderson D, Herbst A. Rates and risks of 

diethylstilbestrol-related clear-cell adenocarcinoma of the 

vagina and cervix. An update. The New England journal of 

medicine. 1987;316(9):514-6. 

[77] Witkop CJ, Jr., Wolf RO. Hypoplasia and Intrinsic Staining of 

Enamel Following Tetracycline Therapy. Jama. 1963;185:1008-

11. 

[78] Grenier MA, Lipshultz SE. Epidemiology of anthracycline 

cardiotoxicity in children and adults. Seminars in oncology. 

1998;25(4 Suppl 10):72-85.  

[79] Iarussi D, Indolfi P, Casale F, Martino V, Di Tullio MT, 

Calabro R. Anthracycline-induced cardiotoxicity in children 

with cancer: strategies for prevention and management. 

Paediatric drugs. 2005;7(2):67-76. 

[80] Cho WK, Lee JW, Chung NG, Jung MH, Cho B, Suh BK, et al. 

Primary ovarian dysfunction after hematopoietic stem cell 

transplantation during childhood: busulfan-based conditioning 

is a major concern. Journal of paediatric endocrinology & 

metabolism : JPEM. 2011;24(11-12):1031-5.  

[81] Teinturier C, Hartmann O, Valteau-Couanet D, Benhamou E, 

Bougneres PF. Ovarian function after autologous bone marrow 

transplantation in childhood: high-dose busulfan is a major 

cause of ovarian failure. Bone marrow transplantation. 

1998;22(10):989-94. 

[82] Brougham MF, Kelnar CJ, Sharpe RM, Wallace WH. Male 

fertility following childhood cancer: current concepts and future 

therapies. Asian journal of andrology. 2003;5(4):325-37.  

[83] de Araujo Filho GM, Pascalicchio TF, Lin K, Sousa PS, 

Yacubian EM. Neuropsychiatric profiles of patients with 

juvenile myoclonic epilepsy treated with valproate or 

topiramate. Epilepsy & behavior : E&B. 2006;8(3):606-9.  



The extrapolation approach 

 

 31 

[84] Kang HC, Eun BL, Wu Lee C, Ku Moon H, Kim JS, Wook 

Kim D, et al. The effects on cognitive function and behavioral 

problems of topiramate compared to carbamazepine as 

monotherapy for children with benign rolandic epilepsy. 

Epilepsia. 2007;48(9):1716-23. 

[85] Mulberg AE, Silber SA, J.N. VdA. Paediatric Drug 

Development: John Wiley & Sons; 2009. 

[86] EMA. Guideline on the need for non-clinical testing in juvenile 

animals on human pharmaceuticals for paediatric indications 

2008. 

[87]  FDA. Nonclinical Safety Evaluation of Paediatric Drug 

Products. 2006. 

[88] Soellner L, Olejniczak K. The need for juvenile animal studies--

a critical review. Regulatory toxicology and pharmacology : 

RTP. 2013;65(1):87-99. 

[89] Liao CM, Lin TL, Chen SC. A Weibull-PBPK model for 

assessing risk of arsenic-induced skin lesions in children. The 

Science of the total environment. 2008;392(2-3):203-17.  

[90] Hope WW, Drusano GL. Antifungal pharmacokinetics and 

pharmacodynamics: bridging from the bench to bedside. 

Clinical microbiology and infection : the official publication of 

the European Society of Clinical Microbiology and Infectious 

Diseases. 2009;15(7):602-12. 

[91] Hope WW, Mickiene D, Petraitis V, Petraitiene R, Kelaher AM, 

Hughes JE, et al. The pharmacokinetics and pharmacodynamics 

of micafungin in experimental hematogenous Candida 

meningoencephalitis: implications for echinocandin therapy in 

neonates. The Journal of infectious diseases. 2008;197(1):163-

71. 

[92] EMA. Vancomycin PIP decision. 2013. 

[93] Erkeller-Yuksel FM, Deneys V, Yuksel B, Hannet I, Hulstaert 

F, Hamilton C, et al. Age-related changes in human blood 

lymphocyte subpopulations. The Journal of paediatrics. 

1992;120(2 Pt 1):216-22. 

[94] Hannet I, Erkeller-Yuksel F, Lydyard P, Deneys V, DeBruyere 

M. Developmental and maturational changes in human blood 

lymphocyte subpopulations. Immunology today. 

1992;13(6):215, 8. 



The extrapolation approach 

 

 32 

[95] Clapp DW. Developmental regulation of the immune system. 

Seminars in perinatology. 2006;30(2):69-72. 

[96] Mulla H. Understanding developmental pharmacodynamics: 

importance for drug development and clinical practice. 

Paediatric drugs. 2010;12(4):223-33. 

[97] Jadhav PR, Zhang J, Gobburu JV. Leveraging prior quantitative 

knowledge in guiding paediatric drug development: a case 

study. Pharmaceutical statistics. 2009;8(3):216-24.  

[98] Shahinfar S, Cano F, Soffer BA, Ahmed T, Santoro EP, Zhang 

Z, et al. A double-blind, dose-response study of losartan in 

hypertensive children. American journal of hypertension. 

2005;18(2 Pt 1):183-90. 

[99] Webb NJ, Lam C, Loeys T, Shahinfar S, Strehlau J, Wells TG, 

et al. Randomized, double-blind, controlled study of losartan in 

children with proteinuria. Clinical journal of the American 

Society of Nephrology : CJASN. 2010;5(3):417-24. 

[100] Ahmed U, Spyridis N, Wong IC, Sharland M, Long PF, 

improving Children's Antibiotic Prescribing UKRN. Dosing of 

oral penicillins in children: is big child=half an adult, small 

child=half a big child, baby=half a small child still the best we 

can do? Bmj. 2011;343:d7803. 

[101] Rees VE, Bulitta JB, Nation RL, Tsuji BT, Sorgel F, 

Landersdorfer CB. Shape does matter: short high-concentration 

exposure minimizes resistance emergence for fluoroquinolones 

in Pseudomonas aeruginosa. The Journal of antimicrobial 

chemotherapy. 2015;70(3):818-26.  

[102] Barker CI, Germovsek E, Hoare RL, Lestner JM, Lewis J, 

Standing JF. Pharmacokinetic/pharmacodynamic modelling 

approaches in paediatric infectious diseases and immunology. 

Advanced drug delivery reviews. 2014;73:127-39.  

[103] Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, 

Saez-Llorens X, et al. Pharmacokinetics and safety of 

intravenous voriconazole in children after single- or multiple-

dose administration. Antimicrobial agents and chemotherapy. 

2004;48(6):2166-72.  

[104] Karlsson MO, Lutsar I, Milligan PA. Population 

pharmacokinetic analysis of voriconazole plasma concentration 

data from paediatric studies. Antimicrobial agents and 

chemotherapy. 2009;53(3):935-44. 



The extrapolation approach 

 

 33 

[105] Kent A, Kortsalioudaki C, Monahan IM, Bielicki J, Planche 

TD, Heath PT, et al., editors. Increasing MIC is associated with 

higher mortality in gentamicin treated neonatal gram negative 

infections. Paediatric Infectious Diseases Meeting; 2015. 

[106] Yee DL, O'Brien SH, Young G. Pharmacokinetics and 

pharmacodynamics of anticoagulants in paediatric patients. 

Clinical pharmacokinetics. 2013;52(11):967-80.  

[107] Hamberg AK, Friberg LE, Hanseus K, Ekman-Joelsson BM, 

Sunnegardh J, Jonzon A, et al. Warfarin dose prediction in 

children using pharmacometric bridging--comparison with 

published pharmacogenetic dosing algorithms. European 

journal of clinical pharmacology. 2013;69(6):1275-83.  

[108] Chanu P, Gao X, Smith M, Bruno R, Harnisch L, editors. A 

dose selection rationale based on hemodynamics for sildenafil 

in paediatric patients with pulmonary arterial hypertension 

(PAH). PAGE 2011; Athens. 

[109] Geiger R, Strasak A, Treml B, Gasser K, Kleinsasser A, Fischer 

V, et al. Six-minute walk test in children and adolescents. The 

Journal of paediatrics. 2007;150(4):395-9, 9 e1-2.  

[110] Sheiner LB. Learning versus confirming in clinical drug 

development. Clinical pharmacology and therapeutics. 

1997;61(3):275-91. 

[111] Driscoll TA, Yu LC, Frangoul H, Krance RA, Nemecek E, 

Blumer J, et al. Comparison of pharmacokinetics and safety of 

voriconazole intravenous-to-oral switch in 

immunocompromised children and healthy adults. 

Antimicrobial agents and chemotherapy. 2011;55(12):5770-9.  

[112] Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated 

population pharmacokinetic analysis of voriconazole in 

children, adolescents, and adults. Antimicrobial agents and 

chemotherapy. 2012;56(6):3032-42. 

[113] Mikaeloff Y, Kezouh A, Suissa S. Nonsteroidal anti-

inflammatory drug use and the risk of severe skin and soft tissue 

complications in patients with varicella or zoster disease. British 

journal of clinical pharmacology. 2008;65(2):203-9.  

[114] Schlienger RG, Jick SS, Meier CR. Inhaled corticosteroids and 

the risk of fractures in children and adolescents. Paediatrics. 

2004;114(2):469-73. 



The extrapolation approach 

 

 34 

[115] Wang J, Avant D, Green D, Seo S, Fisher J, Mulberg AE, et al. 

A survey of neonatal pharmacokinetic and pharmacodynamic 

studies in paediatric drug development. Clinical pharmacology 

and therapeutics. 2015. 

[116] Momper JD, Mulugeta Y, Burckart GJ. Failed paediatric drug 

development trials. Clinical pharmacology and therapeutics. 

2015. 

[117] Karres J, Pratt V, Guettier JM, Temeck J, Tamborlane WV, 

Dunger D, et al. Joining forces: a call for greater collaboration 

to study new medicines in children and adolescents with type 2 

diabetes. Diabetes care. 2014;37(10):2665-7.  

[118] Sun H, Vesely R, Nelson RM, Taminiau J, Szitanyi P, Isaac M, 

et al. Steps toward harmonization for clinical development of 

medicines in paediatric ulcerative colitis-a global scientific 

discussion, part 2: data extrapolation, trial design, and 

pharmacokinetics. Journal of paediatric gastroenterology and 

nutrition. 2014;58(6):684-8. 

[119] Sun H, Vesely R, Taminiau J, Szitanyi P, Papadopoulos EJ, 

Isaac M, et al. Steps toward harmonization for clinical 

development of medicines in paediatric ulcerative colitis-a 

global scientific discussion, part 1: efficacy endpoints and 

disease outcome assessments. Journal of paediatric 

gastroenterology and nutrition. 2014;58(6):679-83.  

[120] EMA. Gaucher disease: A strategic collaborative approach from 

EMA and FDA. (EMA/44410/2014). 2014. 

 



 

 35 

Chapter 3 

3 Model-based dose selection in a 
pediatric study of Febuxostat for the 
prevention of tumor lysis syndrome 

3.1. Introduction 

The role of modeling and simulation (M&S) as a tool to bridge efficacy 

and safety data from adults to children and adolescents in support of the 

extrapolation approach has been introduced in Chapter 2. Indeed, M&S can 

be used to quantify the magnitude of differences between the pediatric and 

adult population, as well as to optimize study protocol design and data 

analysis. The current Chapter presents a case study on the use of a model-

based approach for dose selection in a pediatric trial of Febuxostat (FBX) 

for tumor lysis syndrome (TLS) prevention. A comparison of this approach 

with the traditional linear scaling of the dose with body weight is also 

presented. 

Tumor lysis syndrome represents a critical and possibly fatal 

complication resulting from the rapid lysis of large amounts of tumor cells, 

observed most often after initial treatment with chemotherapy [1]. Cancer 

cells lysis is followed by the release of potassium, phosphorus and nucleic 

acids, which are metabolized into hypoxanthine, then in xanthine, and 

finally in uric acid, which can induce acute kidney injury. In both adults 

and children, TLS can ultimately results in nausea, vomiting, cardiac 

dysrhythmias, seizures and possibly sudden death. TLS diagnostic criteria 

are similar between the pediatric and adult population, with the exception 

of some threshold laboratory values which take into account the 

physiological age-related differences [2].  

FBX is a 2-arylthiazole derivative that achieves its therapeutic effect of 

decreasing serum uric acid activity by selective inhibition of xanthine 

oxidase. In adults, the pharmacokinetic (PK) profile of FBX is well 
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characterized. After oral administration, 84% of the dose is absorbed, with 

maximum plasma concentrations (Cmax) observed between 1 and 1.5 h. 

Mean values for plasma Cmax and area under the concentration-time curve 

(AUC) increase linearly with dose; however, a greater-than proportional 

increase in both parameters has been observed for doses higher than 120 

mg. FBX is primarily biotransformed by UGT1A1, 1A8, and 1A9 and by 

CYP1A1, CYP1A2, CYP2C8 or CYP2C9. Approximately 49% of the FBX 

dose is excreted renally [3].  

FBX has been recently approved in Europe at the dose of 120 mg QD for 

the prevention and treatment of hyperuricemia in adult patients undergoing 

chemotherapy for hematologic malignancies at intermediate to high TLS 

risk. No clinical data are available on the use of FBX in pediatric 

population. On the grounds of the unmet clinical need, the subset of the 

pediatric population suffering from hematologic malignancies at 

intermediate to high risk of TLS which would most benefit from the 

availability of FBX is the one aged 6 to 17 years (hereafter called target 

population). Considering TLS similarities between the target and adult 

population in terms of pathophysiology, clinical manifestations, diagnostic 

criteria, grading system for disease severity, as well as the equality in FBX 

mechanism of action, it is reasonable to assume that children aged 6 to 17 

years old will respond to FBX similarly to adults, showing a similar 

pharmacokinetic-pharmacodynamic (PK-PD) relationship. Moreover, since 

FBX biotransformation and elimination pathways are fully mature at 6 

years of age [4-7], it is expected that the PK between the two populations 

can be scaled based only upon body weight. Therefore, FBX efficacy and 

safety in the target population can be extrapolated from that observed in 

adults and a full clinical development plan can be skipped in favor of a 

more flexible phase I/II PK-PD study, followed by a M&S analysis for 

dose optimization if needed [8]. This will allow to confirm the hypotheses 

on the similarities between the target and adult population, in particular 

those related to the PK and PK-PD of FBX in children ≥ 6 years of age, 

while minimizing the number of pediatric patients exposed to clinical 

investigations. 

3.2. Methods 

Dose selection for the pediatric PK-PD study: Linear VS 

Allometric scaling 

The common assumption underlying linear and allometric scaling of 

adult doses to pediatrics is that differences in elimination capacity (i.e. 

clearance) between the two populations are completely captured by 

differences in body size, with body weight typically used as a surrogate.  

Clearance scaling by body weight can be formulated as in equation (1), 

where a=1 for linear scaling and a=0.75 for allometric scaling. 
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𝐶𝐿𝑝𝑒𝑑𝑖𝑎𝑡𝑟𝑖𝑐𝑠 = 𝐶𝐿𝑎𝑑𝑢𝑙𝑡𝑠 (
𝐵𝑊𝑝𝑒𝑑𝑖𝑎𝑡𝑟𝑖𝑐𝑠

𝐵𝑊𝑎𝑑𝑢𝑙𝑡𝑠
)
𝑎

(1) 

 

The 0.75 exponent comes from Kleiber’s law [9], which states that 

animal’s basal metabolic rate scales to the ¾ power of the animal’s mass. A 

naive interpretation of such law is that small organisms respire more per 

unit of weight than bigger organisms do because a larger fraction of their 

body mass consists of structural elements (e.g. bone) rather than reserves 

(e.g. blood vessels). Therefore, as mass increases, the overall metabolic 

rate does not increase in direct proportion. 

With respect to the FBX pediatric trial, the dose selection has been 

primarily driven by safety considerations. For linear scaling the upper 

bound for the doses to be tested in the target population was the highest 

safe dose in mg/kg administered to adults in phase III trials (FBX 40, 80, 

120 and 240 mg was studied in 2690 patients >18 years old in phase III 

studies C02-009, C02-010 and F-GT06-153, see Table 3.1), that is, 3.81 

mg/kg. On the other hand, the goal of allometric scaling is to ensure that 

FBX exposures (Cmax and AUC) in pediatric patients do not exceed the 

highest exposure observed in adults at the safe dose of 240 mg. For both 

approaches, an additional efficacy criteria is also applied for final dose 

selection, in order to guarantee that FBX levels in the target population are 

not lower than those observed at the efficacious dose in adults (i.e. 120 

mg).
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Table 3.1. Summary of demographic characteristics of Febuxostat adult 

clinical trials used as historical data. 

Study C02-009 

 

Variable 

Placebo 

(N=134) 

Febuxostat 

80 mg QD 

(N=267) 

Febuxostat 

120 mg QD 

(N=267) 

Febuxostat 

240 mg QD 

(N=267) 

Allopurinol 

300/100 mg QD 

(N=268) 

All subjects 

(N=1072) 

Gender  

n (%) 

Female 

Male 

 

 

11 (8%) 

123 (92%) 

 

 

16 (6%) 

251 (94%) 

 

 

13 (5%) 

256 (95%) 

 

 

8 (6%) 

126 (94%) 

 

 

19 (7%) 

249 (93%) 

 

 

67 (6%) 

1005 (94%) 

Age 

(years) 

Mean (SD) 

 

 

51.5 (12.18) 

 

 

50.6 (12.24) 

 

 

51.2 (11.57) 

 

 

54.3 (12.83) 

 

 

51.8 (12.25) 

 

 

51.6 (12.17) 

Weight 

(pounds) 

Mean (SD) 

 

 

215.2 (43.05) 

 

 

227.6 (43.77) 

 

 

230.3 (48.70) 

 

 

227.2 (49.04) 

 

 

224.1 (43.01) 

 

225.8 

(45.61) 

Study C02-010  

Variable 

Febuxostat 

80 mg QD 

(N=256) 

Febuxostat 

120 mg QD 

(N=251) 

Allopurinol  

300 mg QD  

(N=253) 

All subjects 

(N=760) 

Gender  

n (%) 

Female 

Male 

 

 

13 (5%) 

243 (95%) 

 

 

8 (3%) 

243 (97%) 

 

 

10 (4%) 

243 (96%) 

 

 

31 (4%) 

729 (96%) 

Age (years) 

Mean (SD) 

 

51.8 (11.69) 

 

52.0 (12.12) 

 

51.6 (12.63) 

 

51.8 (12.13) 

Weight (pounds) 

Mean (SD) 

 

224.7 (44.02) 

 

223.9 (44.63) 

 

224.8 (45.14) 

 

224.5 (44.54) 

Study F-GT06-153 

Variable 

Febuxostat 

40 mg QD 

(N=757) 

Febuxostat 

80 mg QD 

(N=756) 

Allopurinol  

300/200 mg QD  

(N=756) 

All subjects 

(N=2269) 

Gender  

n (%) 

Female 

Male 

 

 

35 (5%) 

722 (95%) 

 

 

46 (6%) 

710 (94%) 

 

 

47 (6%) 

709 (94%) 

 

 

128 (5%) 

2141 (95%) 

Age (years) 

Mean (SD) 

 

52.5 (11.68) 

 

53.0 (11.79) 

 

52.9 (11.73) 

 

52.8 (11.73) 

Weight 

(pounds) 

Mean (SD) 

 

 

229.9 (48.58) 

 

 

227.3 (47.7) 

 

 

225.5 (46.09) 

 

 

227.6 (47.48) 

Study TMX-99-001 

Variable 

Febuxostat 

120 mg QD 

(N=10) 

Febuxostat 

240 mg QD 

(N=10) 

All subjects 

(N=154) 

Gender  

n (%) 

Female 

Male 

 

 

5 (50%) 

5 (50%) 

 

 

5 (50%) 

5 (50%) 

 

 

67 (44%) 

87 (56%) 

Age (years) 

Mean (SD) 

 

33.8 (12.09) 

 

29.8 (10.54) 

 

32.5 (9.96) 

Weight 

(pounds) 

Mean (SD) 

 

 

174.2 (23.32) 

 

 

173.0 (36.97) 

 

 

173.2 (32.92) 
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Based on Phase I study TMX-99-001 (Table 3.1), target adult AUC and 

Cmax values at 120 mg were 11960 ng*hr/mL and 5308 ng/mL, 

respectively, while AUC and Cmax at 240 mg in adults were 34976 

ng*hr/mL and 11263 ng/mL, respectively. Pediatric exposures were 

simulated using the in-house adult PK model of Figure 3.1, whose 

parameters values are reported in Table 3.2.  

  
Figure 3.1. Compartmental pharmacokinetic (PK) model of Febuxostat in 

adults used for pediatric PK simulations. Ka: absorption rate constant; 

V2/F: apparent volume of central compartment; V3/F: apparent volume of 

peripheral compartment; Q/F: apparent inter-compartmental clearance; 

CL/F: apparent systemic clearance. Parameter values are reported in Table 

3.2. 

Allometric equations based on weight were used to scale clearances 

(CL/F and Q/F) and volumes (V2/F and V3/F) with an exponent of 0.75 

and 1, respectively. The target population was simulated in terms of body 

weight and age: a total of 1000 virtual pediatric patients per dose-group 

were randomly generated using weight-for-age tables from World Health 

Organization statistics [10]. In agreement with the patient population to be 

enrolled in the study, age was assumed to be uniformly distributed in the 

interval 6-17 years, while weight, within each year of age, was assumed to 

follow a log-normal distribution. NONMEM version 7.2.0 [11] and R 

software version 3.0.1 [12] were used for PK and covariate simulations, 

respectively. 

Two age groups were considered: children (6-11 years) and adolescents 

(12-17 years); for each age group the candidate doses were 40 mg, 60 mg, 

80 mg and 120 mg. The 5
th

 percentile of weights was taken into account in 

order to obtained a conservative dose-selection in terms of safety.
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Table 3.2. Population pharmacokinetic parameter values for Febuxostat in 

adult patients (in-house data). 

