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Abstract (Italiano) 

Le attivita’ di ricerca riportate in questa Tesi sono state condotte nei 

laboratori del Dipartimento di Ingegneria Industriale e dell'Informazione 

dell’Universita’ di Pavia e  nel laboratorio del gruppo di farmacologia 

clinica di Janssen R&D. 

La valutazione della farmacocinetica (PK, che e’cio’ che il corpo fa ad un 

farmaco: lo assorbe, lo distribuisce ai differenti distretti tissutali, lo elimina 

attraverso i processi di metabolismo e escrezione renale o biliare) e’ di 

fondamentale importanza nello sviluppo di nuovi farmaci. Diverse 

metodologie possono essere utilizzate allo scopo. Si possono applicare 

analisi farmacocinetiche non-compartimentali (NCA), che stimano i 

parametri farmacocinetici primari (biodisponibilita’ clearance, volume di 

distribuzione) sulla base del calcolo delle aree sotto la curva delle 

concentrazioni plasmatiche-tempo, dei loro momenti e pendenze. Si possono 

usare modelli empirici compartimentali (in genere modelli mammillari in cui 

l’eliminazione del farmaco avviene dal compartimento centrale).  In questo 

caso le curve concentrazioni plasmatiche-tempo sono descritte da modelli 

che assumono che il farmaco diffonda in un piccolo numero di 

compartimenti e che venga eliminato da uno di questi. Tali compartimenti 

non hanno alcuna corrispondenza con tessuti o organi reali . Anche in questo 

caso lo scopo dell’analisi e’ di descrivere il piu’ accuratamente possibile le 

concentrazioni plasmatiche in modo da poter calcolare i parametri 

farmacocinetici primari. I modelli di farmacocinetica fisiologica (PBPK) 

sono quelli che piu’ di tutti forniscono una descrizione anatom icamente e 

fisiologicamente accurata. Essi sono modelli compartimentali, in cui i 

compartimenti rappresentano tessuti od organi reali e che prendono in 

considerazione la loro reale interconnessione attraverso i vasi sanguigni 

arteriosi e venosi, i loro volumi, perfusione, struttura e composizione e le 

basi fisiologiche della distribuzione e dell’eliminazione (clearance) dei 

farmaci da tali compartimenti. Comunque, in tutti gli approcci, inclusi i piu’ 

empirici, i parametri farmacocinetici primari possono essere interpretati alla 

luce di considerazioni fisiologiche, cosi’ che possano fornire approcci per 

predire le farmacocinetiche in differenti sistemi (preclinici e clinici, nelle 

diverse popolazioni di pazienti o volontari sani) o per anticipare le differenze 

farmacocinetiche dovute a fattori intrinseci (eta’, gestazione, insufficienza 

renale od epatica) o estrinseci (somministrazione del farmaco con cibo o con 

altri farmaci). 
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Lo scopo di questa Tesi e’ di mostrare che approcci fisiologiche possono 

essere implementati in tutte le fasi dello sviluppo di un farmaco, dalla fase 

di sviluppo preclinico alla caratterizzazione clinica ed oltre, quando il 

farmaco e’ in uso sul mercato. Inoltre, si vuole sottolineare che ci sono 

aspetti per cui la caratterizzazione fisiologica dei modelli PBPK non e’ 

ancora del tutto matura per avere predizioni sufficientemente accurate. Si 

vuole percio’ mostrare che anche approcci empirici (NCA o modelli 

compartimentali) possono fornire interessanti elementi per identificare le 

limitazioni degli aspetti di disegno sperimentale degli studi farmacocinetici  

o di conoscenza scientifica che limitano lo sviluppo dei modelli PBPK e la 

loro applicazione in campo predittivo.  

Dopo una sezione introduttiva, in cui alcune delle limitazioni dei modelli 

PBPK sono descritte, alcune di queste sono affrontate nei successivi capitoli. 

La insufficiente predittivita’ dei modelli PBPK per la predizione delle 

farmacocinetiche nell’uomo e’ affrontata nel Capitolo 3, in cui si descrive 

l’uso di un approccio di stima Bayesiana dei parametri di un modello PBPK 

basato sui dati ottenuti negli esperimenti di farmacocinetica preclinica. I 

capitoli 4 e 5 mostrano alcune limitazioni dei dati ottenuti negli studi di 

farmacocinetica in pazienti con insufficienza epatica e renale: queste 

valutazioni si basano su un vasto database di dati concernenti farmaci che 

sono sul mercato. Queste limitazioni possono impedire la comprensione 

fisiologica delle modificazioni farmacocinetiche relative a queste indicazioni 

ed il conseguente sviluppo di modelli PBPK predittivi. Negli stessi capitoli 

sono proposte alcune tecniche di analisi multivariata per chiarire alcuni degli 

aspetti ancora incerti della caratterizzazione delle farmacocinetiche in queste 

condizioni, la cui risoluzione potrebbe consentire di affrontare il problema 

usando approcci PBPK. Nel Capitolo 6 sono stati utilizzati concetti 

fisiologici applicati all’analisi compartimentale (non linear mixed-effects 

model) di bedaquilina (un composto per il trattamento della tubercolosi) per 

predire l’effetto della somministrazione contemporanea di altri farmaci che 

possano avere effetti inibitori od induttori del metabolismo. Questa 

valutazione supporta il concetto che l’uso di elementi fisiologici in modelli 

empirici puo’ dare buone predizioni anche in assenza di un vero e proprio 

modello PBPK, che al momento sono molto popolari per predire le 

interazioni tra farmaci.  

Gli esempi riportati in questa Tesi sono funzionali a dimostrare che 

l’integrazione (di informazioni, ma anche di tecniche modellistiche diverse) 

e’ di fondamentale importanza per affrontare le complessita’ 

farmacocinetiche e l’incompleta comprensione dei fenomeni e per superare 

le limitazioni derivanti dalle imperfezioni dei disegni sperimentali.  

. 
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Abstract (English) 

The research activities reported in this Thesis have been conducted in the 

laboratories of the Dipartimento di Ingegneria Industriale e 

dell'Informazione and the Global Clinical Pharmacology group of Janssen 

R&D. 

The assessment of the pharmacokinetics (PK: what the body does to a 

drug: absorption, distribution, metabolism and excretion) is part of the 

development of new drugs. Different methodologies can be used for this 

purpose. There is the so-called “model-independent” non-compartmental 

analysis (NCA), which estimates the primary pharmacokinetic parameters 

(absolute bioavailability, clearance, volume of distribution, etc.) based on 

the area under the plasma concentration-time curve, its first moment and the 

slopes. For the same purpose, empirical compartmental models 

(mammillary, in which, typically, the drug is eliminated from a central 

compartment) can be used: the plasma concentration-time curve is described 

by a model which assumes that drugs are diffusing into a small number of 

compartments and eliminated from one of these compartment. These 

compartments have no correspondence with anatomical tissues or organs. 

Again, the aim of this PK analysis is to provide an accurate description of 

the plasma concentration-time curve to calculate the primary 

pharmacokinetic parameters. The pharmacokinetic description that is mostly 

grounded to anatomical and physiological concepts is represented by the 

physiology-based pharmacokinetic (PBPK) modeling. PBPK models are 

compartmental models, in which compartments represents real tissues or 

organs and that take into consideration the interconnection of tissues and 

organs via the vasculature, the information on volumes and blood perfusions, 

tissues composition and structure, and the physiological basis of the drug 

distribution and clearance in the different tissues. However, in all the 

previously mentioned pharmacokinetic representations, included the most 

empirical ones, the primary pharmacokinetics parameters can be interpreted 

in the light of physiological concepts, so that they can be used for predicting 

the outcome in different systems (preclinical or clinical, different subject 

populations, etc.) or the PK differences due to intrinsic (pediatric, pregnancy, 

hepatic-renal impairment) or extrinsic factors (meal drug-drug interactions). 