Parameter Value 
Between-subject 

variability (CV%) 

Ka [1/hr] 8.66 230 

Absorption lag-time [hr] 0.465 - 

V2/F [L] 49.4 54 

V3/F [L] 22.3 - 

CL/F [L/hr] 7.76 30 

Q/F [L/hr] 2.74 - 

3.3. Results 

3.3.1. Linear scaling 

Figure 3.2 shows the relationship between the body weight-normalized 

dose and age for the four candidate doses. At a given age, the doses in mg 

which lie within the grey shaded area exceed the safe threshold of 3.81 

mg/kg and are therefore not allowed by linear scaling.  

 
Figure 3.2. Dose (mg/kg)-age relationship obtained with linear scaling for a 

40 mg (black line), 60 mg (blue line), 80 mg (green line) and 120 mg (red 

line) dose. The gray shaded area depicts the subset of doses not allowed by 

linear scaling because greater than the safety threshold of 3.81 mg/kg. The 

dotted vertical line splits the x-axis in children (6-11 years) and adolescents 

(12-17 years).  
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The suitability of the candidate doses in each age based on linear scaling 

is summarized in Table 3.3. It can be seen that linear scaling allows the 

doses of 40 mg and 60 mg to be administered to the entire target 

population, whereas the doses of 80 mg and 120 mg are admitted only for 

children older than 8 and 12 years of age, respectively. 

Table 3.3. Suitability of the candidate doses in each age based on linear 

scaling: V = dose does not exceed the safety threshold of 3.81 mg/kg; X = 

dose exceeds the safety threshold. 

Age 

(years) 

Age  

group 

5
th

 percentile 

of weights (kg) 

40  

mg 

60  

mg 

80  

mg 

120 

mg 

6 Children 16.86 V V X X 

7 Children 18.66 V V X X 

8 Children 20.58 V V X X 

9 Children 22.62 V V V X 

10 Children 24.85 V V V X 

11 Children 27.39 V V V X 

12 Adolescents 30.41 V V V X 

13 Adolescents 34.06 V V V V 

14 Adolescents 38.29 V V V V 

15 Adolescents 42.83 V V V V 

16 Adolescents 47.15 V V V V 

17 Adolescents 50.68 V V V V 

3.3.2. Allometric scaling 

The results of the simulations with the weight-adjusted adult PK model 

are depicted in Figure 3.3 and Figure 3.4 for AUC and Cmax, respectively. 

Two different boxplots are reported for each dose- and age-group: one 

represents the 5
th

 percentile of weights of the target population and the 

other one represents the remainder.  
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Figure 3.3. Boxplots of Febuxostat Area Under the Curve (AUC) obtained 

from 1000 virtual pediatric patients aged 6-11 years (blue) and 12-17 years 

(yellow) for doses of 40 mg (top-left panel), 60 mg (top-right panel), 80 mg 

(bottom-left panel) and 120 mg (bottom-right panel). The boxplots of the 5
th

 

percentile and of the rest of the target population are visualized for each 

dose-group. The green and red solid lines represent the mean AUC in adults 

at 120 mg and 240 mg, respectively, while the green shaded area covers the 

range of AUCs observed in adults at 120 mg.  

Blue boxplots depicted in Figures 3.3 and 3.4 indicate that children 

dosed up to 60 mg would achieve the target AUC and Cmax in adults 

(green shaded area) and, at the same time, would not exceed the highest 

mean exposure at 240 mg observed to be safe in adults (red line). 

Moreover, less than 50% of children in the 5
th

 percentile would be 

overexposed to FBX at the dose of 80 mg (bottom-left panel of Figure 3.3), 

whereas more than 75% would exceed the safety threshold for the 120 mg 

dose (bottom-right panel of Figure 3.3). 
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 Figure 3.4. Boxplots of Febuxostat peak concentrations (Cmax) obtained 

from 1000 virtual pediatric patients aged 6-11 years (blue) and 12-17 years 

(yellow) for doses of 40 (top-left panel), 60 mg (top-right panel), 80 mg 

(bottom-left panel) and 120 mg (bottom-right panel). The boxplots of the 5
th

 

percentile and of the rest of the target population are visualized for each 

dose-group. The green and red solid lines represent the mean Cmax in 

adults at 120 mg and 240 mg, respectively, while the green shaded area 

covers the range of Cmaxs observed in adults at 120 mg. 

With respect to the adolescent subset of the target population, yellow 

boxplots of upper panels in Figures 3.3 and 3.4 show that the doses of 40 

mg and 60 mg are not sufficiently high to guarantee the attainment of the 

efficacious exposure obtained at 120 mg in adults both in terms of AUC 

and Cmax. On the contrary, doses of 80 mg and 120 mg reach the target 

exposure and, apart from a small percentage of the 5
th

 percentile of the 

adolescent population, do not exceed the safety threshold. 

Overall, the suitability of the tested doses in each age-group based on 

allometric scaling is summarized in Table 3.4. 

Table 3.4. Suitability of the candidate doses in each age-group based on 

allometric scaling: V = dose allowed by allometric scaling; X = dose not 

allowed by allometric scaling because of safety reasons. XX = dose not 

allowed by allometric scaling because of efficacy reasons. 

Age  

group 

40  

mg 

60  

mg 

80  

mg 

120 

mg 

Children V V V X 

Adolescents XX XX V V 
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3.4. Discussion 

The present Chapter dealt with two alternative approaches - linear versus 

allometric - for dose selection in a pediatric study of FBX, a xanthine-

oxidase inhibitor approved in the adult population for the prevention and 

treatment of hyperuricemia in adult patients undergoing chemotherapy for 

hematologic malignancies at intermediate to high TLS risk.  

Several methods are available for dose/clearance scaling of a drug from 

a source population to pediatrics [13]. In principle, regardless of the 

method selected, it is important to have a clear understanding of the 

differences in drug absorption, distribution, metabolism and excretion 

between the two populations, in relation to the various aspects of 

developmental pharmacology [14]. Because pathways of FBX 

biotransformation and elimination are fully mature at 6 years of age, PK 

scaling based solely on body weight can be considered reasonably accurate 

in this context. 

Linear dose/clearance scaling on a mg/kg basis may lead to 

subtherapeutic drug exposures [15, 16]. Conversely, allometric approaches, 

besides being endorsed by US and EU regulators for dose selection in 

pediatric trials [18], offer a sound basis for scaling doses from older to 

younger patients since they are supported by a well-established theory [17]. 

Nonetheless, the results obtained in the current analysis show that, for the 

age-range and dose-range under consideration, the two methods do not 

remarkably disagree when it comes to dose selection for the pediatric trial. 

Considering the PK-PD nature of the trial, two different doses per age-

group will be tested in order to adequately characterize the PK and PK-PD 

of FBX in the target population; for safety reasons, doses will be 

administered sequentially within each age-group. Linear and allometric 

scaling agree in that adolescents will receive 80 mg and 120 mg. With 

respect to children, allometric scaling would allow the dose of 80 mg for 

the entire subset of the pediatric population, whilst linear scaling would not 

for children younger than 8 years old. However, considering that children 

from 6 to 11 years old belong to the same age-group and in order to 

guarantee an additional margin of safety, the two selected doses in children 

are 40 mg and 60 mg to be tested sequentially (from the lower to the high 

dose).  

Higher doses allowed by allometric scaling compared to linear scaling 

were expected: Figure 3.5 shows that clearance predictions based on 

allometric scaling (orange line) are higher than those based on linear 

scaling (blue line). In particular, the dotted line of Figure 3.5, which 

represents the ratio between linear and allometric scaling prediction, shows 

that the discrepancy between the two methods decreases with increasing 

body weights.  
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Figure 3.5. Clearance prediction (relative to the clearance of a 70 kg adult) 

of allometric (orange) versus linear (blue) scaling. The dotted line is the 

ratio of the linear to allometric predictions (adapted from Holford, 1996 

[15]). 

It should be pointed out that allometry can only capture differences in 

drug disposition due to size variation, without addressing the influence of 

developmental changes related to organs maturation. Consequently, 

clearance predictions depicted in Figure 3.5 are not reliable for weight-

ranges related to ages during which drug-specific elimination pathways are 

still under development. 

Dose selection based on matching adult efficacious exposure is built 

upon the implicit assumption that similar plasma exposures would translate 

into similar clinical responses, i.e. that the PK-PD relationship is similar in 

the target and adult population. Accordingly, the primary objective of the 

pediatric PK-PD study is to assess and compare the PK of FBX in the target 

population and adults at intermediate to high risk of TLS. In addition, the 

secondary objective of the trial is to evaluate and compare the safety and 

the PK-PD relationship of FBX between pediatric and adult patients in 

order to validate the extrapolation concept. For this aim, an indirect 

response PK-PD model linking FBX plasma concentrations to serum uric 

acid (sUA) levels will be employed (Figure 3.6). Such a model possesses a 

sound mechanistic basis: FBX lowers sUA levels by inhibiting xanthine-

oxidase activity; consequently, FBX exerts its effect by decreasing the 

zero-order rate constant (Kin) which quantifies the production of sUA by 

the human body. 
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Figure 3.6. Schematic representation of the indirect pharmacokinetic-

pharmacodynamic model that will be used to analyze serum uric acid (sUA) 

data in the Febuxostat pediatric study. K in is the zero-order rate constant of 

sUA production, while Kout is the first-order rate constant of sUA 

elimination. According to Febuxostat mechanism of action, the drug exerts 

its effect by inhibiting sUA production. Edrug represents the drug effect and 

can be a linear or sigmoidal Emax function of Febuxostat plasma 

concentration. 

Should the tested doses lead to pediatric exposures which either exceed 

or do not achieve adult ones, the PK-PD analysis together with the 

collected safety data will support the findings from the PK analysis, and 

confirm that potential deviations in PK will not be clinically relevant. If 

required, dose recommendations will be provided solely by means of PK 

simulation of alternative dosages in the target population, without the need 

to run further clinical trials and thus to expose children to unnecessary 

clinical investigations.  

In conclusion, the present Chapter illustrated an application of PK-PD 

M&S in the development of pediatric medicines based on the extrapolation 

of adult data, emphasizing how a model-based approach can support the 

selection of a safe, efficacious and informative dose regimen to be tested in 

early clinical trials in children. 
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Chapter 4 

4 Model-based assessment of 
alternative study designs in pediatric 
trials: frequentist approaches 

Part of this Chapter was published in 
Smania G, Baiardi P, Ceci A, Magni P, Cella M. Model-Based Assessment of 
Alternative Study Designs in Pediatric Trials. Part I: Frequentist Approaches. 
CPT: Pharmacometrics & Systems Pharmacology;5(6): 305-312, 2016. 

4.1. Introduction 

Pediatric drug development faces several difficulties due to ethical, 

practical and financial considerations. Despite the EU Pediatric Regulation 

(EC No. 1901/2006) [1], the US Best Pharmaceuticals for Children Act [2]  

and the US Pediatric Research Equity Act [3] partially saved children from 

their role of therapeutic orphans by facilitating the execution of pediatric 

clinical trials, a number of obstacles still remain in providing children with 

safe and effective drugs [4-6]. 

Consequently, the design and analysis of pediatric clinical trials 

necessitate the most efficient and informative analytical methods [7]. The 

gold standard method for assessing the efficacy and safety of a new drug in 

patients is the Randomized Controlled Trial (RCT), which minimizes bias 

and provides a clear and reliable understating of the risk/benefit ratio of a 

new experimental treatment. Conventional confirmatory RCTs are mostly 

executed using a parallel-arms design with hundreds or even thousands of 

patients enrolled. Since the number of patients that can be enrolled in 

pediatric studies is limited, trials of such sizes are often unfeasible. 

Scientifically, clinically and logistically plausible alternatives to the 

classical parallel design are therefore needed [8]. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Smania%20G%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Baiardi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ceci%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Magni%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cella%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
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The aim of this Chapter is to compare the performance of the classical 

parallel design with that of the alternative crossover, randomized 

withdrawal and sequential designs by means of pharmacokinetic-

pharmacodynamic (PK-PD) based Clinical Trial Simulation (CTS). 

Bayesian approaches are investigated in Chapter 5. Known advantages and 

disadvantages of the study designs which will be evaluated in the present 

Chapter when compared to the standard parallel design are outlined in 

Table 4.1. 

A published paediatric PK-PD model of topiramate (TPM) [14] was 

used as a paradigm for CTS in epileptic children. Designs were evaluated 

in terms of: type I and type II errors; sample size per arm; total trial 

duration; relative extent of placebo, active treatment and no-treatment 

exposure (due to periods during which the patients do not take either TPM 

or placebo, e.g. baseline and/or washout periods) and precision of treatment 

difference estimate. For some of the investigated designs part of these 

measures have been computed analytically without the need for CTS. 

CTS has been successfully used in pediatrics to help trial design, not 

only for dose selection [15-19] but also to set other trial features such as 

number of dose groups and number of patients per group [20-23]. However, 

no attempts were made on the simultaneous investigation of a battery of 

alternative designs different from parallel/crossover. Moreover,  

comparisons are normally built upon purely statistical criteria such as 

sample size and mean square error of estimates, whereas in this work the 

additional use of total trial duration and treatments exposure are proposed 

to evaluate the overall performance of a particular design. 
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Table 4.1: Pros and cons known from the literature of alternative designs 

considered in the present chpater when compared to the standard parallel 

design. 

Study 

design 
Pros Cons Ref. 

Cross-over 
 Smaller sample size 

 All participants receive 

treatment 

 Carryover effect 

 Longer duration 

 Not suitable if the disease 

is not stable over time 

 Not suitable in case of 

treatment with permanent 

effect 

 All participants receive 

placebo 

 Need for washout period 

[9] 

Randomized 

Withdrawal 
 Subjects continue 

receiving study drug only 

if they respond to it 

 Lower exposure to 

placebo  

 Enrichment of study 

population 

 Carryover effect 

 Treatment effect estimate 

is biased towards 

responders 

 Suitable only for stable 

chronic diseases 

 Ethical concerns with 

depriving patients of the 

benefit they had already 

obtained from the active 

drug 

[8],  

[10, 11] 

Sequential 

designs 
 Allows to terminate a trial 

when evidence has 

emerged that one 

treatment is clearly either 

superior or inferior to the 

other 

 Sample size is on average 

smaller 

 Treatment outcomes 

should be available 

quickly in relation to 

patients recruitment rate 

 Maximum sample size 

can be larger 

 Increased logistic 

complexity 

[12, 13] 

4.2. Methods 

4.2.1. Case study: pharmacokinetic-pharmacodynamic 
model of topiramate adjunctive therapy in children with 
epilepsy 

A literature search was performed in order to identify a pediatric PK-PD 

model suitable for the analysis. Among the few models that resulted from 

the review, many were inadequate because of insufficient details to allow 

the use of the model in a CTS setting, lack of the PK component, 

unsatisfactory model evaluation and modeling of a safety PD measure 

rather than an efficacy one. The final choice was on a PK-PD model of 
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TPM in pediatric patients between 2 and 10 years of age with partial-onset 

or primary generalized tonic–clonic seizures [14]. PK data are described by 

a two-compartment model with first order absorption where weight and age 

were found to be significant descriptors of the population PK profile (Table 

4.2). PD data used to build the model came from eight clinical trials in 

refractory epileptic patients (pediatric and adult). 

The PK-PD model is shown in eq. (1) and it relates TPM steady-state 

trough plasma concentrations (Cmin) to the log-transformed percent 

reduction in seizure frequency from baseline 𝑌 = 𝑙𝑜𝑔 (
𝑆−𝐵

𝐵
100 + 110) , 

being S the average seizure frequency per 28 days during the treatment 

phase and B the corresponding average during the baseline phase. 𝛽0 and 

𝛽1 depict the placebo and drug effect, respectively, whereas ε represents the 

unexplained variability in Y and is assumed to be normally distributed with 

mean 0 and variance σ
2
. Parameters values for the PK-PD model are 

summarized in Table 4.2. 

𝑌 = 𝛽0 + 𝛽1 ∙ 𝐶𝑚𝑖𝑛 + 휀 (1) 

Model (1) describes the anti-epileptic effect of TPM adjunctive therapy 

in treatment refractory children. 
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Table 4.2: Parameter values from the PK and PK-PD models (adapted from 

Grigis et al. [14]). 

Parameter 
Typical value 

(%SE) 

Between-subject 

variability (%SE) 

PK MODEL 

Clearance (L/h) 

CLSTM  (baseline clearance 

monotherapy) (θ1) 
1.21 (1.2) 

27.28 (10.2) CLSTA (effect of adjuvant) (θ2) 0.479 (25.3) 

FCWT (effect of weight) (θ3) 0.453 (9.0) 

FCAGE (effect of age) (θ4) -0.00306 (30.9) 

Central volume of distribution (L) 

VST  (θ8) 4.61 (33.2) 
116.2 (35.0) 

FVWT (effect of weight) (θ9) 1.14 (19.1) 

Ka (h-1) (θ10) 0.105 (27.0) 22.34 (88.2) 

K23 (h-1) (θ11) 0.577 (16.7) NE 

K32 (h-1) (θ12) 0.0586 (23.6) NE 

CCV residual error (%CV) 25.46 (7.8) 

Additive residual error (mg/L) 0.1797 (39.9) 

PK-PD MODEL 

Placebo effect  

𝛽0  4.4830 (9.16) NE 

Concentration effect 

𝛽1 -0.0579 (3.05) NE 

𝜎  0.751664 

%SE: percent standard error. NE: not evaluated. 

4.2.2. Study designs description 

All study designs presented in this Chapter are alternative 

implementations of a two-arm RCT. Patients in the control group received 

placebo (i.e., their current anti-epileptic treatment plus placebo) while 

patients in the treatment group received 3.5 mg/kg B.I.D. of TPM (i.e., 

their current anti-epileptic treatment plus TPM), that is the average 

FDA/EMA recommended TPM dosage regimen for the adjunctive 

treatment of epileptic children [24, 25]. The clinical endpoint of the trial 

was the log-transformed translated percent reduction in seizure frequency 

from baseline (i.e., Y). Coherently with the model and in agreement with 

previous findings, the length of the baseline and the treatment phase was 

set at 1 month each, for an overall duration of the trial per child (τ) of 2 

months [26]. 
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In order to design the studies, an initial estimate of both the 

improvement of TPM over placebo (δ=μPCB-μTPM, where μPCB and μTPM are 

the expected placebo and TPM responses in terms of Y) and the variability 

of Y (σ) have to be formulated. σ was derived from the original publication 

and set to 0.7517, whereas Monte Carlo methods were used to compute δ 

from 10
^6

 samples, leading to a value of δ=0.2467. An improvement of 

0.2467 in the Y scale corresponds to approximately a 19% further decrease 

in seizure reduction for TPM 7 mg/kg/day against placebo, considering an 

average placebo seizure reduction of 21.5% (obtained from the PK-PD 

model). The superiority of TPM over placebo was assessed through 

standard one-sided statistical testing on the null hypothesis of no treatment 

difference H0: δ<0 with 5% significance (i.e., α=0.05) and 80% power (i.e., 

β=0.20). 

 

Parallel design (PaD) 

 

In a two arm PaD, patients are randomized into two parallel groups to 

receive either placebo or TPM, with the number of patients to be 

randomized in each group fixed a priori. In agreement with the PK-PD 

model, responses were assumed to be normally distributed with the same 

variance σ
2
 in the TPM and placebo arm. Accordingly, normal-

approximation for a one-sided Student’s t-test was assumed to obtain the 

number of patients to be enrolled in each group 

𝑛 = 2 [
(𝑧1−𝛼+𝑧1−𝛽)∙𝜎

𝛿
]
2

, 

with zx being the x-th quantile of the standard normal distribution. 

 

Crossover design (XD) 

 

In a XD, patients are randomized to one of two treatment sequences, one 

where they receive first TPM and then placebo and one where they receive 

first placebo and then TPM. The length of the washout period between the 

two treatment sequences was set to 1 month, in agreement with previous 

crossover studies in pediatric epileptic patients and TPM elimination half-

life [27]. 

Sample size calculation for the XD was adapted from Wellek and 

Blettner [9]. As for the PaD, responses were assumed to be normally 

distributed with the same variance σ
2
 in patients receiving TPM and 

placebo. In particular, in order to obtain the number of patients to be 

randomized in each sequence, the following formula (assuming normal-

approximation of t distribution) was used 

𝑛 = 2 [
(𝑧1−𝛼+𝑧1−𝛽)∙𝜎

2𝛿
]
2

[2(1 − 𝜌)], 
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where 𝜌 is the correlation of Y between the two periods of the XD (ρ 

can be thought of as the proportion of PD BSV contained in ε: if ρ=0 then 

all the variability contained in ε is intra-individual variability (IIV), if ρ=1 

then all the variability contained in ε is BSV). In order to evaluate the 

sensitivity of design performance with respect to such parameter, 

simulations were carried out for ρ = 0, 0.25, 0.5, 0.75. 

 

Randomized withdrawal design (RWD) 

 

In a RWD, after an initial open-label period in which all patients receive 

TPM, only patients who positively responded to TPM (defined as patients 

whose percentage seizure reduction from baseline is greater than the 

corresponding average placebo response) enter the double-blind phase and 

are randomized to receive either placebo or TPM, whereas the non-

responders discontinue the trial. The same washout period and correlation ρ 

defined in the XD were assumed in the RWD between the open-label and 

double blind phase. 

In order to maintain the desired statistical properties of the analysis, the 

sample size of the RWD in the double blind phase (whose collected 

measures will be subject to statistical testing) should be similar to the PaD 

one. Therefore, an initial estimate of the percentage of responders (θ) is 

needed in order to obtain the total sample size at the open-label phase, 

which is defined as 

4 [
(𝑧1−𝛼 + 𝑧1−𝛽) ∙ 𝜎

𝛿
]

2

∙
1

𝜃
 

Following the same procedure used to obtain δ, PK-PD simulations 

allowed deriving an estimate of the responder rate θ of 0.627, suggesting 

that about 62.7% of children have a response to TPM greater than the 

average placebo response. 

 

Group sequential designs: Sequential Probability Ratio Test (SPRT) and 

Triangular Test (TT) 

 

In group sequential designs, statistical analyses are sequentially 

performed after the enrolment of groups of patients of predetermined size 

G. This allows early stopping of the trial for either efficacy or futility. 

Several statistical approaches have been proposed for the design and 

analysis of group sequential trials (e.g. O'Brien-Fleming method [28] and 

Pocock method [29]). In this Chapter, two alternative implementations of 

group sequential designs were considered, namely the SPRT and TT. 

Despite such designs have been rarely applied, they appear to have 

favorable properties for pediatric trials [30]. The statistical framework for 

these two designs was adapted from Whitehead [31]. These methods are 

also known as boundary methods since, at each interim analysis, a sample 
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statistics Z (which can be thought of as the accumulated evidence of δ) is 

plotted against a second sample statistics V (which can be thought of as the 

amount of information about δ contained in Z), and when the value of Z 

exits a so-called continuation region delimited by two boundaries in the V-

Z plane, H0 is either accepted or refused (Figure 4.1). The two methods 

differ for the equations of the boundaries: in the SPRT these are parallel 

and the continuation region is open, while in the TT they converge defining 

a close continuation region. On the one hand the TT may thereby appear 

more relevant a-priori, because the sample size could theoretically be 

infinite by using the SPRT. On the other hand sample size reductions in 

case of clear evidence of efficacy/futility are larger with the SPRT when 

compared to the TT. 

Formally, considering the case of normally distributed responses with 

common standard deviation σ, if at a certain point during the trial m 

responses in the placebo group (y1p,y2p,….,ymp) with sum YP and m 

responses in the TPM group (y1t,y2t,….,ymt) with sum YT have been 

observed, 𝑍 =
𝑌𝑃−𝑌𝑇

2𝜎2  and  𝑉 =
𝑚

2𝜎2 . In order to define the boundaries, a 

further variable I has to be introduced: this is called “inspection interval”, 

which defines the ideal constant increase of V between two consecutive 

inspections, i.e. V= I,2I,3I,… . The inspection interval can be computed as 

𝐼 =
𝐺

4𝜎2. 

The continuation region is defined as 𝛺 = {(𝑉, 𝑍)|𝑍 ∈ (−𝑞 + 𝑘𝑉, 𝑞 +

𝑟𝑉)}, where for the SPRT 𝑞 =
1

�̅�
log

1−𝛼

𝛼
− 0.583√𝐼 and 𝑘 = 𝑟 =

1

2
𝛿̅ (p. 84 

of Whitehead [31]), whereas for the TT 𝑞 =
2

�̅�
log

1

2𝛼
− 0.583√𝐼, 𝑘 =

3

4
𝛿̅ and 

𝑟 =
1

4
𝛿̅  (p. 72 of Whitehead [31]), with𝛿̅ = 𝛿

2𝑧1−𝛼

𝑧1−𝛼+𝑧1−𝛽
. At each interim 

analysis three alternative decisions can be taken based on the current value 

of Z: (i) if Z quits Ω through the lower boundary, H0 is accepted; (ii) if Z 

quits Ω through the upper boundary, H0 is rejected; (iii) if 𝑍 ∈ 𝛺, G more 

patients have to be enrolled in the trial. 
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Figure 4.1: Example of acceptance/rejection boundaries of the Sequential 

Probability Ratio Test (SPRT, upper panel) and the Triangular Test (TT, 

lower panel) for δ=σ=1 and α=β=0.05. During the trial the value of the Z 

statistics computed at each analysis is plotted against the associated V-

value, building up a path on the Z-V plane. If such path crosses the upper 

boundary, H0 is refused; if it crosses the lower boundary, H0 is accepted; if 

it stays within the continuation region, patients recruitment goes on. 

4.2.3. Study designs simulation 

The simulation of each design was based on the following step-wise 

procedure: 

1. Patients population was simulated in terms of weight and age (as 

these were the only two significant covariates of the PK model) 

using weight-for-age tables from World Health Organization 

statistics [32]. After having uniformly generated 2000 age values 

between 2 and 10 years, body weights (BWs) were simulated within 

each year of age by assuming them to follow a log-normal 

distribution whose mean and standard deviation were derived by 

fitting a log-normal distribution to the BW percentiles. Despite 

gender was not identified as a significant covariate, the age-BW 

relationship varies between male and female subjects; consistently, 

male and female patients had the same chance to enter the trial.  
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2. For each virtual child, the individual Cmin was extracted from 500 

PK profiles generated by using NONMEM version 7.2.0 [33] (see 

Appendix 7.1 for the NONMEM code used). 

3. Patients to be enrolled following the design-specific rules were 

randomly selected from the population simulated at step 1 and, for 

each child, a single Cmin was further sampled from its 500 values 

simulated at step 2. These values were fed into the PK-PD model in 

order to simulate the clinical endpoint. For subjects randomized to 

the control arm Cmin was set to zero.  

4. The study design-specific statistical analysis was applied to the 

simulated endpoints. 

Steps 3 and 4 were re-iterated 1000 times per study design, i.e. 1000 

CTS were performed. A visual description of this step-wise procedure can 

be found in Figure 4.2. R software version 3.0.1 [34] was used for steps 1 

(see Appendix 7.2 for R code used), 3 and 4 (see Appendix 7.3 for R code 

used). 

 

 
Figure 4.2: Step-wise procedure used for clinical trial simulations of the 

different study designs. 

 

The following metrics were adopted for designs comparison:  

a) Type I error (�̂�): the proportion of statistical analyses leading to the 

rejection of H0 when simulating under H0 (i.e., when in the simulations 

described at step 3 𝛽1=0). 

b) Type II error (�̂�): the proportion of statistical analyses leading to the 

acceptance of H0 when simulating under H1 (i.e., when in the simulations 

described at step 3 𝛽1 is set to its estimated value). 

c) Sample size per arm (SS): number of children enrolled in each arm 

of the trial. 
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d) Total trial duration (TD): the duration in months of the entire trial 

as a function of enrollment rate (ER; ER up to 10 patients/month were 

considered). Although certain features of a trial design (e.g. treatment 

blinding, inclusion/exclusion criteria) can influence ER [35], these were 

not considered in this analysis and ER was therefore assumed to be design-

independent. 

e) Average extent of placebo, TPM and no-treatment exposure: 

percentage of exposure to placebo, TPM and no-treatment relative to total 

trial exposure. 

f) Treatment difference estimate precision (EP): the precision of the 

estimate of δ (𝛿) expressed in terms of the width of its 95% confidence 

interval. 

 

A comprehensive description of the calculation of such metrics for each 

of the investigated designs is given hereafter. 

Parallel Design  

According to the calculated total sample size, at each iteration of step 3 

half of the patients were assigned to the control group and half to the 

treatment group. Step 4 consisted in performing a Student’s t-test between 

these two groups and computing the estimated difference with its 

confidence interval. The comparison metrics were thus obtained as follows: 

a) �̂�= percentage of simulated trials with p-values<0.05 out of 1000 CTS 

when simulating under H0. 

b) �̂�= percentage of simulated trials with p-values>0.05 out of 1000 CTS 

when simulating under H1. 

c) SS = 2 [
(𝑧1−𝛼+𝑧1−𝛽)∙𝜎

𝛿
]
2

 (fixed a priori) where 𝑧𝑥is the x-th quantile of 

the standard normal distribution, δ is the difference of Y, the primary 

endpoint of the trial, between TPM and placebo, and σ is the 

variability of Y. 

d) Trial duration is given by the months that need to be waited before 

recruiting all 2SS patients, plus the time needed to measure the 

endpoint of the last patient enrolled. In other words:  

TD = 
2𝑆𝑆

𝐸𝑅
+ 𝜏, where ER is the enrollment rate and τ the duration of 

the trial per child (i.e., 2 months). 

e) Extent of placebo and TPM exposure = 
𝜏

2
𝑆𝑆/TTE;  

Extent of no-treatment exposure = 𝜏 ∙ 𝑆𝑆/TTE; 

Where TTE stands for Total Trial Exposure = 𝜏 ∙ 2 ∙ 𝑆𝑆. 

f) EP = distribution of the 95% confidence interval widths.  

Crossover design 

According to the calculated total sample size, at each iteration of step 3 

half of the patients were assigned to the TPM-placebo sequence and half to 
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the placebo-TPM sequence. Step 4 consisted in performing a two-sample 

Student’s t-test between the within-subject differences of responses 

computed in the two sequences (i.e. TPM response minus placebo response 

in the TPM-placebo sequence and placebo response minus TPM response 

in the placebo-TPM sequence) [9] and computing the estimated difference 

with its confidence interval. Carryover effects were assumed to be 

negligible.  

Metrics a), b) and f) were obtained as in the PaD, whereas the 

remainders as follows: 

c) SS =  2 [
(𝑧1−𝛼+𝑧1−𝛽)∙𝜎

2𝛿
]
2

[2(1 − 𝜌)]  (fixed a priori), where ρ is the 

correlation of Y between the two periods of the XD and has been 

fixed to ρ=0, 0.25, 0.50, 0.75. 

d) Trial duration is given by the time required to recruit all 2SS patients, 

plus the time needed to measure the endpoint in the first period of the 

last patient enrolled (τ), plus the washout period and plus an 

additional τ/2 (because the baseline had already been measured) 

needed to obtain the endpoint in the second period of the last patient 

enrolled. In other words: TD = 2
𝑆𝑆

𝐸𝑅
+

3

2
𝜏 + 𝑤𝑎𝑠ℎ𝑜𝑢𝑡, where washout 

is the washout period between the two periods of the XD (set to 1 

month). 

e) Extent of placebo and TPM exposure = (𝜏 ∙ 𝑆𝑆)/TTE;  

extent of no-treatment exposure = 2 ∙ 𝑆𝑆(
𝜏

2
+ 𝑤𝑎𝑠ℎ𝑜𝑢𝑡)/TTE;  

where TTE =2 ∙ 𝑆𝑆(
3𝜏

2
+ 𝑤𝑎𝑠ℎ𝑜𝑢𝑡). 

Randomized withdrawal design  

According to the calculated total sample size, at each iteration of step 3 

all children received TPM in an open-label phase and their response (YOL) 

was simulated according to the model YOL=b0 + b1Cmin + εOL (where εOL 

is the within subject variability sampled in the open-label phase). Only 

those patients whose response was greater than the average placebo 

response (i.e., for whom YOL<b0) entered the double blind phase and were 

randomized to either TPM or placebo. In the post-randomization 

simulations of step 3, responses were not assumed to be completely 

independent to the ones in the open-label phase, but a correlation ρ (ρ=0, 

0.25, 0.50, 0.75) between εOL and εDB  (i.e., the within subject variability in 

the double blind phase) was imposed. In order to implement this in the 

simulations, the pair (εOL, εDB) was sampled from a multivariate normal 

distribution with mean zero and variance-covariance matrix equal to 

 

𝜎 [
1 𝜌
𝜌 1

] 

 



Model-based assessment of alternative study designs in pediatric trials: 
frequentist approaches 

 

 61 

Ultimately, the response in the double blind phase was obtained as 

YDB=b0 + b1Cmin + εDB, where Cmin was left equal to the one in the open-

label simulations. Step 4 consisted in performing a Student’s t-test between 

the two post-randomization groups and consequently obtaining the p-value 

of such test and computing an estimate of the treatment effect with its  95% 

confidence interval.  

Metrics a), b) and f) were obtained as in the PaD, whereas the reminders 

as follows: 

c) Although in the open-label phase of a RWD there is only one arm and 

it is not realistic to talk about “sample size per arm”, in order to be 

consistent with the SS measured for other designs the sample size was 

calculated as half of the sample size in the open-label phase, i.e. SS = 

2 [
(𝑧1−𝛼+𝑧1−𝛽)∙𝜎

𝛿
]
2

∙
1

𝜃
 (fixed a priori), where θ is the estimated 

percentage of responders during the open-label phase. 

d) Trial duration is calculated as the one of the XD. The worst case 

scenario for trial duration was reported, i.e. it was assumed that the 

last recruited patient was a responder and thus there is the need to 

wait for his/her response before completing the study. 

TD = 2
𝑆𝑆

𝐸𝑅
+

3

2
𝜏 + 𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (worst case scenario). 

e) (Expected) extent of placebo exposure = (
𝜏

2
∙ 𝐸[𝑆𝑆𝐷𝐵])/TTE; 

(expected) extent of TPM exposure = 
𝜏

2
(2 ∙ 𝑆𝑆 + 𝐸[𝑆𝑆𝐷𝐵])/TTE;  

(expected) extent of no-treatment exposure = 2(
𝜏

2
𝑆𝑆 + 𝑤𝑎𝑠ℎ𝑜𝑢𝑡 ∙

𝐸[𝑆𝑆𝐷𝐵])/TTE;  

where TTE =𝜏 ∙ 2 ∙ 𝑆𝑆 + 2 ∙ 𝐸[𝑆𝑆𝐷𝐵](
𝜏

2
+ 𝑤𝑎𝑠ℎ𝑜𝑢𝑡) and 𝐸[𝑆𝑆𝐷𝐵] is the 

average sample size per arm in the double-blind phase. 

Group sequential designs: Sequential Probability Ratio Test 

and Triangular Test 

SPRT and TT were simulated with G = 20. In agreement with the 

sequential nature of these designs, for each CTS steps 3 and 4 were 

sequentially performed until acceptance/rejection of H0. In particular, in 

step 3 G children were randomized to TPM and placebo in a 1:1 ratio and 

their simulated responses used to compute values of Z and V statistics, 

whereas in step 4 the membership of Z to Ω was tested.  

Metrics were obtained as follows: 

a) �̂�= percentage of simulated trials with Z values crossing the upper 

boundary out of 1000 CTS when simulating under H0. 

b) �̂�= percentage of simulated trials with Z values crossing the lower 

boundary out of 1000 CTS when simulating under H1. 

c) SS =distribution of the sample sizes obtained at each trial simulation. 

d) Total trial duration of a sequential design is given by the sum of the 

following four addends: 
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𝐺

𝐸𝑅
: time required to enroll the first G patients; 

 ⌈
2𝑆𝑆

𝐺
⌉ 𝜏 , where ⌈ ⌉  denotes the ceiling function: total time 

required to wait for all the sequential analyses to be completed; 

 max (0,
𝐺−𝐸𝑅∙𝜏

𝐸𝑅
(⌈

2𝑆𝑆

𝐺
⌉ − 2)) : additional time required for all 

interim analyses (except for the first and the last one) if the 

number of patients that can be enrolled during τ (i.e. ER·τ) is 

less than G; 

 max(0,
2𝑆𝑆−(⌈

2𝑆𝑆

𝐺
⌉−1)∙𝐺−𝐸𝑅∙𝜏

𝐸𝑅
): additional time required for the last 

interim analysis if the number of patients that can be enrolled 

during τ is less than the last set of patients to be enrolled 

(2𝑆𝑆 − (⌈
2𝑆𝑆

𝐺
⌉ − 1) ∙ 𝐺) 

Therefore the total trial duration of a sequential design is defined as:  

TD=
𝐺

𝐸𝑅
+ ⌈

2𝑆𝑆

𝐺
⌉ 𝜏 + max (0,

𝐺−𝐸𝑅∙𝜏

𝐸𝑅
(⌈

2𝑆𝑆

𝐺
⌉ − 2)) +

max(0,
2𝑆𝑆−(⌈

2𝑆𝑆

𝐺
⌉−1)∙𝐺−𝐸𝑅∙𝜏

𝐸𝑅
). 

e) (Expected) extent of placebo exposure = (
𝜏

2
𝐸[𝑆𝑆])/TTE; 

(expected) extent of TPM exposure = (
𝜏

2
𝐸[𝑆𝑆])/TTE;  

(expected) extent of no-treatment exposure = (𝜏 ∙ 𝐸[𝑆𝑆])/TTE;  

where TTE= 𝜏 ∙ 2 ∙ 𝐸[𝑆𝑆]  and 𝐸[𝑆𝑆]  is the average sample size per 

arm. 

f) EP: at the termination of a sequential trial, maximum likelihood 

estimation of δ is a biased estimator of treatment difference “because 

of the dependence of the stopping rule on the nature of the evidence 

collected” [31]. Whitehead [31] proposed an alternative estimator of δ 

which is median unbiased. An ad-hoc R functions was built to 

compute such estimate and its 95% confidence interval (see Appendix 

7.4). 

4.3. Results 

4.3.1. Type I and type II errors 

�̂� and �̂� are close to their predetermined levels of 5% and 20% for all 

designs except for the RWD with ρ>0, where �̂� appears to decrease when 

correlation increases (Table 4.3). This increasing power with increasing ρ 

is due to a decrease in the variability of responses in the double-blind phase 

of the study further given by the fact that drug effect is evaluated in a 

specific subset of the pediatric population (i.e., those that respond to TPM). 
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Sequential designs show a slightly higher �̂� , although for the TT the 

target value of 5% is contained in the 95% confidence interval of the 

estimated �̂�. Conversely, �̂� of the SPRT is significantly higher than 5%. 

4.3.2. Sample size per arm 

Table 4.3 shows that the XD with ρ=0.75 leads to a SS of 15 children, 

which is the minimum SS among all designs. Even for lower values of ρ 

the XD requires a lower SS compared with other designs, and when the PD 

BSV is negligible (ρ=0) SS of XD is half of the SS in the PaD.  

SS for sequential designs are not deterministic. The histograms of the SS 

obtained at each simulation of the two sequential designs are depicted in 

Figure 4.3. It can be seen that on average both the SPRT and TT requires 

less patients than the PaD (around 76 per arm).  

Finally, the estimated probability of terminating the sequential designs 

with a SS greater than the PaD is fairly low (19% for the SPRT and 13.9% 

for the TT). 

 

 
Figure 4.3: Histograms of the sample sizes per arm obtained at each of the 

1000 clinical trial simulation of the Sequential Probability Ratio Test 

(SPRT, pink histogram) and the Triangular Test (TT, green histogram). 

Black vertical lines indicate the sample sizes per arm of the Parallel design 

(solid line), Crossover design with ρ=0.5 (dashed line) and Randomized 

Withdrawal design (dotted line). 
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4.3.3. Total trial duration 

TD reflects the required SS: the higher the sample size, the higher the 

duration (for a given ER). Accordingly the XD has the lowest median TD 

among all investigated designs (Figure 4.4). The same may not be true for 

sequential designs though, wherein the time needed before obtaining the 

primary endpoint for the sequential analysis can remarkably increase TD. 

However, results show that for both pessimistic (4 patients/months) and 

optimistic (10 patients/months) enrollment rates, this was not the case 

(Table 4.3). In fact, the median TDs of SPRT and TT are lower than TD of 

the PaD, suggesting that for this magnitude of ER TD reduction due to a 

lower SS outweighs the TD increasing that could have been arisen because 

of sequential enrollment. 

 

 
Figure 4.4. Total trial duration as a function of enrollment rate for each of 

the investigated designs (PaD: Parallel Design; XD: Crossover Design with 

ρ=0.5; RWD: Randomized Withdrawal Design with ρ=0.5; SPRT: 

Sequential Probability Ratio Test; TT: Triangular Test). Solid lines 

represent the median duration whereas dotted lines depict 95% prediction 

intervals. 

4.3.4. Extent of placebo, topiramate and no-treatment 
exposure 
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Left panel of Figure 4.5, which quantifies the extent of exposure to 

placebo (black bar), TPM (red bar) and no-treatment (cyan bar) for each of 

the investigated designs in terms of the proportion of exposure relative to 

total trial exposure, clearly shows that the RWD allows to minimize 

exposure to placebo while maximizing exposure to TPM, no-treatment 

exposure being equal at 50% for all designs.  

As to no-treatment exposures, these are comparable among all designs. 

However, if a washout of 2 months had been required, percentage of 

exposure to no-treatment in the XD and RWD would have risen to 60% and 

58%, respectively (right panel of Figure 4.5). 

 

 
Figure 4.5. Percentage of exposure to no-treatment (cyan bar), placebo 

(black bar) and topiramate (red bar) relative to total trial exposure for each 

of the investigated designs (PaD: Parallel Design; XD: Crossover Design; 

RWD: Randomized Withdrawal Design; SPRT: Sequential Probability 

Ratio Test; TT: Triangular Test) for a washout of 1 (left panel) and 2 (right 

panel) months. For the XD and RWD this metric is equal across all values 

of ρ. 

4.3.5. Treatment difference estimate precision 

Although the value of 𝛿  was similar for all designs (Figure 4.6a), its 

precision may substantially vary across them. In fact, Figure 4.6b shows 

that the sequential designs can lead to precisions much lower than those 

obtained with a PaD or RWD in terms of width of 95% confidence interval. 

This is partly explained by the number of samples used to compute the 

estimate: the SPRT and TT are those designs that allow on average to keep 

the sample size low thereby increasing the standard error of 𝛿  and 

consequently the width of its 95% confidence interval. 
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Figure 4.6. Boxplot of treatment difference estimates (δ̂) (a) and bar chart 

plot of the median confidence interval width of δ̂ (b) obtained at each of the 

1000 clinical trial simulation of the Parallel Design (PaD), Crossover 

Design with ρ=0.5 (XD), Randomized Withdrawal Design with ρ=0.5 

(RWD), Sequential Probability Ratio Test (SPRT) and Triangular Test 

(TT). 9 simulations in the SPRT and 1 in the TT were not able to compute δ̂ 

and its precision because of negative values of V due to very early stopping 

(i.e. final sample size per arm = 10 patients) and were therefore excluded 

from the figure. 
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4.4. Discussion 

The use of alternative study designs in pediatric trials can significantly 

improve their feasibility by reducing their sample size and duration and by 

increasing their acceptability. 