The aim of this Thesis is to show that full PBPK models are currently used 

in different phases of drug research and development, from the preclinical to 

the clinical development and post-marketing experience. In addition, for 

those aspects in which the science is not as mature as yet to trust the in silico 

predictions of PBPK models, the physiology-based elements present in the  

empirical approaches (NCA or compartmental models) can provide a useful 
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background for understanding the considerations to establish the limitations 

of the current PBPK models and what are the missing information to have a 

full and trustable representation of the PK complexities.  

After an introductory section, in which the limitations of the full PBPK 

approaches are described, some of these limitations are addressed in the 

subsequent chapters. The unsatisfactory predictive capabilities of PBPK 

models is addressed in Chapter 3, in which a Bayesian estimation approach 

is proposed based on the data emerging from the preclinical PK studies, in a 

whole body PBPK context. Chapter 4 and 5 describe some of the limitation 

of the data obtained in the PK studies aiming to define the PK differences in 

subjects with hepatic and renal impairment, respectively. These limitations 

may prevent the full PK understanding and, in turn, the application of a full 

PBPK model. In the same chapters, some multivariate analyses approaches 

are proposed on the outcome of the simple NCA assessments to shed 

additional light on physiology and study design aspects that require a better 

scientific understanding that currently prevent the reliable use of PBPK 

models. In Chapter 6, physiological concepts on the outcome of the 

compartmental non-linear mixed-effects model analysis of an anti-

tuberculosis drug (bedaquiline) were used to predict the effect of the 

simultaneous administration of comedication known to alter the metabolism 

of drugs. This assessment was undertaken to show the concept that 

physiological elements can be considered in empirical approaches, that may 

provide good predictions even in absence of a full PBPK model (that are 

currently widely used for predicting drug-drug interactions). 

The examples reported in the following chapters of this thesis demonstrate 

how integration (of different information sources and of different 

mathematical and modeling techniques and approaches) is of paramount 

importance to efficiently handle problems, address limitations of the studies 

and increasing the scientific understanding of the phenomena at the basis of 

the PK processes.  
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Chapter 1 

1 Introduction and Thesis Overview 

1.1. Background 

Drug development is a very long, complex, expensive, and risky process. 

From the first identification of the new molecular entity (NME) - by 

chemical synthesis or separation from a natural mixture - to its 

commercialization, this process takes as long as 10 years, divided into 

different phases, including preclinical phase (of unpredictable duration, 

followed by the formal preclinical characterization required to give the 

compound to human for the first time, typically lasting 6-12 months), clinical 

pharmacology phase (phase 1, lasting several months), therapeutic 

exploratory studies (phase 2, lasting from several months to approximately 

2 years) and therapeutic confirmatory studies (phase 3, lasting 1-4 years) 

[http://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm, 

accessed August 1, 2016 ]. In each of these phases, there is a substantial risk 

that the candidate drug is not characterized by acceptable features 

(unsatisfactory therapeutic effect, excessive toxicity, production and 

formulation difficulties, inadequate pharmacokinetics), so that its 

development must be interrupted, which is called attrition. The available 

statistics indicate that attrition is responsible for the interruption of the 

development of approximately 90% of the NMEs entering the first-time in 

human studies [Kola & Landis, 2004]. The total cost for drug development 

– including the capitalization costs – are reported to be in excess of 800 

million dollars [Paul et al, 2012]. 

The aim of drug development in the pharmaceutical industry is in essence 

to characterize the safety and efficacy of a new drug. In particular, it is 

considered of paramount importance to establish its risk-benefit ratio, i.e., 

the balance of the benefits derived from the cure or the suppression of the 

symptoms of a certain disease and the risks that may be due to the safety and 

tolerability issues (i.e., adverse events) that may arise due to the use of drugs, 

which are characterized by high intrinsic biological activities 

[http://www.fda.gov/downloads/ForIndustry/UserFees/PrescriptionDrugUs

erFee/UCM329758.pdf, accessed Aug 1, 2016].  
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The risk-benefit ratio can be more easily and quantitatively handled when 

it can be related to the exposure to the drug. In Fig. 1.1, an example of the 

risk-benefit concept is summarized via the so-called “utility curve” [Khan et 

al, 2009]: in the plot, the x-axis represents the exposure to the drug (e.g., 

plasma concentration achieved at different dose levels or therapeutic 

regimens), the y-axis represents the weighted effect (positive for efficacy 

and negative for safety). The green and the orange curves represent the 

efficacy (green curve) and safety (orange curve) -exposure relationships, 

represented here as bands to account for uncertainty. The algebraic sum of 

the weighted effects is called (combined) utility curve (blue curve) and 

identifies the region (in terms of exposure or dose), in which the benefit-risk 

for this drug is maximal. 

 

 
Figure 1.1. Schematic of a utility curve with uncertainty derived from the 

combined consideration of efficacy and safety [from Khan et al, 2009]. 

Exposure can be described by the dose level of the drug or by drug 

concentrations in the systemic circulation (plasma, serum, etc.) or summary 

metrics of the systemic exposure (maximal concentration, area under the 

plasma concentration-time curve, etc.).  The systemic exposure is dependent 

on how and how quickly the body is able to handle the xenobiotics, and, 

therefore, to the pharmacokinetics (PK) of the drug at large. Establishing 

compelling relationships between PK and pharmacological, clinical efficacy 

and clinical safety effects (all this is generically referred to as 

pharmacodynamics [PD]) is therefore an aspect of paramount importance in 
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the drug development process. These relationships are also called exposure-

effect relationships or pharmacokinetic-pharmacodynamic (PK-PD) 

relationships. 

In the recent past, the business model of drug development was criticized 

as not sustainable on the long term. The large increase of the research costs 

of the pharmaceutical industry was not mirrored by an increase of the number 

of new molecular entity achieving the market (Fig 1.2). 

 

 
Figure 1.2. Left: 10-year trends in biomedical research spending; right: 10-

year trends in major drug and biological product submissions to FDA 

(Innovation or Stagnation: Challenge and Opportunity on the Critical Path to 

New Medical Products, U.S. Department of Health and Human Services, 

FDA, March 2004; 

http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/C

riticalPathOpportunitiesReports/ucm077262.htm#execsummary , accessed 

August 1, 2016). 

Among many other measures proposed for improving the probability of 

success of the drug development process, a smarter – and possibly a more 

sophisticated - use of modeling approach has been advocated 

[http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPat

hInitiative/CriticalPathOpportunitiesReports/UCM113411.pdf, accessed Jan 

6, 2017]. The use of pharmacometrics, defined as the “development and 

application of pharmaco-statistical models of drug efficacy and safety from 

preclinical and clinical data to improve drug development knowledge 

management and decision-making“, was exploited in the drug development 

processes. Also regulatory authorities, such as the US Food and Drug 

Administration (FDA) or the European Medicines Agency (EMEA), 

increased the number of pharmacometrician reviewers to be able to cope with 

the more sophisticated modeling approaches that pharmaceutical industries 

are applying to support the submission of new drugs 

[http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsa

ndTobacco/CDER/ucm167032.htm]. 

PK and PK-PD models, especially when mechanistic elements are 

considered, grounds can provide strength to this approach. Whilst there are 

many approaches for describing the PK of new drugs (non-compartmental 

PK analysis, compartmental PK analysis), physiology-based 

pharmacokinetic models (PBPK) is the PK approach that, most of all, relies 
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on anatomical, morphological and physiological grounds. PBPK models are 

compartmental pharmacokinetic models, in which the biochemical bases of 

the absorption and disposition of compounds are considered at the tissue 

level, taking into due consideration the interconnection of tissues and organs 

via the vasculature, the information on tissues compositions, volumes and 

blood perfusions and the physiological basis of the drug clearance in the 

different tissues (a schematic of a basic PBPK model is shown in Fig.1.3). A 

brief background on PK concepts is reported in the section 1.2. Additional 

details on the structure and the equation of whole body PBPK models are 

reported in Chapter 3.    

 
Figure 1.3. Schematics and typical mass balance equation of a basic PBPK 

model. 