Examples on the use of PK-PD based CTS for the assessment of trial 

design performance exist [20, 21], though no attempts were made on 

simultaneously exploring alternative study designs such as the RWD and 

the sequential designs. Investigations of sequential designs by CTS can also 

be found in the literature [36, 37]; however these are based on purely 

statistical models thereby neglecting the PK-PD component. As a result, 

the influence of patient demographics and dosage regimens on trial 

performance could have not been explicitly taken into account. The present 

Chapter provided a pharmacometric-based framework for a multi-

dimensional comparison of alternative study designs. 

Overall, the outcomes of this analysis are in line with the known pros 

and cons of the investigated designs introduced in Table 4.1. Results 

clearly show that for a pediatric trial the XD, irrespective of the value of ρ, 

allows to minimize the SS required while maintaining desired type I and 

type II errors. The minimization of SS translates also in a very low TD. 

However, the XD may not be easily accepted by parents/children because 

the washout period implies that children have to spend a higher period of 

time without taking any treatment when compared to other designs (Figure 

4.5). In addition, despite all children enrolled in the trial will certainly 

receive the active treatment, they will certainly receive placebo as well, 

posing further ethical issues. Finally, although negligible carryover effects  

were assumed, these have to be considered when designing a pediatric trial 

with a crossover scheme because they can eventually compromise the 

analysis and interpretation of the results [9, 38]. 

The RWD ensures that all children enrolled in the trial will receive the 

new treatment and those not responding to the treatment will be quickly 

withdrawn from the trial. As shown in Figure 4.5, for a washout of 1 

month, the percentage of exposure to TPM in the RWD is 40%, compared 

with 25% of other designs. At the same time the percentage of exposure to 

inactive treatment (placebo) is less than half that of other designs. Such 

properties are still valid if the washout period is doubled. These 

parent/patient friendly features of the RWD, along with an acceptable level 

of scientific rigor, contributed to its increased popularity in the design of  

juvenile arthritis trials [10, 11]. Nonetheless the results suggest that the 

RWD would require a higher SS compared to other designs (Figure 4.3) 

and, consequently, a higher TD (Figure 4.4). However, if it is reasonable to 

assume that patients response to treatment does not remarkably change 

between the open-label and double-blind period (i.e., ρ=0.75), the RWD 

leads to a greater power (92.5%, Table 4.3). From a SS perspective, by 

maintaining the type II error to approximately 20%, the SS of the RWD 
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would drop to values around that of PaD (115, results not shown). Because 

in RWD a slightly different population is studied compared to the other 

designs, a different 𝛿 is typically expected. Figure 4.6a shows that this was 

not the case in this analysis. This is primarily due to the fact that a certain 

patient is classified as a responder in the open-label phase mainly because a 

large ε was sampled for that patient, and not because that patient had an 

increased exposure to TPM in terms of Cmin. This implies that: (i) for large 

values of ρ (>~0.5), patients in the double-blind phase have a high response 

in both the placebo and TPM arm which prevents an increase of 𝛿 (e.g. for 

ρ=0.75 mean 𝛿 turned out to be around 0.270 in the RWD, compared to the 

value of 0.277 observed in the PaD); (ii) for low values of rho (<~0.5), the 

effect of a larger Cmin on 𝛿 is partially masked by high (or low) values of ε 

(mean 𝛿 was estimated around 0.286 in the RWD, compared to the value of 

0.277 observed in the PaD). Consequently, the results presented in this 

Chapter are likely to be observed in a RWD in patients with a large placebo 

response (i) or when the magnitude of the BSV is negligible comparted to 

IIV (ii). 

Sequential designs are of great interest for pediatric trials essentially 

because they allow stopping early for efficacy or futility. Previous pediatric 

sequential trials have shown a median SS decrease of 35% compared to 

standard PaDs [30]. The results presented in this Chapter confirm that on 

average both the SPRT and the TT determine a SS reduction compared to 

the PaD (between 33% and 50%), without compromising the desired 

statistical properties (although �̂� appears to be slightly higher, in agreement 

with earlier findings [36]). Moreover, the simulations show that the SPRT 

and TT have a 13.4% and 2.2% probability of demonstrating drug efficacy 

with a SS lower than 21, respectively. Accordingly TD for an enrollment 

rate of just 2 patients/month would fall to 20 months. Despite treatment 

effect estimate precision associated with these low SS cannot be considered 

acceptable, these designs may be of interest when very limited subjects can 

be recruited. On the other hand, since in sequential designs the SS is not 

fixed a-priori, final SS and TD of the SPRT and TT may turn out to be 

greater than those that would have been required by a fixed sample size 

approach. This is demonstrated by a 90
th

 percentile of SS distribution 

greater than the PaD SS (Table 4.3). Within sequential designs, the TT 

appears to outperform the SPRT in the unfortunate scenario of a late study 

termination, with a 90
th

 percentile in SS distribution 30 patients lower than 

the SPRT. These results are in line with those from Sebille and Bellissant 

[36]. 

The added value of this analysis compared to that of Sebille and 

Belissant is that the use of PK-PD based CTS enables to contextualize the 

analysis in the clinical condition under study and to investigate the impact 

of PK variability and patients characteristics on the possible results of the 

trial. CTS becomes then a tool for a sound evaluation of candidate designs 

by enabling for example to assess the impact of patient population 
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characteristics on the probability of terminating a sequential trial with a SS 

greater than that of a traditional design.  

It is acknowledged that the present framework is underpinned by a 

robust pediatric PK-PD model which may not always be available at the 

design stage. If this is the case, extrapolating using an adult PK-PD model 

in lieu of the pediatric one can be considered provided that the following 

conditions can reasonably be assumed [39]: (i) the pathophysiology of the 

disease is the same between pediatrics and adults; (ii) either the PK in 

pediatric patients is known or extrapolation of the PK from adult data is 

suitable (i.e., differences in PK are explained solely by differences in body 

weight, a reasonable assumption in children older than two years [40]); (iii) 

the PK-PD relationship is similar between the two populations; (iv) the 

response to treatment is assessed in terms of the same PD measure in 

pediatrics and adults. In general, the degree of uncertainty of assumptions 

(i-iv) should guide the design of the pediatric study. Halvin et al. [41] 

proposed a statistical framework to quantitatively accommodate 

assumptions uncertainty by enlarging the significance level of the pediatric 

trial based on experts skepticism about the expected similarities and 

differences between the adult and pediatric population. The use of an adult 

PK-PD model in the CTS framework would implicitly convey a certain 

magnitude of skepticism (or rather belief) in the extrapolation process. The 

dependency of trial results and design performance on this magnitude of 

skepticism can potentially be investigated through the integration of the 

current framework with that proposed by Halvin et al. This would 

ultimately enable researchers to select the study design which best suits 

their current extrapolation concept. 

Since this work is focused on pediatric efficacy trials, strengths and 

weaknesses of study designs with respect to ancillary trial objectives have 

not been explicitly investigated. One important aspect relates to the support 

of dose regimens in the pediatric population. From this point of view, the 

RWD is expected to be one of the more robust in justifying pediatric 

dosage because it allows emphasizing the effect of the tested dose 

compared to placebo by ruling out the confounding element that would be 

introduced by the randomization of non-responders. In addition, the XD 

owns the favorable property of estimating the true drug effect in each 

patient, leading to more precise estimates of BSV of drug effect parameter; 

nevertheless, its small sample size might jeopardize the reliability of the 

PK analysis. The same would also apply for sequential designs terminating 

with a very low sample size. PaD and sequential designs do not exhibit any 

particular advantage when it comes to supporting dose regimens in the 

pediatric population, the only difference between the two being attributable 

to differences in sample sizes.  

Noteworthy, it has to be pointed out that the present analysis is based on 

the effect of TPM in children with partial onset seizures refractory to their 

current antiepileptic treatment, and the extrapolation of the results to 

different compounds/diseases/subpopulations should be further explored.  
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To conclude, there is no best study design for children with refractory 

epilepsy that performs better in all the metrics that have been monitored. 

Sequential designs are probably more appealing because they appear to 

considerably reduce the SS when large effect sizes are expected. This is 

particularly important if patients recruitment is the primary obstacle, as TD 

is not inflated by the sequential procedure of the design and low precisions 

in 𝛿 may be tolerated. On the other hand if major concerns are on ethical 

acceptability of the trial, a RWD may be preferable because of shortened 

placebo exposure and simultaneously increased exposure to the active 

compound, especially if it is reasonable to assume that the individual 

response to treatment does not significantly change between the open-label 

and double-blind phase. 

In general, pediatric design selection would largely benefit from a 

pharmacometric approach as the one described in this Chapter, which 

leverages prior information available and allows to test different “what if” 

scenarios by assessing the characteristics of the design across multiple 

levels. 
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Chapter 5 

5 Model-based assessment of 
alternative study designs in pediatric 
trials: Bayesian approaches 

Part of this Chapter was published in  
Smania G, Baiardi P, Ceci A, Cella M, Magni P. Model-Based Assessment of 
Alternative Study Designs in Pediatric Trials. Part I: Bayesian Approaches. 
CPT: Pharmacometrics & Systems Pharmacology;5(8): 402-410, 2016. 

5.1. Introduction 

Chapter 4 introduced the need for alternative study designs in the 

implementation of Randomized Controlled Trials (RCTs) for the evaluation 

of efficacy and safety of an experimental treatment in the pediatric 

population and frequentist approaches of alternative designs were 

presented. 

The current Chapter focuses on study designs for pediatric trials based 

on Bayesian approaches. Bayes’ theorem allows one to make inference on 

observed data by incorporating a priori beliefs (usually defined in terms of 

a prior probability distribution) on the phenomenon being observed. From 

an RCT perspective, historical information on treatment effect (e.g., from 

previous studies) can be leveraged to infer the efficacy of the treatment 

being studied in the new RCT [1]. Consequently, compared to classical 

frequentist approaches, the amount of data to be collected in the new study 

is reduced because these data are augmented by historical ones. This 

ultimately allows reducing the sample size of the study. 

Such property of Bayesian designs is of tremendous importance for 

pediatric trials, where the number of patients that can be recruited is often 

very limited. In particular, if the disease being studied in the pediatric 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Smania%20G%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Baiardi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ceci%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cella%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Magni%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27300083
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population is similar to the corresponding disease in an older population, 

available RCTs in the latter can be leveraged to elicit a prior distribution 

for treatment effect to be used in the analysis of the pediatric trial (e.g., 

adult data as prior in pediatric trials, adolescents data as prior for trials in 

children, children data as prior for trials in infants, etc.). Bayesian 

techniques are also endorsed by the European Medicine Agency (EMA) for 

the use of the extrapolation approach in pediatric drug development 

programs [2]. Nonetheless, few examples can be found in the literature on 

the application of Bayesian approaches in pediatric RCTs borrowing prior 

information from adults data [3-5]. Among Bayesian designs, those of 

sequential nature are of further potential interest because of their inherent 

flexibility, especially if compared with their frequentist counterparts [6]. 

Although limited, applications of Bayesian sequential designs spanned 

from early phase II anticancer trials [7, 8], safety monitoring [9, 10] and 

dose-finding studies [11], whilst applications to pediatric efficacy trials 

remains scant. 

The scope of the present Chapter is to compare the performance of a 

standard Bayesian design with that of two Bayesian sequential designs by 

means of pharmacokinetic-pharmacodynamic (PK-PD) based clinical trial 

simulation (CTS). No attempts to evaluate Bayesian study designs through 

PK-PD CTS could have been identified in the literature. Designs are 

evaluated in terms of: type I and type II errors; sample size per arm (SS); 

total trial duration (TD) and precision of treatment effect estimate. Finally, 

results of these Bayesian designs are cross-compared with those of the 

frequentist designs presented in Chapter 4. 

5.2. Methods 

For information on the PK-PD model used to simulate data, the general 

study design (treatment groups, doses, primary endpoints and trial duration) 

and the general framework for CTS the reader should refer to Chapter 4. 

Only methods differentiating from such Chapter are reported thereafter. 

In agreement with the Bayesian approach, the null hypothesis of no 

treatment difference H0 was tested through the posterior probability of the 

improvement provided by topiramate (TPM, the drug under study as 

additional therapy to the current patient specific anti-epileptic treatment) 

over placebo (in addition to the current patient specific anti-epileptic 

treatment) in epileptic children (δP) after having observed the clinical trial 

data, i.e., p(δP|Data). 



 

 79 

5.2.1. Study designs description 

Bayesian design (BD) 

In a two arm BD, patients are randomized to two parallel groups to 

receive either placebo or TPM, with the number of patients to be 

randomized in each group fixed a priori.  

The statistical framework for the BD was adapted from Schoenfeld et al. 

[4]. Formally, let δA and δP be the true improvements of TPM over placebo 

in the adult and pediatric population, respectively. Their prior distribution 

is 𝛿𝐴, 𝛿𝑃~𝑁(𝜇, 𝜈2) , where μ has a non-informative prior ( 𝜇~𝑁(0, 𝜎𝜇
2) , 

𝜎𝜇
2 → +∞ ), while ν is given a fixed number reflecting the supposed 

difference in improvement of TPM over placebo between children and 

adults. The parameter ν plays a pivotal role in the design and analysis of 

the trial. Schoenfeld and coworkers suggest eliciting ν from clinical 

judgment or, if available, from previous pediatric and adult studies as 

𝜈 = |𝛿�̅� − 𝛿�̅�| √2⁄ , i.e. as an approximate estimate of the sample standard 

deviation of treatment difference, where 𝛿�̅� and 𝛿�̅� represents estimates of 

δA and δP obtained from historical data. Because in the PK-PD model used 

for CTS [12] both pediatric and adult data were modelled (Table 5.1), 

plausible values of ν were deduced from parameter estimates of the final 

PK-PD models in the two populations. In particular, Monte Carlo methods 

were used to obtained 𝛿�̅� from 10
6 

samples, which was set equal to 0.2467 

as in Chapter 4, whereas 𝛿�̅� (set to 0.5016) was obtained in the same way of 

𝛿�̅�  but using adult PK-PD parameters and an average adult TPM dose 

regimen of 150 mg BID [13, 14]. This lead to set ν=0.18 (hereafter called 

Scenario 1). In order to explore different scenarios and to take into account 

the plausible situation of a larger difference in TPM improvement over 

placebo between children and adults, ν was set to 0.4 (hereafter called 

Scenario 2, see Table 5.2). 

Table 5.1: Parameter values from the PK-PD model used for clinical trial 

simulations in adult and pediatric epileptic patients, adapted from Girgis et 

al. [12]. 

 Pediatric Adults 

Placebo effect 

𝛽0 (%SE) 
4.4830 (9.16) 4.4469 (3.13) 

Concentration effect 

𝛽1 (%SE) 
-0.0579 (3.05) -0.0627 (0.97) 

σε 0.7517 
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Furthermore, let 𝛿𝐴 be the maximum likelihood estimate of TPM effect 

over placebo based on an adult trial with mA/2 patients per arm, and 𝛿𝑃 the 

same estimate in the new pediatric trial with mP/2 patients per arm. 𝛿𝐴 and 

𝛿𝑃were assumed to follow a normal distribution: 

 𝛿𝐴~𝑁(𝛿𝐴,
𝑠𝐴

2

𝑚𝐴
⁄ ) 

 𝛿𝑃~𝑁(𝛿𝑃,
𝑠𝑃

2

𝑚𝑃
⁄ ), 

with sA=2σA and sP=2σP (σA and σP are the standard deviations of Y in 

the adult and pediatric population, respectively). It was assumed σA=σP=σ, 

with the value of σ given by the PK-PD model and reported in Table 5.1. 

Quantitatively, adult prior information was incorporated by setting 𝛿𝐴  to 

the model-derived value of 𝛿�̅�  and mA to 663, which corresponds to the 

number of adult patients used to identify the adult PK-PD model. 

According to the statistical framework from Schoenfeld et al., since δP, 

𝛿𝑃  and 𝛿𝐴  follow a multivariate normal distribution with mean 0 and 

covariance matrix 

[
 
 
 
 
 
𝜎𝜇

2 + 𝜈2 𝜎𝜇
2 + 𝜈2 𝜎𝜇

2

𝜎𝜇
2 + 𝜈2 +

𝑠𝑃
2

𝑚𝑃
⁄ 𝜎𝜇

2

𝜎𝜇
2 + 𝜈2 +

𝑠𝐴
2

𝑚𝐴
⁄

]
 
 
 
 
 

, 

the posterior distribution of δP is its conditional distribution given 𝛿𝑃 and 

𝛿𝐴. By letting 𝜎𝜇
2 → +∞ it turns out that 𝛿𝑃|�̂�𝑃, 𝛿𝐴~𝑁(𝜇𝛿𝑃

, 𝜎𝛿𝑃
2) where 

𝜇𝛿𝑃
=

𝑚𝑃

𝑆𝑃
2 �̂�𝑃+

𝜔

𝑆𝐴
2 �̂�𝐴

𝑚𝑃

𝑆𝑃
2 +

𝜔

𝑆𝐴
2

 (1) 

𝜎𝛿𝑃
2 =

𝑠𝑃
2𝑠𝐴

2

𝑚𝑃𝑠𝐴
2+𝜔𝑠𝑃

2 (2), 

with 𝜔 =
𝑚𝐴𝑠𝐴

2

𝑠𝐴
2+2𝜈2𝑚𝐴

. 𝜇𝛿𝑃
 depicts the Bayesian estimator of the 

improvement of TPM over placebo in the pediatric population. 

In their work, Schoenfeld and colleagues provide a method to define a 

Bayesian analogue of classical frequentist power given by the following 

formula: 

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛_𝑃𝑜𝑤𝑒𝑟(𝛿𝑃
∗) = 𝛷 (√𝑚𝑃

𝑠𝑃
[𝛿𝑃

∗ −
𝑠𝑃

2

𝑚𝑃
(𝑧1−𝛼√

𝑚𝑃

𝑠𝑃
2
+

𝜔

𝑠𝐴
2
−

𝜔

𝑠𝐴
2
𝛿𝐴)]) (3) 

with 𝑧𝑥  being the x-th quantile of the standard normal distribution, 𝛿𝑃
∗  

the minimum clinically important difference in TPM versus placebo in the 
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pediatric population and 𝛷 the normal cumulative distribution function. If 

ν∞ (no data are borrowed from adults), ω0 and equation (3) collapses 

to the classical frequentist power. Similarly to the approach used in the 

frequentist setting, the sample size of the study was identified by exploiting 

equation (3), fixing Bayesian power to 0.8, α to 0.05 and 𝛿𝑃
∗  to 𝛿�̅�, that is, 

to 0.2467. According to the calculated total sample size, at each iteration of 

step 3 of the CTS framework (see section 4.2.3) half of the patients were 

assigned to the placebo group and half to the TPM group. Step 4 consisted 

in H0 acceptance/rejection based on the posterior probability of treatment 

effect: if 𝑝(𝛿𝑃 > 0|𝛿𝑃, 𝛿𝐴) ≤ 1 − 𝛼 H0 is accepted, otherwise it is rejected. 

Table 5.2: Investigated scenarios for the evaluation of the performance of 

the Bayesian design and of the two Bayesian sequential designs. 

Scenario 
Bayesian  

design 

Bayesian sequential design 

Non-hierarchical Semi-hierarchical 

1 ν=0.184 

nT=16 

nP=16 

ps=0.99 

pf=0.5 

ν=0.184 

ω=32 

ps=0.99 

pf=0.5 

2 ν=0.4 

nT=3.5 

nP=3.5 

ps=0.99 

pf=0.75 

ν=0.4 

ω=7 

ps=0.99 

pf=0.75 

Bayesian sequential designs (BSD): non-hierarchical (NON-H) 

and semi-hierarchical (SEMI-H) framework 

In a sequential design, statistical analyses are sequentially performed 

after the enrollment of groups of patients of predetermined size G. This 

allows early stopping of the trial for either efficacy or futility. In Chapter 4, 

two alternative implementations of frequentist sequential designs were 

presented. In the present Chapter, two Bayesian implementations of 

sequential designs adapted from Gsponer et al. [15] are considered: one in a 

non-hierarchical (NON-H) and one in a semi-hierarchical (SEMI-H) 

framework. 

In the NON-H, prior information on δP is indirectly defined through 

prior distributions on the placebo and TPM response as 𝜃𝑃~𝑁(𝜃𝑃0, 𝜎𝑃
2/𝑛𝑝) 

and 𝜃𝑇~𝑁(𝜃𝑇0, 𝜎𝑇
2/𝑛𝑇) , respectively. These could be elicited from 

historical trials where a placebo (or TPM) response of mean 𝜃𝑃0 (𝜃𝑇0) and 

standard deviation 𝜎𝑃(𝜎𝑇)  was estimated from 𝑛𝑝(𝑛𝑇)  patients. 

Consequently, the posterior distribution of δP will be normal with mean 

(𝜇𝛿𝑃,𝑖) and variance (𝜎𝛿𝑃,𝑖

2) at the i-th step of the analysis given by: 
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𝜇𝛿𝑃,𝑖 = 

[
𝑉𝑃𝑖/𝑛𝑖

𝜎𝑃
2 + 𝑉𝑃𝑖/𝑛𝑖

𝜃𝑃0 + (
𝜎𝑃

2

𝜎𝑃
2 + 𝑉𝑃𝑖/𝑛𝑖

) �̅�𝑃𝑖]

− [
𝑉𝑇𝑖/𝑛𝑖

𝜎𝑇
2 + 𝑉𝑇𝑖/𝑛𝑖

𝜃𝑇0 + (
𝜎𝑇

2

𝜎𝑇
2 + 𝑉𝑇𝑖/𝑛𝑖

) �̅�𝑇𝑖] 

𝜎𝛿𝑃,𝑖

2 =
𝜎𝑃

2𝑉𝑃𝑖/𝑛𝑖

𝜎𝑃
2 + 𝑉𝑃𝑖/𝑛𝑖

+
𝜎𝑇

2𝑉𝑇𝑖/𝑛𝑖

𝜎𝑇
2 + 𝑉𝑇𝑖/𝑛𝑖

 

where �̅�𝑇𝑖  and �̅�𝑃𝑖  are the aggregated sample means in the TPM and 

placebo group at i-th step (i.e., after 𝑛𝑖 patients have been recruited in each 

group) and 𝑉𝑇𝑖  and 𝑉𝑃𝑖  are the corresponding sample variances. In 

agreement with the BD, it was  assumed σP=σT=σε. 

The SEMI-H shares the same framework of the BD, but, since it is a 

sequential design, inferences from the posterior distribution of δP are 

sequentially made at each interim analysis. Accordingly, 𝛿𝑃  and sP are 

computed at each interim analysis rather than being estimated once at the 

end of the trial. The decisional criteria for trial success/failure (i.e., 

rejection/acceptance of H0) used for BSD were the following: 

{
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 (𝐻0 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑): 𝑝(𝛿𝑃 > 0|𝛿𝑃, 𝛿𝐴) > 𝑝𝑠

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝐻0 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑): 𝑝(𝛿𝑃 < 𝛿𝑚𝑖𝑛|𝛿𝑃, 𝛿𝐴) > 𝑝𝑓

(4) 

where δmin was set to 0.12, which corresponds to a 10% further decrease 

in seizure reduction for TPM 7 mg/kg/day against placebo, considering an 

average placebo seizure reduction of 21.5% (obtained from the PK-PD 

model). The parameters of the posterior distribution used to evaluate 

criteria (4) in the SEMI-H correspond to that of BD (equations (1) and (2)). 

Consistently with the BD, NON-H and SEMI-H performance have been 

investigated under two alternative scenarios in terms of ν, ps and pf (Table 

5.2). Despite for NON-H ν is not explicitly defined, in the framework 

presented by Schoenfeld et al. [4] the number ω can be thought of as the 

number of patients that are borrowed from the adult data and used in the 

analysis of pediatric data. This allowed obtaining the values of nP and nT in 

the two scenarios of the NON-H starting from the corresponding values of 

ω in the SEMI-H. 

BSD were simulated with G=20. In agreement with the sequential nature 

of these designs, for each CTS steps 3 and 4 of the procedure described in 

4.2.3 were sequentially performed until trial success/failure was detected 

according to criteria (4). In particular, in step 3 G children were 

randomized to TPM and placebo in a 1:1 ratio and their simulated 

responses used to compute the posterior probabilities in (4) based on the 

NON-H and the SEMI-H, while in step 4 such probabilities were compared 

with their corresponding thresholds. 
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The same metrics used in Chapter 4 were used in the current Chapter, 

except for the percentage of exposure to placebo, TPM and no-treatment 

relative to total trial exposure, as this measure is equal to that of PaD 

considering the equal randomization to the two treatment arms. A 

description of the calculation of such metrics for each of the investigated 

designs is given hereafter. 

 

Bayesian Design 

a) �̂� = percentage of simulated trials with 𝑝(𝛿𝑃 > 0|𝛿𝑃, 𝛿𝐴) > 0.95 out 

of 1000 CTS when simulating under H0. 

b) �̂� = percentage of simulated trials with 𝑝(𝛿𝑃 > 0|𝛿𝑃, 𝛿𝐴) ≤ 0.95 out 

of 1000 CTS when simulating under H1. 

c) SS = mP for which Bayesian power defined in (3) equals 80% (fixed 

a priori). 

d) TD = 
𝑆𝑆

𝐸𝑅
+ 𝜏. ER= enrollment rate. In this study, τ= 2 months (trial 

duration per child). 

e) EP = distribution of the 95% credible interval widths obtained at 

each trial simulation.  

 

Bayesian sequential designs 

a. �̂� = percentage of simulated trials with 𝑝(𝛿𝑃 > 0|𝛿𝑃, 𝛿𝐴) > 𝑝𝑠 out of 

1000 CTS when simulating under H0. 

b. �̂�  = percentage of simulated trials with 𝑝(𝛿𝑃 < 𝛿𝑚𝑖𝑛|𝛿𝑃, 𝛿𝐴) > 𝑝𝑓 

out of 1000 CTS when simulating under H1. 

c. SS = distribution of the sample sizes obtained at each trial 

simulation. 

d. TD= 

𝐺

𝐸𝑅
+ max (0,

𝐺−𝐸𝑅∙𝜏

𝐸𝑅
(⌈

2𝑆𝑆

𝐺
⌉ − 2)) + max (0,

2𝑆𝑆−(⌈
2𝑆𝑆

𝐺
⌉−1)∙𝐺−𝐸𝑅∙𝜏

𝐸𝑅
) +

⌈
2𝑆𝑆

𝐺
⌉ 𝜏 , where ⌈ ⌉ denotes the ceiling function. 

e. EP = distribution of the 95% credible interval widths obtained at 

each trial simulation. 

 

R code for simulation of BD, NON-H and SEMI-H under Scenario 1 can 

be found in Appendix 7.3.6, 7.3.7 and 7.3.8, respectively. 



 

 84 

5.3. Results 

5.3.1. Type I and type II errors 

Scenario 1 

Due to the inherently different philosophy of the Bayesian approach 

compared to the frequentist one, there is no control of type I error in the 

design of Bayesian trials and its value depends upon the weight of prior 

information. Because in the current analysis prior information came from a 

positive adult trial, type I error resulted in 22.2% for the BD, 26.3% for the 

NON-H and 24.1% for the SEMI-H. As expected, type II error for the BD 

is around its predetermined value of 20% (Table 5.3). In BSD, probably 

due to the increased type I errors, it is slightly smaller: 15.1% for the NON-

H and 16.0% for the SEMI-H, despite it was not planned at the design 

stage. 

Scenario 2 

In the second scenario, assuming a larger difference in treatment 

response between children and adults implies that prior information from 

adult data has less weight. Consequently, since adult data tend to favor H1, 

decisions will shift more towards H0 rather than H1 when compared to 

Scenario 1, especially when data are simulated under H0. As a result, type I 

errors drop to about 7% in both the BD and the SEMI-H and to 9.4% in the 

NON-H (Table 5.3).  

On the contrary, type II errors are only slightly increased for all 

investigated designs. For the BD this was expected because of the design of 

the trial, whereas for the two Bayesian sequential designs this is the result 

of an increased pf. 
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Table 5.3: Performance metrics (�̂�: type I error; �̂�: type II error; SS: sample 

size per arm; SS50: median sample size per arm; SS75, SS90, SS95: 75
th

, 90
th

 

and 95
th

 percentiles of sample size distribution; TD: total trial duration) 

obtained from 1000 clinical trial simulation of the Bayesian design and of 

the two Bayesian sequential designs (non-hierarchical and semi-

hierarchical). CI: confidence interval. ER: enrollment rate. 

Design 

 

 

Metric 

Bayesian design 
Bayesian sequential design 

Non-hierarchical Semi-hierarchical 

Scenario 

1 

Scenario 

2 

Scenario 

1 

Scenario 

2 

Scenario 

1 

Scenario 

2 

�̂� (%) 

(95% CI) 

22.2 

(19.6-

24.8) 

7.3 

(5.7- 

8.9) 

26.3 

(22.6-

29.0) 

9.4 

(7.6- 

11.2) 

24.1 

(21.4-

26.8) 

7 

(5.4- 

8.6) 

�̂� (%) 

(95% CI) 

20.3 

(17.8-

22.8) 

21.1 

(18.6-

23.6) 

15.1 

(12.9-

17.3) 

19.5 

(17.0-

22.0) 

16.0 

(13.7-

18.3) 

19.4  

(16.9-

21.9) 

E[SS] (patients) 

49 103 

37 67 37 66 

SS50 (patients) 20 50 20 50 

SS75 (patients) 50 90 50 90 

SS90 (patients) 81 150 80 150 

SS95 (patients) 110 190 110 190 

MEDIAN 

TD 

(months) 

ER=4  

patients/

month 

26.5 53.5 12 27 12 27 

ER=10  

patients/

month 

11.8 22.6 6 12 6 12 

5.3.2. Sample size per arm 

Scenario 1 

SS for the BD is determined a priori on the basis of equation (3) and its 

relationship with ν is showed in Figure 5.1a. Unlike BD, SS of BSD is not 

known a priori and the histograms of SS achieved at each simulation in the 

two scenarios are depicted in Figure 5.1b. 

For all designs the average SS required in Scenario 1 is lower than that 

of Scenario 2 because in the latter less weight is given to prior information 

from adult data. In the BD the required SS resulted in 49 children per arm, 

which approximately corresponds to the 75
th

 percentile of SS distributions 

of both BSD (Table 5.3), distributions which do not significantly differ 

between each other (Figure 5.1b). 

Average SS for the NON-H and SEMI-H is 37 (Table 5.3). Despite 

mean and median SS of BSD are lower than the BD one, sequential 

recruitment of children may be remarkably prolonged if treatment effect 

signals are captured later on during the trial, as shown by the right tail of 

the histograms in upper panel of Figure 5.1b. The probability of the NON-

H and SEMI-H requiring a higher SS than the BD is about 27%. 
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Scenario 2 

Similarly to Scenario 1, the distributions of the SS in the NON-H and 

SEMI-H do not remarkably differ (lower panel of Figure 5.1b). In the BD 

the SS resulted in 103 children per arm. This approximately corresponds to 

the 80th percentile of SS distribution of the Bayesian sequential designs 

(i.e., 110 patients), which require on average 67 (NON-H) and 66 (SEMI-

H) patients per arm (Table 5.3). As in Scenario 1, sequential designs may 

go on very long before a decision can be taken (right tail of lower panel of 

Figure 5.1b). The magnitude of such “prolongation” is similar to the one 

observed under Scenario 1, as indicated by a probability of the NON-H and 

SEMI-H requiring a higher number of children than the BD of 21.5% and 

21.2%, respectively. 
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Figure 5.1. (a) Sample size per arm (SS) versus difference in improvement 

of TPM over placebo between children (δP) and adults (δA) expressed in 

terms of standard deviation of the prior distribution on δP and δA (ν). The 

red line represents the sample size per arm of a classical parallel frequentist 

design, azure lines indicate the value of ν and the corresponding SS of the 

Bayesian design in Scenario 1 (solid line) and 2 (dotted line). (b) 

Histograms of SSs obtained at each of the 1000 clinical trial simulation of 

the Bayesian sequential design in the non-hierarchical (NON-H, green 

histogram) and semi-hierarchical (SEMI-H, pink histogram) framework for 

Scenario 1 (upper panel) and 2 (lower panel). The black vertical lines 

indicate SS of the Bayesian design in the two scenarios. 
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5.3.3. Total trial duration 

Scenario 1 

TD as a function of enrollment rate is shown in Figure 5.2. The NON-H 

and SEMI-H have the lowest median duration among the three designs, 

which reflects the lowest median SS required (Table 5.3). Likely due to the 

lack of considerable differences between SS distributions in NON-H and 

SEMI-H, their medians and 95% prediction intervals in TD perfectly 

overlap. 

Scenario 2 

Similarly to what has been observed for Scenario 1, not only the 95% 

prediction intervals of TD are equal for the NON-H and the SEMI-H, but 

also the median TDs are. Median TDs of the Bayesian sequential designs 

are lower than the BD one (Table 5.3). 

 

 
Figure 5.2. Total trial duration as a function of enrollment rate for the 

Bayesian design (black line) and the Bayesian sequential design in the non-

hierarchical (NON-H, light blue lines) and semi-hierarchical (SEMI-H, 

orange lines) framework for Scenario 1 (upper panel) and 2 (lower panel). 

Solid lines represent the median duration whereas dotted lines depict 95% 

prediction intervals. Median and 95% prediction intervals of NON-H and 

SEMI-H are on top of each other in both scenarios. 
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5.3.4. Treatment difference estimate precision 

Figure 5.3a shows that the BD leads on average to the shortest width of 

the 95% credible intervals thereby guaranteeing the highest precision in the 

Bayesian estimate of δP in both evaluated scenarios. When less weight is 

given to prior information on adult (right panel of Figure 5.3a), the 

precision appears to increase in all investigated designs.  

No significant differences can be detected between the precision assured 

by NON-H and SEMI-H in both scenarios. 
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Figure 5.3. (a) Bar chart plot of the median 95% credible interval width of 

treatment difference estimates (𝜇𝛿𝑃
) obtained at each of the 1000 clinical 

trial simulation of the Bayesian design (BD), the Bayesian sequential design 

with a non-hierarchical (NON-H) and a semi-hierarchical (SEMI-H) 

framework for Scenario 1 (left panel) and 2 (right panel). The upper and 

lower "hinges" correspond to the first and third quartiles of 95% confidence 

intervals widths. (b) Boxplots of 𝜇𝛿𝑃
 obtained at each simulation of the BD, 

the NON-H and the SEMI-H for Scenario 1 (left panel) and 2 (right panel). 

The blue and red dotted lines represent the adult and pediatric treatment 

effects difference between topiramate and placebo (obtained from the PK-

PD model), respectively. 
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5.4. Discussion 

5.4.1. Comparison within Bayesian designs 

General 

PK-PD CTS provides a favorable tool to integrate prior information on 

drug disposition and effect to evaluate the performance of candidate study 

designs. In this Chapter, CTS was underpinned with a PK-PD model which 

was separately identified from both pediatric and adult data [12]. This 

enabled to formalize CTS of Bayesian designs by using prior information 

from adults data. 

In particular, the difference in improvement of TPM over placebo 

between children and adults (ν) could be identified starting from parameter 

estimates of the PK-PD model. The decision on the value of ν is critical 

because it ultimately affects both the required SS and the final estimate of 

δP and the associated inference. However, the value of ν depends upon the 

specific problem and is not universal for all compounds and/or diseases. In 

the present analysis, for ν>1 the required SS of the BD tends towards that 

required by a standard frequentist design (Figure 5.1a). On the other hand, 

the value of ν obtained from PK-PD model parameters (Scenario 1) leads to 

a SS approximately 60% lower than that required in a frequentist setting, 

with clear advantages from a patients recruitment perspective. 

Comparing both investigated scenarios, Figure 5.3b shows that, for all 

designs, the estimate of δP (i.e. 𝜇𝛿𝑃
, the posterior mean of TPM 

improvement over placebo in seizures reduction) shifts towards the 

pediatric value given by the PK-PD model if a greater ν is considered. 

Also, Figure 5.3b suggests that BSD lead to an estimate of δP closer to the 

adult value when compared to their fixed-sample counterpart, partly 

because of the lower SS required by sequential designs, which makes 𝜇𝛿𝑃
 

to rely more on prior (adult) information. 

Should the pediatric PK-PD model not be available at the design stage, a 

model-based approach still provides considerable benefits in eliciting prior 

information. If for example children are expected to be twice as sensitive as 

adults (assumption that can be supported for instance by historical data 

from drugs with similar mechanism of action in children), ν can be derived 

by using the adult PK-PD model with a doubled drug-effect parameter. 

Consequently, the impact of such an assumption on designs performance 

can be quantitatively evaluated by means of the framework presented in 

this Chapter. 

NON-H vs SEMI-H 

Results show that there are no significant differences between the NON-

H and the SEMI-H in both investigated scenarios and across all analyzed 
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metrics (Table 5.3). Such results were not totally unexpected as the weight 

of prior information in NON-H and SEMI-H is given in an equivalent 

manner. Nonetheless, because SEMI-H explicitly enables to weight prior 

information on adults on the grounds of clinical and scientific plausibility, 

it may be preferable to the NON-H where the weight of prior information is 

to be assigned based on an “equivalent sample size”. 

BSD vs BD 

BSD, under comparable type I errors, require on average a lower SS 

than the BD (Table 5.3). With respect to mean SS, the reduction seen under 

Scenario 2 (~35%) is slightly higher than that observed under Scenario 1 

(~24%). Though limited by only two scenarios, this suggests that the more 

the adult and pediatric populations are different the greater is the advantage 

in terms of mean SS brought by BSD compared to a fixed-sample BD. On 

the other hand, SS distributions of BSD become more skewed when passing 

from Scenario 1 to Scenario 2 (Figure 5.1b) and more caution is needed 

since there is a higher probability of ending the trial with non-practical SSs, 

which would ultimately jeopardize the conclusions that can be drawn from 

the study. 

Differences in TD between BD and BSD can be explained by the 

aforementioned differences in SS. Figure 5.2 shows that, for the 

investigated range of enrolment rates, median TD of the NON-H and 

SEMI-H is lower than the duration of the BD. Like for SS, upper limit of 

95% prediction interval of TD (upper dotted lines of Figure 5.2) clearly 

suggests that there exists a low probability of the trial lasting more than 

100 months, which would thereby compromise its feasibility.  

Regarding the precision of 𝜇𝛿𝑃
, the BD performs better than the BSD 

with a median width of its 95% credible interval  about 20% lower than the 

corresponding median of BSD (Figure 5.3a). The better precision of the BD 

is likely due to the higher number of samples used to compute 𝜇𝛿𝑃
. Moving 

from Scenario 1 (left panel of Figure 5.3a) to Scenario 2 (right panel of 

Figure 5.3a), 95% median credible interval width consistently decreases for 

all designs, suggesting that on average the increase in precision due to a 

higher SS outweighs the decrease caused by a less informative prior. 

However, outliers of credible interval widths in BSD are higher in Scenario 

2 than in Scenario 1 (results not shown). These less precise estimates are 

obtained when H0 is rejected at the first interim analysis (i.e., when 10 

patients per arm have been enrolled), revealing that for such low SS prior 

information is not strong enough to guarantee an acceptable precision of 

𝜇𝛿𝑃
. 

Sensitivity analysis 

In order to investigate the impact of non-negligible model 

misspecification on BD performance, a sensitivity analysis was performed 

by simulating the BD with a TPM effect parameter in children (β1, Table 
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5.1) 5 times lower (i.e., β1 =-0.01158; Modified Bayesian Design 1 

(MBD1)) and 5 times higher (i.e., β1 =-0.2895; Modified Bayesian Design 

2 (MBD2)) than the estimated one.  

Hypotheses made for the design and analysis of modified Bayesian 

designs were left unchanged, hence the SS of the MBD1 and MBD2 

remained equal to the BD one. Table 5.4 indicates that type I errors are not 

affected by a misspecification of the drug effect parameter and can be 

considered equal to type I error of BD. This was not totally unexpected as 

type I errors are obtained by CTS under the null model, i.e., with β1 set to 

zero. On the contrary, type II errors significantly shift towards opposite 

directions, depending on the side towards which β1 was modified. In MBD1 

type II error increases because simulations under H1 assumed a lower effect 

with respect to the expected one, thus H0 is accepted at higher rates 

compared to the BD. Vice versa, for the opposite reason, type II error of 

MBD2 approaches zero.  

Table 5.4. Type I error (α̂) and type II error (β̂) obtained from clinical trial 

simulation of the Bayesian design using a pediatric drug effect parameter 

(β1) 5 times lower (MBD1) and 5 times higher (MBD2) than the estimated 

one (Table 5.1) under the two scenarios presented in Table 5.2. 

 

MBD1 MBD2 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 

�̂� (%) 

(95% CI) 

20.9 

(18.4-23.4) 

7.3 

(5.7-8.9) 

20.9 

(18.4-23.4) 

7.3 

(5.7-8.9) 

�̂� (%) 

(95% CI) 

71.4 

(68.6-74.2) 

84.3 

(82.0-86.6) 

0 

(0-0) 

0 

(0-0) 

 

As expected, the final estimate of treatment effect is slightly lower in 

MBD1 and remarkably higher in MBD2 (Figure 5.4b). This behavior is 

owed to the likelihood function being towards smaller treatment effect in 

MBD1 and towards much greater effects in MBD2. Importantly, treatment 

effect precision does not appear to be affected by model misspecification in 

MBD1, whereas a significant increase in credible interval widths is seen in 

MBD2 (Figure 5.4a). Such behavior of MBD2 can be explained again by 

means of the likelihood function: because the data are simulated under a 

larger treatment effect, the likelihood is far from the prior distribution 

(adult effect), which implies that the two only partially overlap between 

each other, leading to a spread posterior distribution. 
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Figure 5.4. Bar chart plot of the 95% credible interval width of treatment 

difference estimates in pediatrics (μδP
) (a) and boxplot of μδP

 (b) obtained at each 

simulation of the Bayesian design (BD), the Modified Bayesian Design 1 (MBD1) 

and the Modified Bayesian Design 2 (MBD2). The upper and lower "hinges" in 

Figure (a) correspond to the first and third quartiles of confidence intervals 

widths. 
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5.4.2. Comparison between Bayesian and frequentist 
approaches 

Chapter 4 presented the performance of a set of alternative frequentist 

study designs (crossover, randomized withdrawal, sequential probability 

ratio test (SPRT) and triangular test (TT)) for pediatric trials and compared 

them with the standard parallel design (PaD). The present Chapter deals 

with the evaluation of Bayesian designs, whose comparison was based on 

the same metrics used for frequentist designs except for the percentage of 

exposure to placebo, TPM and no-treatment relative to total trial exposure. 

One of the pivotal issues addressed by this work is the simultaneous 

comparison of a battery of alternative designs based on a pharmacometric 

model of the compound and the related placebo effect. Although 

interesting, comparing the goodness of Bayesian and frequentist 

approaches is not trivial because of the inherently different philosophy of 

these two methodologies and is still an open debate [16]. Scenario 1 

highlights why Bayesian designs are appealing in pediatrics: the required 

SS is significantly reduced compared to that of their frequentist 

counterparts (BD vs PaD (fixed-sample designs) and SEMI-H vs SPRT/TT 

(sequential designs)). In particular, SS of BD (49 patients) is nearly 60% 

lower than that of the PaD (115 patients), while the SS distribution of the 

SEMI-H is squeezed towards lower SSs compared to that obtained with the 

SPRT/TT (left panel of Figure 5.5). Figure 5.6a shows that the reduced SS 

implies a remarkable lower precision of the BD estimate compared to that 

of the PaD (i.e. 𝛿), whereas for BSD such difference is less pronounced 

because of the low precisions associated with the SPRT and TT; moreover, 

the estimated treatment effect is shifted towards the adult value for both 

fixed-sample (mean 𝜇𝛿𝑃
of 0.3498) and sequential (mean 𝜇𝛿𝑃

equals 0.4330 

and 0.4265 for the NON-H and SEMI-H, respectively) Bayesian designs 

when compared to the corresponding fixed-sample (mean �̂� of 0.2821) and 

sequential (mean 𝛿  equals 0.3717 and 0.3588 for the SPRT and TT, 

respectively) frequentist designs (Figure 5.6b). 
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Figure 5.5. Histograms of the sample sizes per arm obtained at each of the 

1000 clinical trial simulation of the semi-hierarchical Bayesian Sequential 

Design (SEMI-H, blue histogram), Sequential Probability Ratio Test 

(SPRT, red histogram) and the Triangular Test (TT, green histogram). 