PBPK are part of the system pharmacology models, in which system-

specific and compound-specific features can be identified, potentially 

allowing to translate the PK features in different systems (e.g., to predict the 

PK in human subjects from preclinical data, the PK in elderly or diseased 

subjects from clinical data in young healthy subjects, the effect of a 

comedication based on the PK of the compound given alone). Approximately 

in the last fifteen years, numerous papers have  illustrated the increasing role 

of PBPK in drug research and development.  

 

In this thesis, the application of physiology-based concepts (not 

necessarily aiming to the development of full blown PBPK models) in early 

(e.g., preclinical to clinical interface) or late clinical development (prediction 

of drug-drug interaction and characterization of PK in special population) 

will be described (Fig. 1.4), trying to address some of the gaps that still are 

present. 
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Figure 1.4. Allocation of the physiology-based applications described in this 

thesis in the drug development phases. 

1.2. Brief Background on Pharmacokinetics  

Pharmacokinetics is the study of the processes by which the body handles 

drugs and the rates at which these processes occur. For a more extensive 

description, the reader is recommended to refer to basic manuals on the topic, 

the best examples of which are the book or Rowland and Tozer [Rowland 

and Tozer, 2011] and Gibaldi and Perrier [Gibaldi and Perrier, 1982]. 

Briefly, the body absorbs the drug from the site of absorption (e.g., the gut, 

the muscle or the epidermis for oral, intramuscular and subcute drugs, 

respectively) and transfer it to the systemic circulation (for drugs given 

intravenously, therefore, the absorption is considered immediate and 

instantaneous), by which the drug is distributed to various tissue districts. In 

particular, the drug is delivered to the biophase where it can exert i ts 

therapeutic effect. In addition, the compound is delivered to organs such as 

the liver and the kidney that are responsible of the metabolism (i.e., the 

irreversible elimination of the compound via the formation of other chemical 

entities, the drug metabolites) and the excretion (i.e., the irreversible 

elimination of the unchanged drug via the renal or biliary excretion). All 

these processes are characterized by extent and rates and they can be 

evaluated measuring how the drug concentrations and amounts are changing 

with time in body fluids, such as blood, plasma, tissue samples and excreta. 

These data can be described using metrics of exposure (for instance, the 

maximal concentration in plasma or the area under the plasma 

concentrations-time curve). In this context, the pharmacokinetics is the 

knowledge that allows to translate a dosing regimen into the corresponding 

summary metrics of systemic exposure. Under defined assumptions, the 

pharmacokinetic theories allow to estimate from the drug concentrations-

time curves measured in a suitable reference fluid (for instance, the plasma) 

the primary pharmacokinetic parameters that are able to characterize this 

translation. Examples of these primary parameters are the volume of 
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distribution (V, the proportionality constant that relates the amount of drug 

in the body with the concentrations), the clearance (CL, the proportionality 

constant that relates the rate of elimination to the concentrations) and the 

absolute bioavailability (F, the fraction of the dose that is absorbed in the 

systemic circulation when the drug is given extravascularly).  

The assessment of pharmacokinetics is an essential portion of the 

development of new drugs. Different methodologies can be used for this 

purpose. There is the so-called “model-independent” non-compartmental 

analysis (NCA), which estimates the primary pharmacokinetic parameters 

based on the area under the plasma concentration-time curve, its first 

moment and the slopes. For the same purpose, empirical compartmental 

models (mammillary, in which, typically, the drug is eliminated from a 

central compartment) can be used: the plasma concentration-time curve is 

described by a model which assumes that drugs are diffusing into a small 

number of compartments and eliminated from one of these compartment. 

These compartments have no correspondence with anatomical tissues or 

organs. Again, the aim of this PK analysis is to provide an accurate 

description of the plasma concentration-time curve to calculate the primary 

pharmacokinetic parameters.  

In both the previous approaches, the principal pharmacokinetic 

parameters can be defined based on their definition. For instance, for the 

clearance: 
𝑑𝐴𝑚𝑡

𝑑𝑡
= 𝐶𝐿 ∙ 𝐶, 

where dAmt/dt is the rate of elimination and C is the concentration. The 

expression can be integrated, and, assuming that CL is invariant, 

𝐴𝑚𝑡 = 𝐶𝐿 ∙ 𝐴𝑈𝐶, 

where Amt is the amount eliminated (corresponding to the administered 

dose, in case of intravascular administration) and AUC is the area under the 

curve of the plasma (or any other reference fluid) concentration-time curve. 

The absolute bioavailability of extravascular dosing can be obtained (again 

in case of invariant CL, a condition that is described as linear 

pharmacokinetics) based on the comparison of the extravascular (EV, for 

instance, oral) and intravascular (IV) AUC referred to the same dose level:  

  𝐴𝑚𝑡𝐸𝑉 ∙ 𝐹𝐸𝑉 = 𝐶𝐿 ∙ 𝐴𝑈𝐶𝐸𝑉 

  𝐴𝑚𝑡𝐼𝑉 = 𝐶𝐿 ∙ 𝐴𝑈𝐶𝐼𝑉 

Resolving for CL: 

 𝐹𝐸𝑉 =
𝐴𝑈𝐶𝐸𝑉/𝐷𝑜𝑠𝑒𝐸𝑉

𝐴𝑈𝐶𝐼𝑉/𝐷𝑜𝑠𝑒𝐼𝑉
 

The volume of distribution is a parameter that can be time-dependent; one 

of the relevant volume terms in the pharmacokinetic theory is the volume of 

the terminal phase (Vz), which assumes the presence of a log-linear terminal 

portion of the plasma concentration-time curve, characterized by a terminal 

half-life t1/2,z. Vz is the proportionality constant between the amount of the 

compound present in the body and the concentrations on the terminal phase. 

Based on the clearance concept and the related equations, it can be easily 

demonstrated that: 
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𝑉𝑧 = 𝐶𝐿 ∙
𝑡1/2,𝑧

ln(2)
  

As mentioned above, the pharmacokinetic description that is mostly 

grounded to anatomical and physiological concepts is represented by the 

physiology-based pharmacokinetic (PBPK) modeling. PBPK models are 

compartmental models, in which compartments represents real tissues or 

organs and that take into consideration the interconnection of tissues and 

organs via the vasculature, the information on volumes and blood perfusions, 

tissues composition and structure, and the physiological basis of the drug 

distribution and clearance in the different tissues.  

In the recent years PBPK applications boosted in the scientific literature 

and numerous papers (Jones et al., 2006, Jones et al., 2012a, Jones et al., 

2012b) illustrated how different companies implemented PBPK approaches 

in their programs from the early to the late phases of development, 

contributing to the decrease of the costs of drug development. A typical 

example of this is the drug-drug interaction (DDI) plan for new drugs, 

formerly including dozens of different clinical pharmacology studies 

associating the new drug with all the potentially coadministered medications. 

Now the DDI plan is strongly streamlined, being based on a few studies, by 

which a relevant PBPK can be developed and validated: based on this, the 

extent of the DDI with the other medications can be accurately predicted and 

it is not rare now to find labels of drugs in which the potential effect of 

coadministered drugs are described via PBPK-based simulations (see for 

instance, https://www.janssenmd.com/pdf/imbruvica/PI-Imbruvica.pdf, 

accessed August 1, 2016).  

However, in all the previously mentioned pharmacokinetic 

representations, including the most empirical ones, the primary 

pharmacokinetics parameters can be interpreted in the light of physiological 

concepts, so that they can be used for predicting the outcome in different 

systems (preclinical or clinical, different subject populations, etc.) or the PK 

differences due to intrinsic (pediatric, pregnancy, hepatic-renal impairment) 

or extrinsic factors (meal drug-drug interactions). 

1.3. Thesis overview 

The thesis is organized in six chapters, that are briefly described below. 