Different considerations can be made if frequentist designs are compared 

with Bayesian designs under Scenario 2.  

In terms of SS, the BD allows to reduce the number of children to be 

enrolled by almost 10% when compared to the PaD while maintaining 

similar estimates of treatment effect and associated precisions (Figure 5.6), 

suggesting that the estimate obtained with a BD (mean 𝜇𝛿𝑃
of 0.2905) is not 

significantly influenced by the adult prior distribution under Scenario 2.  

Similarly to what has been observed when comparing fixed-sample 

designs, median SS of the SEMI-H (50 patients) is lower than the 

corresponding value of the SPRT (60 patients) and TT (70 patients). Better 

performance provided by Bayesian designs with respect to this metric can 

also be deduced from Figure 5.5, where it can be seen that SS histograms 

of the SPRT ant TT are shifted towards higher sample sizes compared to 

SEMI-H. However, SEMI-H seems to behave similarly to the SPRT in 

terms of very late stopping recruitment, i.e., low probabilities exist that the 

trial goes on very long, as indicated by a 95
th

 percentile in SS distribution 

of 190. 
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 Figure 5.6. Bar chart plot of the 95% credible (Bayesian) and confidence 

(frequentist) interval width of treatment difference estimates in pediatrics 

(𝜇𝛿𝑃
 for Bayesian designs and 𝛿 for frequentist ones) (a) and boxplot of 𝜇𝛿𝑃

 

and 𝛿  (b) obtained at each of the 1000 clinical trial simulation of the 

Bayesian design (BD, blue bar), Parallel design (PaD, red bar), Bayesian 

sequential design with a non-hierarchical (NON-H, yellow bar) and a semi-

hierarchical (SEMI-H, white bar) framework, Sequential Probability Ratio 

Test (SPRT, green bar) and Triangular Test (TT, gray bar). The upper and 

lower "hinges" in subfigure (a) correspond to the first and third quartiles of 

95% credible/confidence intervals widths. The dashed horizontal black line 

represents the pediatric treatment effect difference between topiramate and 

placebo obtained from the PK-PD model (0.2467).  
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Right panel of Figure 5.6a reveals that no considerable differences in 

precision are seen between BSD and the TT (the frequentist sequential 

approach with the highest precision), even though Bayesian approaches 

seem to be slightly more robust to outliers (results not shown). In addition, 

equivalently to fixed-sample designs,  the adult prior distribution does not 

remarkably influence the estimated effect in pediatrics in the NON-H 

(mean 𝜇𝛿𝑃
of 0.3964) and SEMI-H (mean 𝜇𝛿𝑃

of 0.3939) compared to the 

SPRT and TT (Figure 5.6b). 

In a way, the comparison made under Scenario 2 could be considered 

fairer because type I errors obtained under such scenario (around 7-9%) are 

closer to those obtained in frequentist designs (around 5-7%). On the other 

hand the increased type I error rate of Bayesian designs observed under 

Scenario 1 is inherently due to the inclusion of a positive adult study and 

should be accepted as such. 

With respect to the extrapolation of adult results to pediatric trials, 

Hlavin et al. [17] proposed a statistical framework to quantitatively 

accommodate the uncertainty about the assumptions on the similarity 

between the adult and pediatric population by enlarging the significance 

level of the pediatric trial based on experts skepticism. Although in the 

framework by Hlavin and colleagues Bayesian arguments are applied to 

calibrate the increase in the significance level, their approach is frequentist 

by nature and it is does not provide a clear way on how to quantitatively 

derive the skepticism factor on the basis of the expected 

similarities/differences between the two populations. Nevertheless, the 

condition of no skepticism can be translated into the condition ν=0 of 

Schoenfeld et al. [4] (children and adults respond in the same way to the 

drug under study and no pediatric efficacy trial would be needed). 

Similarly, full skepticism can be converted into ν∞. Accordingly, for 

values of ν approaching the standard frequentist method (ν~2), the type I 

error obtained in this analysis corresponds to the adjusted α value proposed 

by Hlavin et al. in case of full skepticism, that is, 0.05 (i.e., no adjustment).  

Although advantages and disadvantages of the investigated designs 

concerning the evaluation of dose regimens in the pediatric population 

were not explicitly considered, some general properties can still be 

outlined. Since BSD and BD are parallel in nature, they differ solely in 

terms of SS with respect to the estimation of the PK and/or PK-PD in 

children; as a result, on average, BD is expected to provide more precise 

PK/PK-PD estimates compared to BSD. Similarly, when significant weight 

is given to prior information on adult treatment effect, Bayesian designs 

would lead to estimates with poorer precision in contrast with frequentist 

ones; however, if also the PK/PK-PD in children is expected to be similar 

to that observed in adults, prior information on adult PK/PK-PD parameters 

can be leveraged to improve the precision of the estimates in the pediatric 

population and to ultimately provide an optimal dose selection [5]. 

Regulatory endorsements on the use of Bayesian designs for pediatric 

trials are present: EMA suggests using Bayesian approaches in Pediatric 
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Investigation Plans [2], whereas the Food and Drug Administration 

published a “Guidance for the Use of Bayesian Statistics in Medical Device 

Clinical Trials” [18]. Nevertheless few examples can be found in the 

literature. According to Gönen [19], the barriers to entry are many, but 

three stand out: prior, software, and motivation, where motivation seems to 

be the major one. Tradition also represents an additional hurdle, which is 

anyway related to motivation. Pediatric trials call for innovation and may 

therefore offer the opportunity to overcome these motivational issues and 

increase usage of Bayesian approaches. 

It has to be pointed out that this analysis is based on the effect of TPM 

in children with partial onset seizures refractory to their current 

antiepileptic treatment, and the extrapolation of the results to different 

compounds/diseases/subpopulations should be further explored. 

In conclusion, this Chapter provided a pharmacometric framework able 

to formalize PK-PD based CTS for Bayesian designs in pediatric trials 

using prior information from adult data, thereby allowing to investigate the 

influence of a specific study design on success/failure of a pediatric trial. 

With respect to the selection of a particular design, if prior information is 

available from adult studies but children are expected to respond 

substantially different from adults (Scenario 2), the performance of 

frequentist and Bayesian approaches can be assumed comparable, with 

slight advantages for the latter. However, when the pediatric population is 

expected to respond similarly to adults (Scenario 1), Bayesian designs 

would allow smaller, shorter, more reliable and more efficient trials in 

children. Among Bayesian designs, those of sequential nature, irrespective 

of their level of hierarchy, seem to require lower SS compared to the BD if 

larger treatment effects are expected, and could therefore represent an 

appealing options for trials in very small populations. 
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Chapter 6 

6 Overall conclusion 

Pediatric drug development encounters many difficulties due to ethical, 

practical and financial considerations. In order to overcome these obstacles 

and to ensure that unmet medical needs are addressed in a vulnerable 

population as the pediatric one, the most efficient and informative 

analytical methods should be used when designing, analyzing and 

interpreting pediatric clinical studies. 

Development of a medicine in adults provides a rich source of data to 

inform pediatric programs and, given reasonable similarities between the 

two populations, extrapolation from adults allows reducing pediatric data 

requirements to make conclusions for drug usage in children. Contextually, 

Bayesian approaches offer a scientifically sound methodology for 

quantitatively incorporate adult data in the design and analysis of pediatric 

trials. Although in certain circumstances, such as for diseases specific to 

children, no information can be borrowed from adults or other source 

populations, feasibility of pediatric trials can still be increased by more 

classical yet alternative frequentist designs such as the randomized 

withdrawal and sequential designs. 

As a common background, pharmacokinetic-pharmacodynamic (PK-PD) 

modelling and simulation (M&S) should be employed throughout pediatric 

development programs. Indeed, as illustrated in Chapter 3, M&S enables 

rationale synthesis of available evidence and allows optimizing the design 

of the study thereby minimizing the set of data to be generated in the 

pediatric population. Moreover, Chapter 4 and 5 demonstrated the 

usefulness of PK-PD-based clinical trial simulation to quantitatively inform 

and guide the selection of the best design for pediatric trials. 

 These particularly innovative methodological approaches are necessary 

tools to provide children with new treatment options that would allow 

reducing the large number of unmet medical needs that are currently 

affecting this population. 
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Chapter 7 

7 Appendix 

7.1. NONMEM code for pharmacokinetic 
simulation 

NONMEM code used for PK simulation (step 2 of section 4.2.3). 

$PROBLEM    TPM GIRGIS PK MODEL: 500 steady state 

simulations of 1000 subjects used for step 2 of CTS 

framework 

$INPUT ID TIME DOSE AMT SS II CONC=DV MDV EVID SEX BW 

AGE ADJ 

 

 

$DATA PKsim_dataset1SS.csv IGNORE=@ 

$SUBROUTINE ADVAN4 TRANS1 

 

$PK  ;from supplemental material Girgis et al 

 

SIMUL=IREP 

 

CLST=THETA(1)*(1+ADJ*THETA(2)) 

FCWT=(BW/69.9)**THETA(3) 

FCAGE=EXP(THETA(4)*(AGE-31.4)) 

FCIN= THETA(5)**0 

FCVP= THETA(6)**0 

FCNE= THETA(7)**0 

TVCL = CLST*FCWT*FCAGE*FCIN*FCVP*FCNE 

CL=TVCL*EXP(ETA(1)) 

FVWT=(BW/69.9)**THETA(9) 

V=THETA(8)*FVWT*EXP(ETA(2)) 

S2=V 

KA=THETA(10)*EXP(ETA(3)) 

K23=THETA(11) 

K32=THETA(12) 

K=CL/V 
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$ERROR 

 

IPRED = F                  

W = F 

IF (W.LE.0) W = 0.00001     

      IRES = DV-IPRED  

      IWRES = IRES/W  

 

      Y = F*(1+EPS(1)) + EPS(2)     

 

$THETA      

1.21  ;CLSTM 

0.479  ;CLSTA 

0.453  ;FCWT 

-0.00306 ;FCAGE 

1.94  ;FCIN 

0.686  ;FCVP 

0.635  ;FCNE 

4.61  ;VST 

1.14  ;FVWT 

0.105  ;KA 

0.577  ;K23 

0.0586  ;K32 

  

$OMEGA 

0.07441984 ;CL --> (27.28/100)^2 

1.350244 ;V  --> (116.2/100)^2 

0.04990756 ;KA --> (22.34/100)^2 

 

$SIGMA 

0.06482116 ; sigma1^2 = (25.46/100)^2 

0.03229209 ; sigma2^2 = 0.1797^2 

 

$SIMULATION (12101987) ONLYSIM SUBPROBLEMS=500 

 

$TABLE ID TIME AMT DOSE DV BW AGE MDV SIMUL 

       NOHEADER NOPRINT FILE=sim1.tab 

7.2. R code for covariates simulation 

R code used for covariates simulation (step 1 of section 4.2.3). 

########################################################## 

########### Step 1 fo CTS: covariate simulations ######### 

########################################################## 

 

rm(list=ls(all=TRUE)) 

load("BOYS") 

load("GIRLS") 

 

# setting the seed for results replication  

set.seed(5) 

 

# nsbj --> number of subjects (i.e. covariates) to be simulated in the two datasets 

## Two datasets are needed because NONMEM 7.2 does not accept dataset with more than 

## 1000 IDs  

 

nsbj <- 1000 

 

# d1 --> first dataset 

d1 <- data.frame(ID=rep(1:nsbj)) 

# d2 --> second dataset 

d2 <- data.frame(ID=rep(1:nsbj)) 
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# TIME --> time column for NONMEM simulations (through concentration are sought) 

d1$TIME <- 12 

d2$TIME <- 12 

 

# MGKG --> daily dose in mg/kg 

MGKG <- 7 

 

# dosing_interval --> 3.5 mgkg twice daily 

dosing_interval <- MGKG/2 

 

# DOSE --> nonmem dose column 

d1$DOSE <- rep(dosing_interval,each=nsbj/length(dosing_interval))  

d2$DOSE <- rep(dosing_interval,each=nsbj/length(dosing_interval))  

 

# AMT --> amount nonmem column 

d1$AMT <- NA  

d2$AMT <- NA  

 

# SS --> steady state NONMEM column (indicating that simulated conc are at steady state) 

d1$SS <- NA 

d2$SS <- NA 

 

# II --> nonmem column indicating the time interval between two dosing 

d1$II <- NA 

d2$II <- NA 

 

# CONC --> nonmem conentration column 

d1$CONC <- NA 

d2$CONC <- NA 

 

# MDV --> nonmem missing dependet variable column 

d1$MDV <- 0 

d2$MDV <- 0 

 

# EVID --> nonmem EVID coulmn 

d1$EVID <- 0 

d2$EVID <- 0 

 

# SEX --> GENDER was not a covariate of the PK model, but it is needed because it will  

#         determine age and weight values. Males and females have the same probability 

#         to be included (as indicated by probs=0.5,0.5) 

# SEX=0--> MALE 

# SEX=1--> FEMALE 

d1$SEX <- sample(c(0,1),size=nsbj,replace=T,prob=c(0.5,0.5)) 

d2$SEX <- sample(c(0,1),size=nsbj,replace=T,prob=c(0.5,0.5)) 

 

 

# BW --> patients' weight  

d1$BW<-rep(0,nsbj) 

d2$BW<-rep(0,nsbj) 

 

 

# AGE --> simulated ages in the first dataset, assume mean values--> 2.5,3.5,4.5,.... 

# apart from age 10, for which wieght-age table was not available 

d1$AGE <- floor(runif(nsbj,2,11)) + 0.5 

d1$AGE[d1$AGE==10.5] <- 10.0 

# AGE --> simulated ages in the second dataset 

d2$AGE <- floor(runif(nsbj,2,11)) + 0.5 

d2$AGE[d2$AGE==10.5] <- 10.0 

 

# ADJ --> PK model binary covariate which is 1 if patients take more than 1 drug, 0 

otherwise 

d1$ADJ <- 1 

d2$ADJ <- 1 

 

## body weights are extracted from WHO statistics. BOYS and GIRLS datasets contain  

## the mean and sd of the logarithms of body weights for different ages 

 

## MALES 

# d1 

d1$BW[d1$AGE==2.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==2.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==2.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==2.5])) 

 

d1$BW[d1$AGE==3.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==3.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==3.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==3.5])) 

 

d1$BW[d1$AGE==4.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==4.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==4.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==4.5])) 

 

d1$BW[d1$AGE==5.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==5.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==5.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==5.5])) 

 

d1$BW[d1$AGE==6.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==6.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==6.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==6.5])) 

 

d1$BW[d1$AGE==7.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==7.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==7.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==7.5])) 

 

d1$BW[d1$AGE==8.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==8.5 & d1$SEX==0]), 
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                                              BOYS$MEAN_Lbw[BOYS$AGE==8.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==8.5])) 

 

d1$BW[d1$AGE==9.5 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==9.5 & d1$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==9.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==9.5])) 

 

d1$BW[d1$AGE==10.0 & d1$SEX==0] <- exp(rnorm(length(d1$BW[d1$AGE==10.0 & d1$SEX==0]), 

                                               BOYS$MEAN_Lbw[BOYS$AGE==10.0], 

                                               BOYS$SD_Lbw[BOYS$AGE==10.0])) 

 

# d2 

d2$BW[d2$AGE==2.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==2.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==2.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==2.5])) 

 

d2$BW[d2$AGE==3.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==3.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==3.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==3.5])) 

 

d2$BW[d2$AGE==4.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==4.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==4.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==4.5])) 

 

d2$BW[d2$AGE==5.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==5.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==5.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==5.5])) 

 

d2$BW[d2$AGE==6.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==6.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==6.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==6.5])) 

 

d2$BW[d2$AGE==7.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==7.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==7.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==7.5])) 

 

d2$BW[d2$AGE==8.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==8.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==8.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==8.5])) 

 

d2$BW[d2$AGE==9.5 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==9.5 & d2$SEX==0]), 

                                              BOYS$MEAN_Lbw[BOYS$AGE==9.5], 

                                              BOYS$SD_Lbw[BOYS$AGE==9.5])) 

 

d2$BW[d2$AGE==10.0 & d2$SEX==0] <- exp(rnorm(length(d2$BW[d2$AGE==10.0 & d2$SEX==0]), 

                                               BOYS$MEAN_Lbw[BOYS$AGE==10.0], 

                                               BOYS$SD_Lbw[BOYS$AGE==10.0])) 

 

 

## FEMALES 

# d1 

d1$BW[d1$AGE==2.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==2.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==2.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==2.5])) 

 

d1$BW[d1$AGE==3.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==3.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==3.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==3.5])) 

 

d1$BW[d1$AGE==4.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==4.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==4.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==4.5])) 

 

d1$BW[d1$AGE==5.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==5.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==5.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==5.5])) 

 

d1$BW[d1$AGE==6.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==6.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==6.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==6.5])) 

 

d1$BW[d1$AGE==7.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==7.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==7.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==7.5])) 

 

d1$BW[d1$AGE==8.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==8.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==8.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==8.5])) 

 

d1$BW[d1$AGE==9.5 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==9.5 & d1$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==9.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==9.5])) 

 

d1$BW[d1$AGE==10.0 & d1$SEX==1] <- exp(rnorm(length(d1$BW[d1$AGE==10.0 & d1$SEX==1]), 

                                               GIRLS$MEAN_Lbw[GIRLS$AGE==10.0], 

                                               GIRLS$SD_Lbw[GIRLS$AGE==10.0])) 

 

 

# d2 

d2$BW[d2$AGE==2.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==2.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==2.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==2.5])) 

 

d2$BW[d2$AGE==3.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==3.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==3.5], 
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                                              GIRLS$SD_Lbw[GIRLS$AGE==3.5])) 

 

d2$BW[d2$AGE==4.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==4.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==4.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==4.5])) 

 

d2$BW[d2$AGE==5.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==5.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==5.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==5.5])) 

 

d2$BW[d2$AGE==6.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==6.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==6.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==6.5])) 

 

d2$BW[d2$AGE==7.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==7.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==7.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==7.5])) 

 

d2$BW[d2$AGE==8.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==8.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==8.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==8.5])) 

 

d2$BW[d2$AGE==9.5 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==9.5 & d2$SEX==1]), 

                                              GIRLS$MEAN_Lbw[GIRLS$AGE==9.5], 

                                              GIRLS$SD_Lbw[GIRLS$AGE==9.5])) 

 

d2$BW[d2$AGE==10.0 & d2$SEX==1] <- exp(rnorm(length(d2$BW[d2$AGE==10.0 & d2$SEX==1]), 

                                               GIRLS$MEAN_Lbw[GIRLS$AGE==10.0], 

                                               GIRLS$SD_Lbw[GIRLS$AGE==10.0])) 

 

# body weights rounding 

d1$BW <- round(d1$BW, digits=2) 

d2$BW <- round(d2$BW, digits=2) 

 

 

# dos1, dos2 --> datasets with dosing records to be merged with d1 and d2 respectively 

dos1 <- data.frame(ID=(1:nsbj)) 

dos2 <- data.frame(ID=(1:nsbj)) 

 

# dos$TIME --> dosing time 

dos1$TIME <- 0 

dos2$TIME <- 0 

 

# dos$DOSE --> actual dose 

dos1$DOSE <- rep(dosing_interval,each=nsbj/length(dosing_interval)) 

dos2$DOSE <- rep(dosing_interval,each=nsbj/length(dosing_interval)) 

 

# dos$AMT --> amount of dose adimnistered in mg 

dos1$AMT <- dos1$DOSE*d1$BW 

dos2$AMT <- dos2$DOSE*d2$BW 

 

# dos$SS --> steady state concentrations 

dos1$SS <- 1 

dos2$SS <- 1 

 

# dos$II--> time interval (in hours) between two doses 

dos1$II <- 12 

dos2$II <- 12 

 

# dos$CONC --> DV NONMEM column 

dos1$CONC <- NA 

dos2$CONC <- NA 

 

# dos$MDV --> equal 1 because it's a dosing record (thus no DV is present) 

dos1$MDV <- 1 

dos2$MDV <- 1 

 

# dos$EVID --> equal 1 because it's a dosing record 

dos1$EVID <- 1 

dos2$EVID <- 1 

 

# SEX 

dos1$SEX <- d1$SEX 

dos2$SEX <- d2$SEX 

 

# body weight 

dos1$BW <- d1$BW 

dos2$BW <- d2$BW 

 

# age 

dos1$AGE <- d1$AGE 

dos2$AGE <- d2$AGE 

 

# ADJ --> PK model binary covariate which is 1 if patients take more than 1 drug, 0 

otherwise 

dos1$ADJ <- 1 

dos2$ADJ <- 1 

 

# datasets merging 

dd1 <- rbind(dos1,d1) 

dd1 <- dd1[order(dd1$ID,dd1$TIME),] 

 

dd2 <- rbind(dos2,d2) 

dd2 <- dd2[order(dd2$ID,dd2$TIME),] 
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# write simulated csv file 

file_nm1 <- "PKsim_dataset1SS.csv" 

file_nm2 <- "PKsim_dataset2SS.csv" 

write.csv(dd1,file_nm1,na=".",quote=FALSE,row.names=FALSE) 

write.csv(dd2,file_nm2,na=".",quote=FALSE,row.names=FALSE) 

7.3. R code for study design simulation and 
statistical analysis 

R code used for study designs simulation and statistical analysis (steps 3 

and 4 of section 4.2.3). 

7.3.1. Parallel design 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# delta <- minimum significance difference given by the PK-PD model 

load("delta") 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

# alpha --> significance level for t-test 

alpha <- 0.05 

z_alpha <- qnorm((1-alpha),0,1) 

# beta <- define the power of the study (80%) 

beta <- 0.2 

z_beta <- qnorm((1-beta),0,1) 

 

# n --> sample size per arm 

n <- ceiling(2*((z_alpha+z_beta)*sigma_epsilon/delta)^2) 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  SD=NA,    # standard deviation of delta in the Y scale 

                  SE=NA,   # standard error of delta in the Y scale 

                  N=n)   # sample size per arm (fixed a priori) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M) 

 

## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 
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# tmp --> ancillary dataframe 

tmp <- subset(d,PKSIM == 1) 

# control_subjects --> subjects randomized to the control group 

control_subjects <-  tmp[(1:n),] 

 

# control --> endpoint in the control group   

control <- rep(0,n) 

 

# test_subjects --> subjects randomized to the treated group 

test_subjects <-  tmp[(1:n),] 

 

# test --> endpoint in the test group   

test <- rep(0,n) 

 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

   

  control_subjects <-  tmp[control_IDperm[1:n],] 

   

  control <- beta0 + beta1*0 + control_subjects$EPS 

   

  test_subjects <-  tmp[test_IDperm[1:n],] 

   

  test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

   

  ## one sided p-value. Alternative hypothesis = less because the lower the reponse in the 

TPM group the higher TPM efficacy 

  out$H1[iter] <- t.test(test,control,var.equal=T,alternative="l")$p.value < 0.05 

  ## estimate of treatments difference in the Y scale 

  out$MEAN_Y[iter] <- mean(control) - mean(test) 

  ## estimate of treatments difference in the perc-reduction scale 

  out$MEAN[iter] <- exp(mean(control)) - exp(mean(test)) 

  ## sample standard deviation of delta in the Y scale 

  out$SD[iter] <- sqrt(var(control)+var(test)) 

  ## standard error of estimate of delta in the Y scale 

  out$SE[iter] <- out$SD[iter]/sqrt(n) 

   

 } 

########################################### 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

   

  control_subjects <-  tmp[control_IDperm[1:n],] 

   

  control <- beta0 + beta1*0 + control_subjects$EPS 

    

  test_subjects <-  tmp[test_IDperm[1:n],] 

   

  test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

   

  ## one sided p-value under H0 

  out$H0[iter] <- t.test(test,control,var.equal=T,alternative="l")$p.value < 0.05 

    

}
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7.3.2. Crossover design 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

require(MASS) # for mvrnorm function 

 

# setting the seed for results replication 

set.seed(121087) 

 

# delta <- minimum significance difference given by the PK-PD model 

load("delta") 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# rho --> correlation coefficient 

rho <- 0.5 

# Sigma --> covariance matrix of the responses in the two periods 

Sigma <- sigma_epsilon^2*matrix(c(1,rho,rho,1),nrow=2,ncol=2) 

 

EPS <- mvrnorm(nrow(d),rep(0,2),Sigma) 

 

# EPS1 --> variability that will be considered during the first period 

d$EPS1 <- EPS[,1] 

# EPS2 --> variability that will be considered during the second period 

d$EPS2 <- EPS[,2] 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# flag indicating to which sequence patients are randomized: 

# TP --> TPM and PCB 

# PT --> PCB anb TPM 

TP_flag <- rep(c(T,F),M/2) 

PT_flag <- !TP_flag 

 

# alpha --> significance level for t-test 

alpha <- 0.05 

z_alpha <- qnorm((1-alpha),0,1) 

# beta <- define the power of the study (80%) 

beta <- 0.2 

z_beta <- qnorm((1-beta),0,1) 

 

# n --> sample size per sequence 

n <- ceiling(2*((z_alpha+z_beta)*sigma_epsilon/(2*delta))^2*(2*(1-rho))) 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  SD=NA,    # standard deviation of delta in the Y scale 

                  SE=NA,   # standard error of delta in the Y scale 

                  N=n)   # sample size per arm (fixed a priori) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M) 

 

## TP and PT alternate the IDs 

TP_IDperm <- rep(0,M/2) 

PT_IDperm <- rep(0,M/2) 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

# tmp --> ancillary dataframe 

tmp <- subset(d,PKSIM == 1) 

# TP_subjects --> subjects randomized to TPM PCB sequence 

TP_subjects  <-  tmp[(1:n),] 

 

# TP_P --> response to PCB of patients randomized to sequence TPM PCB  

TP_P <- rep(0,n) 

# TP_T --> response to TPM of patients randomized to sequence TPM PCB 

TP_T <- rep(0,n) 
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# TP --> whithin differences beween response during PCB and TPM    

TP <- rep(0,n) 

 

# PT_subjects --> subjects randomized to PCB TPM sequence 

PT_subjects <-  tmp[(1:n),] 

 

# PT_T --> response to TPM of patients randomized to sequence PCB TPM 

PT_T <- rep(0,n) 

# PT_P --> response to PCB of patients randomized to sequence PCB TPM 

PT_P <- rep(0,n) 

# PT --> whithin differences beween response during TPM and PCB     

PT <- rep(0,n) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  TP_IDperm <- ID_perm[TP_flag] 

  PT_IDperm <- ID_perm[PT_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

 

  # TPM-PCB sequence 

  TP_subjects <-  tmp[TP_IDperm[1:n],] 

  TP_P <- beta0 + beta1*0 + TP_subjects$EPS2 

  TP_T <- beta0 + beta1*TP_subjects$CONC + TP_subjects$EPS1 

  TP <- TP_P - TP_T 

   

  # PCB-TPM sequence 

  PT_subjects <-  tmp[PT_IDperm[1:n],] 

  PT_T <- beta0 + beta1*PT_subjects$CONC + PT_subjects$EPS2 

  PT_P <- beta0 + beta1*0 + PT_subjects$EPS1 

  PT <- PT_T - PT_P 

   

  ## one sided p-value.  

  out$H1[iter] <- t.test(TP,PT,var.equal=T,alternative="g")$p.value < 0.05 

  ## estimate of treatments difference in the Y scale 

  out$MEAN_Y[iter] <- mean( c(mean(TP_P - TP_T) , mean(PT_P - PT_T) )) 

  ## estimate of treatments difference in the perc-reduction scale 

  out$MEAN[iter] <- exp(mean(cbind(TP_P, PT_P))) - exp(mean(cbind(TP_T, PT_T))) 

  ## sample standard deviation of delta in the Y scale 

  out$SD[iter] <- sqrt(0.25*(var(TP) + var(PT))) 

  ## standard error of estimate of delta in the Y scale 

  out$SE[iter] <- out$SD[iter]/sqrt(n) 

   

} 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

EPS <- mvrnorm(nrow(d),rep(0,2),Sigma) 

 

# EPS1 --> variability that will be considered during the first period 

d$EPS1 <- EPS[,1] 

# EPS2 --> variability that will be considered during the second period 

d$EPS2 <- EPS[,2] 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  TP_IDperm <- ID_perm[TP_flag] 

  PT_IDperm <- ID_perm[PT_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

   

  # TPM-PCB sequence 

  TP_subjects <-  tmp[TP_IDperm[1:n],] 

  TP_P <- beta0 + beta1*0 + TP_subjects$EPS2 

  TP_T <- beta0 + beta1*TP_subjects$CONC + TP_subjects$EPS1 

  TP <- TP_P - TP_T 

   

  # PCB-TPM sequence 

  PT_subjects <-  tmp[PT_IDperm[1:n],] 

  PT_T <- beta0 + beta1*PT_subjects$CONC + PT_subjects$EPS2 

  PT_P <- beta0 + beta1*0 + PT_subjects$EPS1 

  PT <- PT_T - PT_P 

   

  ## one sided p-value.  

  out$H0[iter] <- t.test(TP,PT,var.equal=T,alternative="g")$p.value < 0.05 
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} 

7.3.3. Randomized withdrawal design 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

require(MASS) 

 

# delta <- minimum significance difference given by the PK-PD model 

load("delta") 

# theta --> responder rate given by the PK-PD model 

load("theta") 

 

# setting the seed for results replication 

set.seed(121087) 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# rho --> correlation coefficent 

rho <- 0.5 

# Sigma --> covariance matrix of the variances of the responses in the two periods 

Sigma <- sigma_epsilon^2*matrix(c(1,rho,rho,1),nrow=2,ncol=2) 

 

EPS <- mvrnorm(nrow(d),rep(0,2),Sigma) 

 

# EPS1 --> variability that will be considered during the first period 

d$EPS1 <- EPS[,1] 

# EPS2 --> variability that will be considered during the second period 

d$EPS2 <- EPS[,2] 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# alpha --> significance level for t-test 

alpha <- 0.05 

z_alpha <- qnorm((1-alpha),0,1) 

# beta <- define the power of the study (80%) 

beta <- 0.2 

z_beta <- qnorm((1-beta),0,1) 

 

# n --> sample size per arm 

n <- 2*((z_alpha+z_beta)*sigma_epsilon/delta)^2 

 

# adding the number of non-reponders to the sample size 

n <- ceiling(n/theta) 

 

# open_label --> ALL subjects 

open_label <- data.frame(ID=rep(NA,2*n), 

                         CONC=NA, 

                         PKSIM=NA, 

                         EPS1=NA, 

                         EPS2=NA, 

                         RESPONSE=NA) 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  SD=NA,    # standard deviation of delta in the Y scale 

                  SE=NA,   # standard error of delta in the Y scale 

                  N=n,  # sample size per arm in the open label phase 

                  N_DB=NA) # sample size per arm in the double blind phase 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

 

for (iter in (1:PDsim)) 

{ 

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 
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  ## OPEN LABEL PHASE 

   

  open_label <-  transform(subset(d,PKSIM == sim_perm[1]), 

                          RESPONSE = exp(beta0 + beta1*CONC + EPS1) < exp(beta0), 

                          PKSIM=NULL)[1:(2*n),] 

   

  # responders --> responders from the open label phase 

  responders <- transform(subset(open_label,RESPONSE==T), RESPONSE=NULL) 

   

  ## DOUBLE BLIND PHASE 

   

  # randomization --> list with two datasets, the control and the experimental arm 

  randomization <- split(responders, 

                         sample(rep(1:2, nrow(responders)/2))) 

   

  # test --> endpoint in the test group   

  test <- with(randomization[[1]], 

               beta0 + beta1*CONC + EPS2) 

   

  # control --> endpoint in the control group   

  control <- with(randomization[[2]], 

                  beta0 + beta1*0 + EPS2) 

   

  ## one sided p-value 

  out$H1[iter] <- t.test(test,control,var.equal=T,alternative="l")$p.value < 0.05 

  ## estimate of treatments difference in the Y scale 

  out$MEAN_Y[iter] <- mean(control) - mean(test) 

  ## estimate of treatments difference in the perc-reduction scale 

  out$MEAN[iter] <- exp(mean(control)) - exp(mean(test)) 

  ## sample standard deviation of delta in the Y scale 

  out$SD[iter] <- sqrt(var(control) + var(test)) 

  out$N_DB[iter] <- floor(nrow(responders)/2) 

  ## standard error of estimate of delta in the Y scale 

  out$SE[iter] <- out$SD[iter]/sqrt(out$N_DB[iter]) 

   

} 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

EPS <- mvrnorm(nrow(d),rep(0,2),Sigma) 

 

# EPS1 --> variability that will be considered during the first period 

d$EPS1 <- EPS[,1] 

# EPS2 --> variability that will be considered during the second period 

d$EPS2 <- EPS[,2] 

 

for (iter in (1:PDsim)) 

{ 

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  ## OPEN LABEL PHASE 

   

  open_label <-  transform(subset(d,PKSIM == sim_perm[1]), 

                           RESPONSE = exp(beta0 + beta1*CONC + EPS1) < exp(beta0), 

                           PKSIM=NULL)[1:(2*n),] 

   

  # responders --> responders from the open label phase 

  responders <- transform(subset(open_label,RESPONSE==T), RESPONSE=NULL) 

   

  ## DOUBLE BLIND PHASE 

   

  # randomization --> list with two datasets, the control and the experimental arm 

  randomization <- split(responders, 

                         sample(rep(1:2, nrow(responders)/2))) 

   

  # test --> endpoint in the test group   

  test <- with(randomization[[1]], 

               beta0 + beta1*CONC + EPS2) 

   

  # control --> endpoint in the control group   

  control <- with(randomization[[2]], 

                  beta0 + beta1*0 + EPS2) 

   

  ## one sided p-value 

  out$H0[iter] <- t.test(test,control,var.equal=T,alternative="l")$p.value < 0.05 

   

} 
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7.3.4. Sequential probability ratio test 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# delta <- minimum significance difference given by the PK-PD model 

load("delta") 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

# tolerated type I error 

alpha <- 0.05 

# tolerated type II error 

beta <- 0.2 

 

# delta_bar <- adjusted delta because beta != alpha 

delta_bar <- delta*2*qnorm((1-alpha),0,1)/(qnorm((1-alpha),0,1)+qnorm((1-beta),0,1)) 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  WCI=NA,    # width of confidence intervals 

                  N=NA)   # sample size per arm (to be determined via CTS) 

 

# G_half --> number of patients per group enrolled at each interim analysis   

G_half <- 10 

 

# I --> inspection interval 

I <- 2*G_half/(4*sigma_epsilon^2)  

 

# q --> absolute value of the intercept of the bounds 

q <- 1/delta_bar*log((1-alpha)/alpha) - 0.583*sqrt(I) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M/2) 

 

## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

# Z --> Z stastistic as defined in the paper 

Z <- 0 

 

# V --> V stastistic as defined in the paper 

V <- 0 

 

# theta_grid --> to be used to make inference 

theta_grid <- seq(0,100,0.01) 

# inference --> vector containing estimatye and confidence intervals of Y 

inference <- rep(0,length(theta_grid)) 

# lambda --> treatment effect estimate under H0 (see pag 118) 

lambda <- NA 

 

for (iter in (1:PDsim)) 

{ 
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  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    # control --> mean response in the control group   

    control <- beta0 + beta1*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    # test --> mean response in the test group   

    test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

     

    Z <- sum(control - test)/(2*sigma_epsilon^2) 

     

    V <- n/(2*sigma_epsilon^2) - Z^2/n 

     

    # upper --> boundary of rejection 

    upper <-  q + delta_bar/2*V  

     

    # lower --> boundary of acceptance 

    lower <- - q + delta_bar/2*V  

     

    # the test goes on until Z is in the continuation region 

    label <- (Z > lower) & (Z < upper) 

     

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (Z <= lower) # if Z falls below the lower boundry accept H0 

    out$H1[iter] <- 0 

  else            # if Z falls above the upper boundry accept H1 

    out$H1[iter] <- 1 

   

  inference <- seq_inference(alpha,delta_bar,theta_grid,V,0.95,"SPRT",out$H1[iter]) 

 

  lambda <- mean(c(test,control)) 

   

  out$MEAN[iter] <- exp(lambda + 0.5*inference[2]) - exp(lambda - 0.5*inference[2]) 

  out$MEAN_Y[iter] <- inference[2] 

  # WCI --> 97.5% conf.int. - 2.5% conf.int. 

  out$WCI[iter] <- inference[3] - inference[1] 

  out$N[iter] <- n - G_half 

   

 } 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 
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  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    # control --> mean response in the control group   

    control <- beta0 + beta1*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    # test --> mean response in the test group   

    test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

     

    Z <- sum(control - test)/(2*sigma_epsilon^2) 

     

    V <- n/(2*sigma_epsilon^2) - Z^2/n 

     

    # upper --> boundary of rejection 

    upper <-  q + delta_bar/2*V  

     

    # lower --> boundary of acceptance 

    lower <- - q + delta_bar/2*V  

     

    # the test goes on until Z is in the continuation region 

    label <- (Z > lower) & (Z < upper) 

     

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (Z <= lower) # if Z falls below the lower boundry accept H0 

    out$H0[iter] <- 0 

  else            # if Z falls above the upper boundry accept H1 

    out$H0[iter] <- 1 

   

  } 

7.3.5. Triangular test 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# delta <- minimum significance difference given by the PK-PD model 

load("delta") 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

# tolerated type I error 

alpha <- 0.05 

# tolerated type II error 

beta <- 0.2 

 

# delta_bar <- adjusted delta because beta != alpha 

delta_bar <- delta*2*qnorm((1-alpha),0,1)/(qnorm((1-alpha),0,1)+qnorm((1-beta),0,1)) 
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## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  WCI=NA,    # width of confidence intervals 

                  N=NA)   # sample size per arm (to be determined via CTS) 

 

# G_half --> number of patients per group enrolled at each interim analysis   

G_half <- 10 

 

# I --> inspection interval 

I <- 2*G_half/(4*sigma_epsilon^2)  

 

# q --> absolute value of the intercept of the bounds 

q <- 2/delta_bar*log(1/(2*alpha)) - 0.583*sqrt(I) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M/2) 

 

## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

# Z --> Z stastistic as defined in the paper 

Z <- 0 

 

# V --> V stastistic as defined in the paper 

V <- 0 

 

# theta_grid --> to be used to make inference 

theta_grid <- seq(0,100,0.01) 

# inference --> vector containing estimatye and confidence intervals of Y 

inference <- rep(0,length(theta_grid)) 

# lambda --> treatment effect estimate under H0 (see pag 118) 

lambda <- NA 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    # control --> mean response in the control group   

    control <- beta0 + beta1*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    # test --> mean response in the test group   

    test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

     

    Z <- sum(control - test)/(2*sigma_epsilon^2) 

     

    V <- n/(2*sigma_epsilon^2) - Z^2/n 

     

    # upper --> boundary of rejection 

    upper <-  q + 1/4*delta_bar*V  

     

    # lower --> boundary of acceptance 

    lower <- - q + 3/4*delta_bar*V  

     

    # the test goes on until Z is in the continuation region 

    label <- (Z > lower) & (Z < upper) 

     

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (Z <= lower) # if Z falls below the lower boundary accept H0 

    out$H1[iter] <- 0 

  else            # if Z falls above the upper boundary accept H1 
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    out$H1[iter] <- 1 

   

  inference <- seq_inference(alpha,delta_bar,theta_grid,V,0.95,"TT",out$H1[iter]) 

 

  lambda <- mean(c(test,control)) 

   

  out$MEAN[iter] <- exp(lambda + 0.5*inference[2]) - exp(lambda - 0.5*inference[2]) 

  out$MEAN_Y[iter] <- inference[2] 

  # WCI --> 97.5% conf.int. - 2.5% conf.int. 

  out$WCI[iter] <- inference[3] - inference[1] 

  out$N[iter] <- n - G_half 

} 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    # control --> mean response in the control group   

    control <- beta0 + beta1*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    # test --> mean response in the test group   

    test <- beta0 + beta1*test_subjects$CONC + test_subjects$EPS 

     

    Z <- sum(control - test)/(2*sigma_epsilon^2) 

     

    V <- n/(2*sigma_epsilon^2) - Z^2/n 

     

    # upper --> boundary of rejection 

    upper <-  q + 1/4*delta_bar*V  

     

    # lower --> boundary of acceptance 

    lower <- - q + 3/4*delta_bar*V  

     

    # the test goes on until Z is in the continuation region 

    label <- (Z > lower) & (Z < upper) 

     

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (Z <= lower) # if Z falls below the lower boundry accept H0 

    out$H0[iter] <- 0 

  else            # if Z falls above the upper boundry accept H1 

    out$H0[iter] <- 1 

  

} 

7.3.6. Bayesian design 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 
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rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# beta1_p <- "TPM effect" in pediatrics 

beta1_p <- -0.0579 

# beta1_a <- "TPM effect" in adults 

beta1_a <- -0.0627 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

# alpha --> significance level for t-test 

alpha <- 0.05 

z_alpha <- qnorm((1-alpha),0,1) 

# beta <- define the power of the study (80%) 

beta <- 0.2 

z_beta <- qnorm((1-beta),0,1) 

 

# delta_p_bar --> TPM vs PCB difference in paediatrics given by the PK-PD model 

load("delta_p_bar") 

delta_p_bar <- delta 

 

# delta_hat_a --> ML estimate of delta based on adult trials (-0.0627=beta1 in adults, 8= 

pop Cmin. From Girgis et al) 

delta_hat_a <-  -beta1_a*8 

# sa --> 2*sigma_epsilon  

sa <- 2*sigma_epsilon 

sp <- sa 

# ma --> number of adults on which delta_hat_a has been estimated (from Girgis et al) 

ma <- 663 

# mp --> number of children to be enrolled in the upcoming trial 

mp <- seq(10,500,2) 

# ni -->  difference in improvement of TPM over placebo between children and adults 

ni <- abs(delta_hat_a-delta_p_bar)/sqrt(2) 

# omega --> as defined in the paper 

omega <- sa^2/(sa^2/(ma) + 2*ni^2) 

# x_bar --> to be used for power calulcation 

x_bar <- (sp^2/(mp)) * (+1.64*sqrt(mp/sp^2+omega/sa^2) - omega/sa^2*delta_hat_a) 

 

# z_beta_bayes--> to be used for power calculation 

z_beta_bayes <- (sqrt(mp)/sp)*(delta_p_bar -  x_bar) 

# n --> sample size per arm 

n <- mp[z_beta_bayes>=z_beta][1]/2 

 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale # cannot be obtained in 

this bayesian framework 

                  SD=NA,    # standard deviation of delta in the Y scale 

                  SE=NA,   # standard error of delta in the Y scale # does not make sense in 

bayes 

                  N=n)   # sample size per arm (fixed a priori) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M) 

 

## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

# tmp --> ancillary dataframe 

tmp <- subset(d,PKSIM == 1) 

# control_subjects --> subjects randomized to the control group 

control_subjects <-  tmp[(1:n),] 
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# control --> endpoint in the control group   

control <- rep(0,n) 