1.3.1. Chapter 1 – Introduction and thesis overview 

In this chapter a brief introduction is included on the role of physiology-

based pharmacokinetic modeling in the drug development and on the 

pharmacokinetic theory. The structure of the thesis is also described. 
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1.3.2. Chapter 2 - The successes and failures of PBPK modeling: 
there is room for improvement 

In this chapter, a brief overview of the outstanding advancements 

achieved in the last 20 years by PBPK modeling approaches is given. Whilst, 

in the early years, PBPK applications were confined to environmental 

toxicology and toxicants, now the vast majority of the papers relate to drugs 

and drug development. It is likely that newly developed computational 

approaches (such as the in silico tissue-composition models able to estimate 

tissue to plasma coefficients of partition), the newly gained knowledge-base 

(such as the information available on the escalation the hepatic clearance 

based on in vitro tissue experiment in microsomes and hepatocytes), and the 

recent availability of commercial platforms for PBPK modeling (such as 

SIMCYP and Gastroplus) are responsible of the flourishing of these PBPK 

applications.  

Among the successes of this last period, it is noteworthy the potential for 

a precise prediction of the magnitude of drug-drug interactions (DDI) using 

PBPK, without the need of conducting actual in vivo studies, which in many 

cases is reflected in the labels of the most recent New Drug Applications 

(NDAs) (see for instance the label of ibrutinib, where the effects of the co-

administration of moderate cytochrome P-450 3A inhibitors and inducers on 

the PK of the drug were based on PBPK simulations, 

https://www.janssenmd.com/pdf/imbruvica/PI-Imbruvica.pdf, accessed 

August 1, 2016). Other applications show instead substantial limitations and 

gaps. An example of this is the prediction of the human PK, based on in vitro 

and in vivo data in animals, which is characterized by uncertainties similar 

to those characterizing the older, relatively empirical approaches, such as 

allometric scaling. Other examples of these limitations concern the 

prediction of the PK alterations in subjects with hepatic or liver impairment, 

the precision of which is still unsatisfactory.  

This chapter is based on the editorial: Poggesi I, Snoeys J, Van Peer A. 

The successes and failures of physiological-based pharmacokinetic 

modeling: there is room for improvement, published in Expert Opin Drug 

Metab Toxicol 2014, 10:631-5.  

1.3.3. Chapter 3 - Use of WB-PBPK models and preclinical data 
for predicting the pharmacokinetics in the first-time in human 
studies 

As indicated in Chapter 1, the capability of PBPK approaches to predict 

the PK in humans based on non-clinical experiments is relatively limited and 

it is not improved with respect to more traditional empirical scale-up 

techniques, such as allometric scaling. However, it must be remembered that 

in the preclinical development of a new drug, numerous experiments are 

performed to assess the pharmacokinetics in the preclinically relevant 
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pharmacological and toxicological species, following the administration of 

the new molecular entity (NME). Therefore, it should be possible to update 

and refine the PK predictions in humans as soon as the knowledge-base is 

increased when new preclinical studies are available. In this chapter, the 

basic PBPK approached based on the use of in silico input parameters was 

complemented with the parameter refinement derived by the use of the data 

obtained in the in vivo study in animals, using a Bayesian approach as 

implemented in the SAAM software.  

This chapter is essentially based on the manuscript: Bizzotto R, Nucci G, 

Zamuner S, Sadiq WM, Poggesi  I. Use of WB-PBPK models and preclinical 

data for predicting the pharmacokinetics in the first-time in human studies, 

that is being submitted to the European Journal of Pharmaceutical Sciences. 

1.3.4.  Chapter 4 – Some physiological considerations on the 
predictions of pharmacokinetic alterations in subjects with liver 
disease 

Despite the substantial improvement of the description of the physio-

pathological changes linked to hepatic impairment that are being included in 

the commercially available PBPK platform (e.g., SIMCYP), the predictions 

of the PK in subjects with hepatic impairment are still far from satisfactory. 

In many instances, the effects of hepatic impairment on the PK of drugs is 

predicted to be larger than the observed one, especially for conditions 

characterized by mild and moderate impairment. This may be due to different 

aspects, such as the limitations in the description of the different kind of liver 

disease, the absence of comprehensive liver function test that can describe 

the liver disease, the limitations of the actual experiments related to the 

assessment of the effect of liver impairment on the pharmacokinetics of 

drugs. In this chapter, a database was collected from the available PK data 

in this special population reported in the public domain (drug labels and 

scientific literature). Multivariate analyses approaches were able to predict 

the ratio of the systemic exposure (area under the plasma concentration-time 

curve) in subjects with hepatic impairment relative to that observed in 

healthy subjects. From this assessment, it is apparent that more 

comprehensive study designs may be needed to deepen the scientific 

knowledge of the PK alterations in these conditions. The smart use of 

multivariate analysis can also provide a substantial stimulus for a more 

detailed mechanistic understanding of the absorption and disposition 

changes to be expected in liver disease. 

This chapter is based on the paper: Gonzalez M, Goracci L, Cruciani G, 

Poggesi I. Some considerations on the predictions of pharmacokinetic 

alterations in subjects with liver disease, published in Expert Opin Drug 

Metab Toxicol 2014, 10: 1397-408. 
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1.3.5.  Chapter 5 – Some physiological considerations on the 
predictions of pharmacokinetic alterations in subjects with 
renal disease 

Considerations analogous to those outlined for Chapter 4 can be done for 

the predictions of the PK in subjects with renal impairment. Although this 

special population may be more easily handled considering the main role of 

the amount of drug eliminated by renal excretion and by the residual renal 

function available in the subjects with renal impairment, there are cases (e.g., 

the unexpected effect of renal function impairment on the PK of drugs that 

are not excreted via the kidnelys) that makes the situation complicated. In 

this chapter, a similar database as the one collected for Chapter 4 was 

collected from the available data reported in the public domain and 

multivariate analyses approaches were applied to predict the effect of renal 

impairment on the PK of drugs.   

This chapter is essentially based on the manuscript: Borella E, Poggesi  I. 

Magni P. Predictive assessments of pharmacokinetic alterations in subjects 

with renal disease, that is being submitted to Clinical Pharmacokinetics. Part 

of this material was made available as a poster communication: Borella E, 

Poggesi I, Magni P. Predictive assessments of pharmacokinetic alterations in 

subjects with renal disease. PAGE 24 (2015) Abstr 3442 [www.page-

meeting.org/?abstract=3442]. 

1.3.6.  Chapter 6 – Modeling potential drug-drug interaction 
risks using a PBPK approach 

As already indicated in the Chapter 2, the predictions of DDIs can be 

considered one of the major successes in the application of the PBPK based 

modeling approaches. In this chapter, physiological pharmacokinetic 

elements (the estimation of the clearance of a drug when it is co-administered 

with an inhibitor of cytochrome P-450 3A -  one of the major drug 

metabolizing enzymes) are combined with a population PK approach (non-

linear mixed effect models) to predict the potential level of drug-drug 

interaction. The exercise was motivated by the objective difficulties in 

designing clinical trials able to describe the level of interaction at steady 

state, due to the long terminal half-life (6-9 months) of the victim drug, 

bedaquiline.  

This chapter is essentially based on the poster communication: Rossenu 

S, Del Bene F, Vermeulen A, Poggesi I. Modelling potential drug-drug 

interaction risks with a combined top-down/bottom-up approach. PAGE 24 

(2015) Abstr 3560 [www.page-meeting.org/?abstract=3560]. 
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Chapter 2 

2 The successes and failures of PBPK1 

This section is a focused review of the most recent achievement of the 

PBPK modeling, illustrating the successes of the approach, but also some 

unaddressed limitations. Some of these limitations will be examined in more 

detail in the subsequent chapters of this Thesis.   

2.1. Abstract 

From the beginning of the years 2000s physiologically-based 

pharmacokinetic (PBPK) models in the field of drug research and 

development started increasing. This proliferation of applications was 

prompted by the availability of new data and computational approaches 

required for the parameterization of PBPK models and the availability of 

commercial software platforms. PBPK approaches have been used to predict 

the pharmacokinetics in humans based on non-clinical data, the potential for 

drug-drug interactions, and the expected changes in the pharmacokinetics in 

case of different physiopathological conditions. In this respect, PBPK is also 

assuming a more important role in regulatory submissions. Although PBPK 

methodologies are not perfect yet, their continuous and consistent 

application is providing a more profound understanding of the determinants 

of the drug absorption and disposition of new drugs and candidate drugs. We 

are confident that, with its increased use, PBPK methodologies will 

gradually improve in their predictive capabilities. 

                                                        
1 This chapter is based on the editorial: Poggesi I, Snoeys J, Van Peer A. The successes and 
failures of physiological-based pharmacokinetic modeling: there is room for 
improvement, published in Expert Opin Drug Metab Toxicol 2014, 10:631-5. Please note 
that the conclusion section has been named ‘Expert Opinion’ following the journal 
requirements. 
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2.2. Introduction 

Physiologically-based pharmacokinetic (PBPK) approaches consist of 

compartmental pharmacokinetic models, in which basic biological 

knowledge is considered (for instance, the organ interconnectivity via the 

vasculature, information on tissues and organs – such as compositions, 

volumes and blood flow perfusions – and the understanding of 

physicochemical, physiological and biochemical processes governing 

absorption and disposition of compounds) [Rowland et al, 2011]. At variance 

from empirical compartmental pharmacokinetic models, the compartments 

in PBPK models are describing real anatomical spaces (tissues or organs) 

[Jones at al., 2011]. In addition, instead of allowing the complexity of the 

model to increase based on the data under consideration (e.g., increasing the 

number of compartments in the PK model, an example of the so-called “top-

down” approach), PBPK represents an example of ”bottom-up approach”, 

which integrates from the beginning the known relevant characteristics and 

the complexities of the system (e.g., including  compartments for all tissues 

and organs that are considered biologically relevant). PBPK models share 

the characteristics of the system pharmacology models, in which it is 

possible to dissect system-specific and compound-specific parameters, 

which can exploit the potential for translating and predicting the effect of a 

compound in a different system compared to the one in which the model was 

originally developed (i.e., as in the case for predicting the pharmacokinetics 

in humans from preclinical data, the pharmacokinetics in a special 

population from the pharmacokinetics in healthy subjects, or the effect of a 

comedication based on the characteristics of the compounds given alone) 

[Jones et al., 2011]. From a mathematical standpoint, these models are built 

based on a collection of mass balance equations which describe the 

compound concentration-time profile in all (whole-body PBPK) or some of 

the relevant tissue compartments.  

Approximately up to a decade ago, PBPK models were mostly used for 

environmental toxicants or pollutants, for which there were insurmountable 

ethical constraints to generate data in the human population, so that the only 

approach was to try and predict the outcome of the exposure to toxicants in 

humans based on preclinical assessments [Rowland et al., 2011]. Despite 

numerous groups were active on the development and utilization of PBPK 

models, the application of PBPK to drug development was relatively limited 

(see Rowland et al., 2011 for a comprehensive list of references). If we 

search the public domain, looking for papers including the term “PBPK” 

(Figure 2.1) it is possible to see that the scientific production is bending 

upwards after the years 2002-2005 (a similar trend, based on a different 

search, was reported by Rowland et al., 2011). It is interesting to notice that 

the increase in the number of published papers on this topic was essentially 

boosted by the papers related to PBPK models of drugs, whilst the number 

of papers related to non-drugs appear relatively steady. 
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Figure 2.1. Number of papers mentioning the terms “PBPK”or “PBPK”AND 

“drugs”(google Scholar, accessed November 11, 2013). 

Despite some uncertainties and difficulties, clearance concepts and the 

impact of hepatic extraction on bioavailability was well understood based on 

the seminal papers published in the seventies [Rowland et al., 1973; 

Wilkinson & Shand, 1975]. In the years preceding and around 2000, 

however, the in vitro intrinsic clearance measurements based on liver 

preparations and the use of informative human liver cytochrome P450 (P450) 

metabolic data (developed as part of the candidate drugs screening 

processes) started booming, providing an invaluable input to the 

development of PBPK models. Another improvement of paramount 

importance was the development of tissue composition models that appeared 

in the literature in that period [Pouline & Theil, 2002; Rodgers & Rowland 

2005, Berezhkovskiy, 2004], which allowed to predict the tissue partition 

coefficients of compounds without measuring tissue concentrations. Another 

important cause of the increase in PBPK-related activities can be considered 

the organization, in 2002, of the workshop “Physiologically Based 

Pharmacokinetics (PBPK) in Drug Development and Regulatory Science" 

organized by the Center for Drug Development Science, Georgetown 

University, Washington [Poulin et al., 2011]. All this triggered the 

implementation and development of several platforms that were soon 

commercially available. Whilst, at the beginning, PBPK models were 

developed by users using generic or PK-related platforms (for instance 

ACSL, MATLAB, SAAM, or WINNONLIN), commercial programs, such 

as SIMCYP, Gastroplus, PK-SIM or Chloe-PK, made the PBPK approach 

available to a very large audience of scientists within the pharmaceutical 

industry. Overall, these software companies are currently dedicating such 

amount of resources, producing good science, and providing comprehensive 

tools that (unless very specific company-related issues need to be addressed) 
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it is now less of a need for pharma companies to dedicate scientists to the 

development and implementation of their own structural PBPK models; 

company scientists can reliably use the available commercial tools and focus 

instead their attention on the specific compound or company-related 

questions.  

Overall, we are now dealing with a knowledge base that was essentially 

unthinkable at the beginning of the 2000. 

Is it all a success story? No, it is not. 

In a recent series of papers, the results of a study (inspired by PhRMA) 

on the accuracy of human pharmacokinetic predictions based on non-clinical 

data was described. In this study, anonymized data (in vitro and preclinical 

PK data) of drugs and candidate drugs were analysed with a battery of 

standardized approaches to provide the corresponding PK predictions in 

humans. The predictions were then compared with the actual outcomes of 

the clinical PK studies. The accuracy of PBPK approaches for predicting the 

PK profiles was relatively good when intravenous pharmacokinetics were 

considered, but it was far less satisfactory for compounds given orally (only 

a modest proportion of 23% of predicted plasma concentration-time profiles 

were characterized by medium to high degree of accuracy, based on 

prespecified criteria) [Poulin et al., 2011]. In addition, PBPK did not appear 

to be more accurate than other, more traditional methodologies (e.g., 

allometry) in predicting the PK behavior in humans [Rowland & Benet, 

2011]. This indicates that still there are processes that are hiding their 

determinants and features, preventing to capture them in a mathematical 

description. For instance, considering that absorption models are lacking of 

the required accuracy, the physiological description of solubility and 

dissolution processes and their pharmaceutical formulation-based 

modulation must be still imperfect or, on the other hand, imperfect must be 

the experimental models or the input data used so far to characterize the 

processes. This is an area of intense investigations (in this regards, see, for 

instance, the papers emerging from the Oral Biopharmaceutical Tools 

[OrBiTo] project, for example Kostewicz  et al., 2013). 

Whilst the in vitro-in vivo extrapolation (IVIVE) of CYP-related hepatic 

metabolic clearance has already been matter of intense investigation, only 

recently the IVIVE application to extrahepatic or non-CYP related 

metabolism has been growing (see for instance Houston, 2013). Another area 

that requires improvements and it is subject of intense research is the 

involvement of transporters. Transporters have not often been included in 

PBPK models yet. Also in this case, the experimental models used for their 

characterization may not allow an easy scaling to the in vivo situation. 

Alternatively, additional modeling approaches should be used on the data 

obtained from in vitro experiments before they are actually used as input to 

PBPK models [Zamek-Gliszczynski et al., 2013].  

A number of PBPK approaches have been reported concerning the 

prediction of PK in special populations. Very active are for instance the areas 

concerning the PBPK characterization in the pediatric population [Johnson 

& Rostami-Hodjegan, 2011] and in pregnant women [Vinks, 2013]. PBPK 
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models in subjects with hepatic impairment, with some notable exceptions 

[Johnson et al., 2010], seem instead less popular in the literature, despite the 

regulatory pressure on these themes and similar considerations can be done 

for subjects with renal  impairment (likely due to the potential difficulties in 

establishing the role of endogenous metabolic and/or transporter inhibitors 

present in these conditions) [Sun et al., 2006] or subjects with other 

pathologies as, for instance, cancer (possibly due to the heterogeneity of this 

population) [Cheeti et al., 2013].  