 

# test_subjects --> subjects randomized to the treated group 

test_subjects <-  tmp[(1:n),] 

 

# test --> endpoint in the test group   

test <- rep(0,n) 

 

# delta_hat_p --> posterior estimate of treatment effect in children 

delta_hat_p <- NA 

# sp obtained from the simulations 

sp <- NA 

# z--> variable used to make inference 

z <- NA 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

   

  control_subjects <-  tmp[control_IDperm[1:n],] 

   

  control <- beta0 + beta1_p*0 + control_subjects$EPS 

   

  test_subjects <-  tmp[test_IDperm[1:n],] 

   

  test <- beta0 + beta1_p*test_subjects$CONC + test_subjects$EPS 

   

  # BAYESIAN INFERENCE 

  delta_hat_p <- mean(control)-mean(test) 

  sp <- 2*sd(control-test)/sqrt(2) 

   

  z <- -(delta_hat_p*(2*n)/sp^2+delta_hat_a*omega/sa^2)/ 

    sqrt((2*n)/sp^2+omega/sa^2) 

   

  ## one sided p-value 

  out$H1[iter] <- pnorm(z,0,1) < 0.05 

  ## estimate of the mean of the posterior distribution of delta 

  out$MEAN_Y[iter] <- (delta_hat_p*(2*n)/sp^2+delta_hat_a*omega/sa^2) / 

((2*n)/sp^2+omega/sa^2) 

  ## estimate of the standard deviation of the posterior distribution of delta 

  out$SD[iter] <- ((2*n)/sp^2 + omega/sa^2)^(-0.5) 

   

} 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1_p <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  tmp <- subset(d,PKSIM == sim_perm[1]) 

   

  control_subjects <-  tmp[control_IDperm[1:n],] 

   

  control <- beta0 + beta1_p*0 + control_subjects$EPS 

   

  test_subjects <-  tmp[test_IDperm[1:n],] 

   

  test <- beta0 + beta1_p*test_subjects$CONC + test_subjects$EPS 

   

  # BAYESIAN INFERENCE 

  delta_hat_p <- mean(control)-mean(test) 

  sp <- 2*sd(control-test)/sqrt(2) 

   

  z <- -(delta_hat_p*(2*n)/sp^2+delta_hat_a*omega/sa^2)/ 

    sqrt((2*n)/sp^2+omega/sa^2) 
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  ## one sided p-value 

  out$H0[iter] <- pnorm(z,0,1) < 0.05 

   

} 

7.3.7. Bayesian sequential design with a non-hierarchical 
framework 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

beta1 <- -0.0579 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN=NA,  # estimate of delta in the seizure percent reduction scale 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  WCI=NA,    # width of confidence intervals 

                  N=NA)   # sample size per arm (to be determined via CTS) 

 

# G_half --> number of patients per group enrolled at each interim analysis   

G_half <- 10 

 

# PRIORS 

# mu_pcb --> prior mean in the placebo group 

mu_pcb <- 4.4469 

# sd_pcb --> prior sd in the pcb group 

sd_pcb <- 0.751664/sqrt(16.5) 

# mu_tpm --> prior mean in the tpm group 

mu_tpm <- mu_pcb - 0.0627*8 

# sd_tpm --> prior sd in the tpm group 

sd_tpm <- 0.751664/sqrt(16.5) 

 

#### LIKELIHOOD 

# m_pcb --> mean response rate in the placebo group   

m_pcb <- NA 

# V_pcb --> variance of the response in the placebo group 

V_pcb <- NA 

# m_tpm --> mean response rate in the tpm group  

m_tpm <- NA 

# V_tpm --> variance of the response in the tpm group 

V_tpm <- NA 

 

#### POSTERIORS 

# mu_post_pcb --> posterior mean of the treatment effect in placebo group 

mu_post_pcb <- NA 

# sd_post_pcb --> posterior SD of the treatment effect in placebo group 

sd_post_pcb <- NA 

# mu_post_tpm --> posterior mean of the treatment effect in tpm group 

mu_post_tpm <- NA 

# sd_post_tpm --> posterior SD of the treatment effect in tpm group 

sd_post_tpm <- NA 

 

# delta_post_mean --> mean of the posterior distribution of the difference between 

treatments 

delta_post_mean <- NA 

# delta_post_sd --> sd of the posterior distribution of the difference between treatments 
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delta_post_sd <- NA 

 

# p_suc --> probability of a "statistically" successfull treatment 

p_suc <- NA 

# p_fut --> probability of a futile experimental treatment 

p_fut <- NA 

 

# DELTA --> decrease in percentage reduction of seizures of the exp arm vs control 

DELTA <- 10 

# Rc --> percent reduction in the control group 

Rc <- exp(beta0) - 110 

# d_min --> delta in the "log(+110)" scale 

 

d_min <- log((Rc + 110) / (Rc - DELTA + 110)) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M/2) 

 

## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

Cs <- 0.99   

Cf <- 0.5 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    m_pcb <- mean(beta0 + beta1*0 + control_subjects$EPS) 

     

    V_pcb <- var(beta0 + beta1*0 + control_subjects$EPS) 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    m_tpm <- mean(beta0 + beta1*test_subjects$CONC + test_subjects$EPS) 

     

    V_tpm <- var(beta0 + beta1*test_subjects$CONC + test_subjects$EPS) 

     

    mu_post_pcb <- (mu_pcb*V_pcb + n*sd_pcb^2*m_pcb) / (n*sd_pcb^2+V_pcb) 

     

    sd_post_pcb <- sqrt(V_pcb*sd_pcb^2/(n*sd_pcb^2+V_pcb)) 

     

    mu_post_tpm <- (mu_tpm*V_tpm + n*sd_tpm^2*m_tpm) / (n*sd_tpm^2+V_tpm) 

     

    sd_post_tpm <- sqrt(V_tpm*sd_tpm^2/(n*sd_tpm^2+V_tpm)) 

     

    delta_post_mean <- (V_pcb/n / (V_pcb/n + sd_pcb^2) * (mu_pcb - m_pcb) + m_pcb) - 

      (V_tpm/n / (V_tpm/n + sd_tpm^2) * (mu_tpm - m_tpm) + m_tpm) 

     

     

    delta_post_sd <- sqrt(V_pcb/n * sd_pcb^2 / (V_pcb/n + sd_pcb^2) +  

                            V_tpm/n * sd_tpm^2 / (V_tpm/n + sd_tpm^2)) 

     

     

    p_suc <- 1 - pnorm(0,delta_post_mean,delta_post_sd) 

     

    p_fut <- pnorm(d_min,delta_post_mean,delta_post_sd) 

     

    label <- p_suc <= Cs  & p_fut <= Cf 

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (p_fut > Cf) # accept H0 

    out$H1[iter] <- 0 

  else if (p_suc > Cs) # accept H1 

    out$H1[iter] <- 1 

   

  # MEAN = Rc - Rt 
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  out$MEAN[iter] <- (exp(mu_post_pcb) - 110) - (exp(mu_post_tpm) - 110) 

  # MEAN_LOG = Yc-Yt 

  out$MEAN_Y[iter] <- delta_post_mean 

  # SD_LOG on the log 

  out$WCI[iter] <- 2*qnorm(0.975)*delta_post_sd 

  out$N[iter] <- n - G_half 

} 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1 <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    m_pcb <- mean(beta0 + beta1*0 + control_subjects$EPS) 

     

    V_pcb <- var(beta0 + beta1*0 + control_subjects$EPS) 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    m_tpm <- mean(beta0 + beta1*0 + test_subjects$EPS) 

     

    V_tpm <- var(beta0 + beta1*0 + test_subjects$EPS) 

     

    mu_post_pcb <- (mu_pcb*V_pcb + n*sd_pcb^2*m_pcb) / (n*sd_pcb^2+V_pcb) 

     

    sd_post_pcb <- sqrt(V_pcb*sd_pcb^2/(n*sd_pcb^2+V_pcb)) 

     

    mu_post_tpm <- (mu_tpm*V_tpm + n*sd_tpm^2*m_tpm) / (n*sd_tpm^2+V_tpm) 

     

    sd_post_tpm <- sqrt(V_tpm*sd_tpm^2/(n*sd_tpm^2+V_tpm)) 

     

    delta_post_mean <- (V_pcb/n / (V_pcb/n + sd_pcb^2) * (mu_pcb - m_pcb) + m_pcb) - 

      (V_tpm/n / (V_tpm/n + sd_tpm^2) * (mu_tpm - m_tpm) + m_tpm) 

     

     

    delta_post_sd <- sqrt(V_pcb/n * sd_pcb^2 / (V_pcb/n + sd_pcb^2) +  

                            V_tpm/n * sd_tpm^2 / (V_tpm/n + sd_tpm^2)) 

     

     

    p_suc <- 1 - pnorm(0,delta_post_mean,delta_post_sd) 

     

    p_fut <- pnorm(d_min,delta_post_mean,delta_post_sd) 

     

    label <- p_suc <= Cs  & p_fut <= Cf 

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (p_fut > Cf) # accept H0 

    out$H0[iter] <- 0 

  else if (p_suc > Cs) # accept H1 

    out$H0[iter] <- 1 

   

} 
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7.3.8. Bayesian sequential design with a semi-hierarchical 
framework 

############################################ 

######### SIMULATIONS UNDER H1 ############# 

############################################ 

 

rm(list=ls(all=T)) 

 

# setting the seed for results replication 

set.seed(121087) 

 

# PK data reading 

d <- read.csv("PK.csv",sep=",",header=T) 

 

# M --> number of indivduals simulated at step 1 

M <- length(unique(d$ID))    

# N_PK_sim --> number of PK simulations done at step 2 

N_PK_sim <- length(unique(d$PKSIM)) 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# beta1_p <- "TPM effect" in pediatrics 

beta1_p <- -0.0579 

# beta1_a <- "TPM effect" in adults 

beta1_a <- -0.0627 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H1 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 

 

# PDsim --> number of CTS 

PDsim <- 1000 

 

# vectors used to randomise patients in the placebo or TPM arm 

control_flag <- rep(c(T,F),M/2) 

test_flag <- !control_flag 

 

## out --> output dataset  

out <- data.frame(H1=rep(NA,PDsim), # result of the statistical test when simulating under 

H1: 0--> accept h0, 1--> refuse H0  

                  H0=NA,   # # result of the statistical test when simulating under H0 

                  MEAN_Y=NA,  # estimate of delta in the Y scale 

                  WCI=NA,    # width of confidence intervals 

                  N=NA)   # sample size per arm (to be determined via CTS) 

 

# G_half --> number of patients per group enrolled at each interim analysis   

G_half <- 10 

 

## PRIORS 

 

# delta_p_bar --> TPM vs PCB difference in paediatrics given by the PK-PD model 

load("delta_p_bar") 

delta_p_bar <- delta 

 

# delta_hat_a --> ML estimate of delta based on adult trials (-0.0627=beta1 in adults, 8= 

pop Cmin. From Girgis et al) 

delta_hat_a <-  -beta1_a*8 

# sa --> 2*sigma_epsilon  

sa <- 2*sigma_epsilon 

sp <- sa 

# ma --> number of adults on which delta_hat_a has been estimated (from Girgis et al) 

ma <- 663 

# ni -->  difference in improvement of TPM over placebo between children and adults 

ni <- abs(delta_hat_a-delta_p_bar)/sqrt(2) 

# omega --> as defined in the paper 

omega <- sa^2/(sa^2/(ma) + 2*ni^2) 

 

 

# delta_post_mean --> mean of the posterior distribution of the difference between 

treatments 

delta_post_mean <- NA 

# delta_post_sd --> sd of the posterior distribution of the difference between treatments 

delta_post_sd <- NA 

 

# p_suc --> probability of a "statistically" successfull treatment 

p_suc <- NA 

# p_fut --> probability of a futile experimental treatment 

p_fut <- NA 

 

# DELTA --> decrease in percentage reduction of seizures of the exp arm vs control 

DELTA <- 10 

# Rc --> percent reduction in the control group 

Rc <- exp(beta0) - 110 

# d_min --> delta in the "log(+110)" scale 

 

d_min <- log((Rc + 110) / (Rc - DELTA + 110)) 

 

# ID_perm --> vector used to randomly extract covariates from dataset 

ID_perm <- rep(0,M/2) 
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## control and test alternate the IDs 

control_IDperm <- rep(0,M/2) 

test_IDperm <- control_IDperm 

 

# sim_perm --> vector used to randomly extract simulations of ID previously estracted from 

dataset 

sim_perm <- rep(0,N_PK_sim) 

 

# delta_hat_p --> posterior estimate of treatment effect in children 

delta_hat_p <- NA 

# sp obtained from the simulations 

sp <- NA 

 

Cs <- 0.99   

Cf <- 0.5 

 

for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    control <- beta0 + beta1_p*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    test <- beta0 + beta1_p*test_subjects$CONC + test_subjects$EPS 

     

    # BAYESIAN INFERENCE 

    delta_hat_p <- mean(control)-mean(test) 

    sp <- 2*sd(control-test)/sqrt(2) 

     

    delta_post_mean <- (delta_hat_p*(2*n)/sp^2+delta_hat_a*omega/sa^2) / 

((2*n)/sp^2+omega/sa^2) 

     

    delta_post_sd <- ((2*n)/sp^2 + omega/sa^2)^(-0.5) 

     

    p_suc <- 1 - pnorm(0,delta_post_mean,delta_post_sd) 

     

     

    p_fut <- pnorm(d_min,delta_post_mean,delta_post_sd) 

     

    label <- p_suc <= Cs  & p_fut <= Cf 

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

 

  # Decision: 

  if (p_fut > Cf) # accept H0 

    out$H1[iter] <- 0 

  else if (p_suc > Cs) # accept H1 

    out$H1[iter] <- 1 

   

  # MEAN_LOG = Yc-Yt 

  out$MEAN_Y[iter] <- delta_post_mean 

  # SD_LOG on the log 

  out$WCI[iter] <- 2*qnorm(0.975)*delta_post_sd 

  out$N[iter] <- n - G_half 

   

} 

 

############################################ 

######### SIMULATIONS UNDER H0 ############# 

############################################ 

 

## PK-PD parameters from Girgis et al 

# "placebo effect" 

beta0 <- 4.4830 

# "TPM effect" 

# simulations under H0 --> beta1 is set to 0 in the TPM group 

beta1_p <- 0 

# "residual variability" in terms of standard deviation 

sigma_epsilon <- 0.751664  

 

# EPS --> variability that will be considered for PD simulations under H0 

d$EPS <- rnorm(nrow(d),0,sigma_epsilon) 
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for (iter in (1:PDsim)) 

{ 

  ID_perm <- sample((1:M),size=M,replace=F) 

   

  control_IDperm <- ID_perm[control_flag] 

  test_IDperm <- ID_perm[test_flag] 

   

  sim_perm <- sample((1:N_PK_sim),size=N_PK_sim,replace=F) 

   

  # n --> sample size per arm 

  n <- G_half 

   

  # label --> logical variable that takes false if a couclusion is drawn during the 

sequential testing procedure 

  label <- T 

   

  while(label==T) 

  { 

     

    # control_subjects --> subjects randomized to the control group 

    tmp <- subset(d,PKSIM == sim_perm[1]) 

    control_subjects <-  tmp[control_IDperm[1:n],] 

     

    control <- beta0 + beta1_p*0 + control_subjects$EPS 

     

    # test_subjects --> subjects randomized to the treated group 

    test_subjects <-  tmp[test_IDperm[1:n],] 

     

    test <- beta0 + beta1_p*test_subjects$CONC + test_subjects$EPS 

     

    # BAYESIAN INFERENCE 

    delta_hat_p <- mean(control)-mean(test) 

    sp <- 2*sd(control-test)/sqrt(2) 

     

    delta_post_mean <- (delta_hat_p*(2*n)/sp^2+delta_hat_a*omega/sa^2) / 

((2*n)/sp^2+omega/sa^2) 

     

    delta_post_sd <- ((2*n)/sp^2 + omega/sa^2)^(-0.5) 

     

    p_suc <- 1 - pnorm(0,delta_post_mean,delta_post_sd) 

     

     

    # d_min --> delta in the "log(+110)" scale 

    # Rc --> percent reduction in the control group 

    Rc <- exp(mean(control)) - 110 

    d_min <- log((Rc + 110) / (Rc - DELTA + 110)) 

     

    p_fut <- pnorm(d_min,delta_post_mean,delta_post_sd) 

     

    label <- p_suc <= 0.99  & p_fut <= 0.5 

    # the sample size per arm increases by G at every step 

    n <- n + G_half 

  } 

   

  # Decision: 

  if (p_fut > 0.5) # accept H0 

    out$H0[iter] <- 0 

  else if (p_suc > 0.99) # accept H1 

    out$H0[iter] <- 1 

 

 } 

7.4. R function used for δ estimation in sequential 
designs 

seq_inference <- function(alpha,thetaR,theta,V_obs,ci,test,result) 

{ 

  ## INPUT: 

  # alpha --> working significance level set to design the trial (nx1) 

  # thetaR --> reference improvement set to design the trial (nx1) 

  # theta --> indipendent variable 

  # V_obs --> observed value of V at the final interim analysis 

  # ci --> number indicating the confidence interval  

  # test --> string variable indicating the test ("SPRT" or "TT") 

  # result --> 1 means H0 refused (upper boundary crossed),   

  #            0 means H0 accepted (lower boundary crossed) 

  ## OUTPUT: 

  # lower_ci --> (correct) lower confidence limit 

  # delta_est --> (correct) estimate of treatment difference 

  # upper_ci --> (correct) upper confidence limit 

  # p_val --> p-value  

 

Q <- function(alpha,thetaR,theta,V_obs,test) 

  ## INPUT: 

  # alpha --> working significance level set to design the trial (nx1) 

  # thetaR --> reference improvement set to design the trial (nx1) 

  # theta --> indipendent variable 
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  # V_obs --> observed value of V at the final interim analysis 

  # test --> string variable indicating the test ("SPRT" or "TT") 

   

  ## OUTPUT: 

  # p --> Q(0,V;theta) 

{ 

  # size --> length of Q 

  size <- length(theta) 

  p <- rep(0,size) 

   

  # initialising parameters for computation time minimisation 

  f1 <- 0 

  b1 <- 0 

  b2 <- 0 

  f2 <- 0 

   

  if (test=="SPRT") 

  { 

    # re-writing the parameters accdording to fromula 4.8.19 in Whithead 

    psi <- log((1-alpha)/alpha) 

    k <- theta/thetaR 

    c <- V_obs*thetaR^2 

    s <- (0:100) 

     

     

    for(i in (1:size)) 

    { 

      f1 <- ((k[i]-0.5)*c + psi)/sqrt(c) 

       

      b1 <- ((k[i]-0.5)*c + (2*s+1)*psi)/sqrt(c) 

      b2 <- (-(k[i]-0.5)*c + (2*s+1)*psi)/sqrt(c) 

       

      # need to avoid division by zero for c values too low (very early stopping, see 

Whithead) 

       

      if (c>0.25*thetaR^2) 

        f2 <- (-1)^s*exp(-2*s*(s+1)*psi^2/c) * ( (1-pnorm(b1))/dnorm(b1) + (1-

pnorm(b2))/dnorm(b2)) 

      else 

        f2 <- (-1)^s*exp(-2*s*(s+1)*psi^2/c) * ( (1-pnorm(b1))/dnorm(b1)) 

       

       

       

      p[i] <- dnorm(f1)*sum(f2[!is.na(f2)]) 

    } 

  } 

   

  else if(test=="TT") 

  { 

    # re-writing the parameters accdording to fromula 4.9.3 in Whithead 

    k <- theta/thetaR   

    c <- V_obs*thetaR^2 

    csi <- 2*log(1/(2*alpha)) 

    s <- (0:100) 

     

    for (i in (1:size)) 

    { 

      f1 <- ((k[i]-0.75)*c + csi) / sqrt(c) 

       

      b1 <- ((k[i]-0.75)*c + (2*s+1)*csi) / sqrt(c) 

      b2 <- (-(k[i]-0.75)*c + (2*s+1)*csi) / sqrt(c) 

       

      f2 <- (-1)^s*exp(2*s*(s+1)*csi*(0.25 - csi/c)) *  

        ( (1 - pnorm(b1))/dnorm(b1) + (1 - pnorm(b2))/dnorm(b2)) 

       

      p[i] <- dnorm(f1)*sum(f2[!is.na(f2)]) 

    } 

  } 

   

  else 

    print("error, unknown variable test") 

   

  return(p) 

} 

   

  prob <- (1-ci)/2 

   

  if (result==1) 

  { 

    Q_p_val <- Q(alpha,thetaR,thetaR,V_obs,test) 

    Q_ci <- Q(alpha,thetaR,(thetaR-theta),V_obs,test) 

    # eq. 5.8.1 Whitehead 

    ind_lower <-  which(abs(Q_ci-prob)==min(abs(Q_ci-prob))) 

    # eq. 5.8.2 Whitehead 

    ind_upper <-  which(abs(Q_ci-(1-prob))==min(abs(Q_ci-(1-prob)))) 

  } 

  else  

  { 

    Q_p_val <- 1 - Q(alpha,thetaR,0,V_obs,test) 

    Q_ci <- Q(alpha,thetaR,theta,V_obs,test) 

    # eq. 5.8.2 Whitehead 

    ind_upper <-  which(abs(Q_ci-prob)==min(abs(Q_ci-prob))) 

    # eq. 5.8.1 Whitehead 

    ind_lower <-  which(abs(Q_ci-(1-prob))==min(abs(Q_ci-(1-prob)))) 

  } 
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  ind_est <-  which(abs(Q_ci-0.5)==min(abs(Q_ci-0.5))) 

   

  lower_ci <- theta[ind_lower] 

  upper_ci <- theta[ind_upper] 

  delta_est <- theta[ind_est] 

   

  p_val <- Q_p_val 

     

  return(c(lower_ci,delta_est,upper_ci,p_val)) 

} 

 