PBPK approaches have the benefit to provide – essentially as a byproduct 

– the concentration of the compounds in different tissue districts and 

biophases (sometime with outstanding precision, see Fig. 2.2). 

Unfortunately, this is not leading to the availability of a large number of 

corresponding pharmacokinetic-pharmacodynamic (PK-PD) models. 

 

 
Figure 2.2. Relationship between observed values of unbound tissue partition 

coefficients in heart and predictions based on the tissue composition model. 

Plot prepared based on the data reported in the paper Rogers & Rowland, 

2005. 

2.3. Expert opinion 

Despite PBPK approaches are well interlaced with the history of the 

development of the pharmacological science, only recently science, models, 

knowledge base of physiological data and computational tools acquired a 

substantial momentum. The numerical difficulties in solving systems of 

differential equations are not limiting anymore the application of PBPK 

approaches. The audience of PBPK modelers has substantially increased 
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with the adoption and use of the available commercial PBPK platforms and 

with the associated trainings and spread of knowledge (even if, in this 

respect, enough is never enough). The PBPK efforts reported in the recent 

scientific literature were almost unthinkable up to 10 years ago; an example 

for all, the flourishing literature addressing drug-drug interactions with 

PBPK exercises is absolutely exceptional. Initial PBPK modelling efforts are 

also starting for large molecules. Regulatory awareness and acceptance 

[Zhao et al., 2011; Huang et al., 2013] is fuelling the applications from the 

companies (if companies are not doing PBPK, agencies will do). Interesting 

attempts are also ongoing to provide a unified vision of the relationships 

between PBPK and standard compartmental PK [Pilari & Huisinga 2010].   

On the other side, there are areas that require - definitely - the generation 

of new experimental data and – possibly - the development of new science. 

Surely we will always be dealing with an imperfect knowledge and with 

some “unknown unknowns”; however, the continuous and consistent 

application of these modelling approaches will improve the performance of 

PBPK models. 

Do not go away, PBPK “is here to stay!” [Rostami-Hodjegan et al., 2012] 
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Chapter 3 

3 PBPK modelling for predicting human 
pharmacokinetics2 

One of the limitations mentioned in the previous chapter is the 

unsatisfactory accuracy of the PBPK approaches, when applied in a blinded 

mode, to predict the PK in humans. However, during the development of a 

research program, numerous information is available and can be considered 

in the development of the PBPK model, which is the best suited approach for 

finding a synthesis of the diverse sources of information. In this Chapter, a 

basic PBPK model is complemented with information obtained in preclinical 

PK studies in rats. Based on this data, some of the parameters of the PBPK 

model can be modulated, using Bayesian estimation and the basic PBPK 

assumptions as priors. The new model can then be used to simulate the PK 

in humans with a substantial improvement of the predictions.   

3.1. Abstract 

The mechanistic structure of physiology-based pharmacokinetics (PBPK) 

models make them ideal tools for predicting systemic exposure in first-in-

man studies, but their predictive performance is sometime disappointing and 

their accuracy is not better than other less mechanistic approaches, such as 

allometry. However, the capability of these models of integrating the 

information gathered during pre-clinical drug development has not been 

fully exploited as yet. In this work, the PK of 15 compounds from psychiatric 

                                                        
2 This chapter is essentially based on the manuscript: Bizzotto R, Nucci 

G, Zamuner S, Sadiq WM, Poggesi  I. Use of WB-PBPK models and 

preclinical data for predicting the pharmacokinetics in the first-time in 

human studies, that is being submitted to the European Journal of 

Pharmaceutical Sciences. 
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programs, in both rats and humans, was predicted with a basic PBPK model. 

The fold errors on the area-under-the-curve (AUC) predictions in man were 

within 2 and 3 in 20% and 33% of the cases. Multivariate analysis was 

applied to the rat outcomes to study the predictive performance of the PBPK 

model and the sensitivity of its outputs to its inputs. For each compound, 

lipophilicity, protein binding, hepatic clearance and tissue binding were 

identified by fitting the rat PK data and using the experimental/standard 

values as priors. The refined parameter values were then used to predict 

again the PK in man. The percentage of fold errors on AUC predictions 

within 2 and 3 increased to 27% and 60%, respectively. In conclusion, this 

work shows that the knowledge obtained from preclinical experiments 

should be integrated in the PBPK model, in order to account for the 

uncertainty in some of the parameters values and for the potential for some 

of the PBPK model assumptions not to hold. This integration would allow to 

increase the accuracy of the PBPK predictions of first-in-man studies. 

3.2. Introduction 

During drug development, a fundamental step in  designing  the first 

clinical trial (first-in-man, FIM) is to anticipate, with good accuracy, the 

expected systemic exposure in healthy volunteers at the adopted dose levels 

[Poulin et al., 2011]. The accurate prediction of systemic exposure in man 

allows an accurate definition of the conditions associated with tolerability 

issues identified via preclinical toxicological models, and consequently a 

more sensible choice of the initial dose to be administered to the volunteers. 

In addition, it permits anticipating the dose range that is expected to provide 

systemic exposures associated with a response in preclinical 

pharmacological models of efficacy. This knowledge allows a more efficient 

and informative dose escalation in FIM, which is of particular importance in 

therapeutic areas, such as oncology, in which the FIM is performed in 

patients: the dose can be efficiently escalated to clinically relevant values, 

and the number of patients exposed to ineffective treatment can thus be 

minimized [Kummar et al., 2006].  

Numerous approaches have been proposed for predicting, in humans, the 

pharmacokinetic parameters (plasma clearance, CL, volume of distribution, 

V, and absolute bioavailability, F) allowing the estimation of the metrics of 

clinical systemic exposure at a certain dose level (maximum and minimal 

drug concentrations, and area-under-the-curve of the concentration time 

course, AUC) [Poggesi, 2004]. In many cases the allometric approach is used 

[Huang and Riviere, 2014], which assumes that the pharmacokinetic (PK) 

parameters are log-linear functions of body size and weight. With this 

approach, CL and V in humans can be estimated based on the regression of 

the values of the parameters obtained in the preclinical species.  Numerous 

modifications and corrections (e.g., for maximum lifespan or for brain 

weight) have been suggested by different authors [Mahmood, 2007; Nagilla 

and Ward, 2004]. Moreover, the use of allometric concepts have been 
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proposed in the context of non-linear mixed effect modelling [Cosson et al., 

1997], allowing to include inter-individual and inter-species variability 

terms. 

In vitro-in vivo extrapolation approaches can be used and variously 

integrated in the prediction of human PK characteristics [Rostami-Hodjegan 

and Tucker, 2007]. The experiments leading to the estimation of the hepatic 

intrinsic clearance values based on measurements from liver preparations 

(microsomes and, even more relevant, hepatocytes) [De Buck et al., 2007; 

Lu et al., 2006; Obach, 1999; Obach et al., 1997] have been substantially 

improved in the last decade, and their capability to allow quantitative 

extrapolation to the whole human liver has been tested by many groups. 

Analogously, many approaches have been suggested for the estimation of the 

volume of distribution terms [Lombardo et al., 2004, 2002; Obach et al., 

1997; Poulin and Theil, 2002a; Rodgers et al., 2005; Rodgers and Rowland, 

2006; Berezhkovskiy, 2004], based on the physico-chemical properties of 

the compounds or on the combination of in silico and in vitro measurements.  

Whole-body physiology-based pharmacokinetic (PBPK) modelling 

appears particularly suited to integrate knowledge of different origins (e.g., 

in silico, in vitro, and in vivo) in an anatomically and physiologically relevant 

framework. At variance from empirical compartmental models, in which 

compartments do not represent actual body districts, the actual volumes, 

compositions, and perfusions of the different organs and tissues are 

accounted for in a PBPK model. The structure of this model includes one or 

more compartments for each pharmacokinetically relevant organ or tissue. 

These compartments are interconnected via the arterial and venous systemic 

circulation, consistent with the known anatomical description of the body. 

Finally, basic physiological and biochemical principles are used to describe 

the details of the absorption and elimination processes [Jones and Rowland-

Yeo, 2013; Rowland et al., 2011]. In recent years, the adoption of PBPK 

models in the applications related to drug development has been 

tremendously increasing [Jones et al., 2015, 2012; Zhao et al., 2012]. These 

models, often comprised in the more general systems-pharmacology 

approaches, allow a neat dissection of the system-related parameters from 

the drug-related parameters. Consequently, they provide a powerful tool for 

translating preclinical data into human PK predictions via the adoption of the 

parameter set for the relevant system.  

Quite unfortunately and despite some reports indicating good predictions 

[Chen et al., 2012], an extensive blinded evaluation performed as part of a 

Phrma CPCDC initiative indicated that the pure PBPK predictive approach 

does not perform better than other methods [Poulin et al., 2011; Rowland 

and Benet, 2011]. Whilst on average, 69% and 90% of the AUC PBPK-

predictions for drugs intravenously administered in humans were within 2 

and 3 times the observations in humans, respectively, these percentages were 

substantially lower for oral drugs, as in this case only 21% and 37% of the 

predictions were within 2 and 3 times the observations, respectively. These 

results highlight the need for improved PBPK methods in the prediction of 

human exposure. 
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In this respect, it is worth noting that some basic parameters required as 

input to the PBPK models can be biased or known with substantial 

uncertainty. This translates into significant margins of error in the prediction 

of human PK. Thus, any further data generated during the development of 

the new molecular entity should be used, when possible, to remove this 

uncertainty and improve the predictive performance. The physiological 

nature of PBPK models makes them the ideal tool for implementing this 

operation, as these models have the possibility to “grow” when new 

knowledge is generated. For example, the parameters of a basic PBPK model 

(e.g., those based on simple in silico descriptors) can be adjourned based on 

the PK outcome in the rodent preclinical species; and the new values can be 

further updated when PK data in non-rodent species are produced.  

This section tests this unexplored possibility on a panel of different 

compounds. Indeed, it first describes the performance of the PBPK approach 

in the prediction of the PK of 23 molecules after intravenous dosing in rats 

and of 15 of them following oral dosing to humans. Thereafter, it analyses 

whether the predictions in humans can be substantially improved via the 

identification of some critical input parameters and their systematic 

refinement based on the outcome of the PBPK predictions in rats. 

3.3. Materials and methods 

3.3.1. PBPK model 

A whole-body PBPK model was implemented with SAAM IITM v1.1.2 

(SAAM Institute, University of Washington, Seattle) and Berkeley 

MadonnaTM v8.0.2 (Department of Molecular and Cellular Biology, 

University of California, Berkeley). The structure of the model consists of 

13 compartments interconnected via the vasculature and representing 

different tissues, i.e., venous blood, arterial blood, adipose tissue, bone, 

brain, gut, heart, liver, lung, kidney, muscle, skin and spleen (Figure 1). The 

liver is considered the only site of drug metabolism and the kidney the only 

site of drug excretion. The venous blood is the site of input for intravascular 

(IV) doses, while the gut is the site of input for oral (PO) administration. 
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Figure 3.1. Schematics of the PBPK model. 

 

Drug distribution in each tissue is hypothesized to be well-stirred. 

Permeability-limited uptake is excluded, as it may occur for compounds with 

low lipophilicity or high molecular weights (not the case here, see below). 

Binding into deep organ compartments is excluded as well. 

The mass balance equation for a generic compartment describes the drug 

partition between the blood and the tissue, T, and the drug elimination by the 

tissue: 
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where CT is the drug concentration in the tissue compartment T, VT is the 

volume of the tissue compartment, QT is the blood flow to the compartment, 

Cinput is the plasma concentration in input to the tissue, PT:P is the tissue-to-

plasma partition coefficient at steady-state (i.e., the tissue-to-plasma 

concentration ratio), PB:P is the blood-to-plasma concentration ratio and CLT 

is the intrinsic clearance of the tissue [Jones and Rowland-Yeo, 2013]. 

Partition coefficients (PT:P) for adipose and non-adipose tissues at steady-

state are estimated using a tissue composition model [Poulin and Theil, 

2002b, 2000; Poulin et al., 2001]. The distribution of a compound into each 

tissue is assumed to depend on its partition into the lipids and water mixture 
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available in that tissue and on its reversible binding to the proteins in plasma 

and in the tissue interstitial space:  
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 Eq. 2 holds for non-adipose tissues and Eq. 3 holds for the adipose one; 

Po:w is the n-octanol:water partition coefficient of the non-ionized species, 

Dvo:w is the vegetable oil:water distribution coefficient (partition coefficient 

of both the unionized and ionized species) at a pH value of 7.4; VwT, VnlT, 

VphT are the fractional weights of water, neutral lipids and phospholipids in 

the tissue T, respectively, and VwP, VnlP, VphP are the corresponding values 

in plasma; fuP, and fuT are the fractions of unbound drug in plasma and in the 

tissue, respectively. The former is obtained experimentally, while the latter 

is calculated as reported in the literature [Poulin and Theil, 2000]: 
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where α is a constant assumed to be equal to 0.5 in all tissues [Poulin and 

Theil, 2000]. This assumption means that the tissue-to-plasma ratio of the 

binding macromolecules concentrations is equal to 0.5 in all tissues, which 

is in accordance with the amount of albumin, the major plasma binding 

protein, being in the order of 60% outside the plasma [Rowland and Tozer, 

1994]. The model for calculating the tissue-to-plasma partition coefficients 

(Eq. 2, 3 and 4) has been successfully validated using in vivo estimates of 

volume of distribution obtained in rats for 123 unrelated drugs [Poulin and 

Theil, 2002b].  

The values for Po:w and Dvo:w in Equations 2 and 3 can be derived from 

experimental measures. If only one of them is available, the other one can be 

computed using the following equations: 

 the empirical relation between partition coefficients relative to 

vegetable oil and n-octanol [Leo et al., 1971; Poulin and Theil, 

2002b]: 

 log(Pvo:w) =1.115 log(Po:w)-1.35; (5) 

 the Henderson-Hasselbalch equations, which require the knowledge 

of the values of the acid constants and tissue pH is assumed to be 7.4: 

 log(Dvo:w)= log(Pvo:w) -log(1+10pH-pKa) for monoprotic acids 

 log(Dvo:w)= log(Pvo:w) -log(1+10pKa-pH) for monoprotic bases 

 log(Dvo:w)= log(Pvo:w) -log(1+10pH-pKa1+pH-pKa2) for diprotic acids 

 log(Dvo:w)= log(Pvo:w) -log(1+10pKa1-pH+pKa2-pH) for diprotic bases 

 log(Dvo:w)= log(Pvo:w) -log(1+10pKaBASE-pKaACID) for zwitterions 

 log(Dvo:w)= log(Pvo:w)    for neutrals. (6)  

  

In cases when both Po:w and Dvo:w are available from experimental 

measures, the experimental values for Dvo:w are not considered and their 

values derived from Equations 5 and 6 are instead used. 
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The ratio between (total) blood and plasma concentrations can be 

experimentally derived from the fraction of binding red blood cells, fbRBC, 

and the species-specific haematocrit, H: 

bRBC

PB
f

H
P






1

1
exp,: . (7) 

Since the PB:P ratio can be experimentally not available for some 

compounds, Eq. 2 can be rearranged to obtain its estimate (the ”computed” 

one) as follows: 
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where the unbound fractions in blood and plasma are assumed to be the same. 

The intrinsic hepatic clearance, CLH, introduced into the mass balance 

equation for the liver compartment, is calculated considering a well-stirred 

model for the liver [Rowland et al., 1973; Wilkinson and Shand, 1975]: 

Happ

Happ

H
QLWCL

QLWCL
CL








, (9) 

CLapp is the apparent in vitro intrinsic clearance obtained in liver 

preparations (microsomes or hepatocytes) of the species under consideration, 

expressed per gram of liver, LW is the liver weight, QH is the hepatic blood 

flow and β is the ratio between fuP and the fraction unbound to microsomes 

or hepatocytes. It is assumed here that β is one, i.e., that the non-specific 

binding to the liver preparations is equivalent to the binding to plasma 

proteins [Poulin and Theil, 2002a]. CLapp is expressed as mL/min per gram 

of liver and has to be scaled to the entire liver value through the average liver 

weight for the considered species. 

The intrinsic renal clearance, CLK, introduced into the mass balance 

equation of the kidney compartment, is obtained from the glomerular 

filtration rate, GFR: 
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 . (10) 

The other contributions to renal clearance, i.e., active tubular secretion 

and reabsorption [Rowland and Tozer, 1994], can be considered negligible 

or reciprocally compensating. 

All the others tissues are assumed to be non-eliminating organs, therefore 

CLT is assumed equal to zero in those cases. 

 In summary, in order to set up the described PBPK model, a few input 

parameters need to be retrieved from different sources, i.e., physicochemical 

analysis of the drug, in vitro experiments, in silico computations and in vivo 

or ex vivo measurements published in literature: 

 the chemical nature of the compound (monoprotic acid, 

monoprotic base, diprotic acid, diprotic base, zwitterion or neutral 

molecule); 

 experimental or in silico physicochemical data: pKa(s), log(Po:w) 

and/or log(Dvo:w); 
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 in vitro data: fuP, CLapp , PB:P (if available); 

 physiological and biochemical data, taken from the literature: 

QT’s, VT’s, VphT’s, VnlT’s, VwT’s, GFR, LW, H. 

Other input parameters are the individual body weight, used to scale blood 

flows and volumes, and the details about the administration of the drug (dose 

and rate). The rate of absorption into the gut after oral administration is 

computed using GenesiPK, a Matlab-based PBPK tool [Germani et al., 2007] 

which uses as inputs the parameters described above and the predicted 

jejunum permeability (solubility in water is not considered as all compounds 

are considered by the tool as highly soluble, i.e., BCS class I or III).  

If expressed in plasma, the systemic clearance, CL, is computed as the 

sum of hepatic and renal clearances, and the volume of distribution at steady-

state, Vss, is computed as follows [Poulin and Theil, 2002a]: 

P

i

PTiTissP VPVV  : . (11) 

Converting clearance and volume of distribution expressed in plasma to those 

expressed in blood is straight forward according to the following equations: 

BBPP CCLCCL  , (12) 

BssBPssP CVCV  . (13) 

3.3.2. PK Predictions in Rats 

3.3.2.1. Model Parameterization 

The PBPK model was parameterized using anatomical and physiological 

parameters provided in the literature for rats [Brown et al., 1997; Poulin and 

Theil, 2002a, 2002b; Ritschel, 1992] and summarized within the 

Supplementary Material (Section S1). Each tissue blood flow was derived as 

a fraction of the total cardiac output (CO), which is also the blood flow 

perfusing the lungs. Its value for rats of different body weights (BW) was 

calculated through an allometric equation: 

    75.0
235.0min kgBWmLCO  . (18) 

Since the tissues considered in this PBPK implementation were not 

exhaustive of the entire composition of the body, and since the total CO had 

to equal the sum of each tissue blood flow to have an exact whole-body mass 

balance, the venous or arterial or lung blood flow was corrected through the 

following equation: 

    75.0
215.0min kgBWLQB  . (19) 

The volumes of rat organs were taken from the literature [Brown et al., 

1997] and are reported in the Supplementary Material (Section S1). 

3.3.2.2. Data 

The model was evaluated using a set of 23 drug candidates synthesized 

by the Psychiatric Centre of Excellence in Drug Discovery in 

GlaxoSmithKline. The characteristics of the different compounds are 

provided in Table 3.1. For 15 of these molecules (set A), PK was evaluated 
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also in humans and a systematic approach for refining this prediction is 

proposed and evaluated in this Chapter (see below). For the sake of 

comparison to the refined predictions, Table 3.1 provides summary statistics 

on set A and on the whole set of 23 compounds (set B) separately. Being part 

of psychiatric programs, all these molecules are designed to cross the blood-

brain barrier. Consequently, none of them is an acid, only one of them is 

neutral, one is a zwitterion (within set B), the remaining being bases; all of 

them are small molecules with moderate to very strong lipophilic properties, 

characterized, with a couple of exceptions, by an extensive plasma protein 

binding. In all cases the blood-to-plasma partition coefficients were 

experimentally available, but simulations were performed also using 

PB:P,comp, in order to evaluate the model performance in case of missing 

PB:P,exp. 

 The compounds were administered IV, as a bolus or short infusion. 

Each molecule was administrated to multiple rats: N = 3 in all cases, apart 

from two compounds for which N = 6. For each rat, blood or plasma samples 

were submitted to non-compartmental analysis to derive in vivo estimates of 

systemic clearance, CL, and volume of distribution at steady-state, Vss. 

Median values were then computed for each compound. 
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Table 3.1. Characteristics of the compounds used in the analysis 
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microsomes 

(mL/min/g 
liver) 

Human CLint 
hepatocytes 
(mL/min/g 

liver) 

Used value 
for human 

CLint 
(mL/min/g 

liver) 

GSK1 416 3.48 db 5.9; 6.9 y low 3.624 0.71 1.12 0.041 0.8 0.47 0.8 0.74 1.20 0.041 1.2 NA 1.2 

GSK2 433 4.63 b 9.3 NA high 14.09 2 1.18 0.019 [<0.5-0.9] NA 0.7 2.1 1.23 0.028 1 NA 1.0 

GSK3 489 4.87 b 8.63 y high 19 1.6 1.18 0.02 0.9 NA 0.9 0.8 1.23 0.006 1 NA 1.0 

GSK4 407 3.8 b 5.41 n low 4.079 0.8 1.15 0.031 0.9 NA 0.9 0.71 1.22 0.061 [<0.5,<0.5, 0.6] NA 0.4 

GSK5 469 2.93 db 3.61; 6.04 y low 1.649 1.2 0.87 0.029 [<0.5-0.6] NA 0.25 1 1.15 0.013 0.8 NA 0.8 

GSK6 632 4.41 b 7.86 NA high 4.84 0.65 1.17 0.012 0.6 NA 0.6 0.62 1.23 0.028 1.3 NA 1.3 

GSK7 407 3.2 b 7.9 n high 7.22 0.82 1.09 0.056 [<0.5-0.5] NA 0.5 0.78 1.18 0.085 0.6 NA 0.6 

GSK8 334 2.91 n - n low 6.446 0.7 0.97 0.133 0.7 NA 0.7 0.8 1.14 0.092 [<0.5-1] NA 0.5 

GSK9 351 2.53 b 7.6 n high high 0.6 0.84 0.06 1 NA 1 0.6 1.06 0.032 [<0.5-0.6] NA 0.5 

GSK10 607 7.1 b 9.2 y-n high high 0.8 1.18 0.028 [<0.5-0.6] NA 0.5 0.9 1.23 0.06 2.2 NA 2.2 

GSK11 617 4.56 b 7.13 n high high 0.74 1.17 0.012 2.4 11 11 0.61 1.23 0.005 0.9 0.5 0.5 

GSK12 665 3.9 b 5.89 NA high 23 0.81 1.16 0.01 0.9 5.55 0.9 NA 1.22 0.0013 [<0.5-<0.5] NA 0.3 

GSK13 404 3.9 b 6.6 n low 5.789 1.17 1.16 0.01 1.9 [0.05-0.96] 1.9 0.94 1.23 0.004 0.6 NA 0.6 

GSK14 478 5.05 b 1.39 y-n low 6.27 0.5 1.18 0.01 8.7 0.22 8.7 0.49 1.23 0.003 15.1 0.5 0.5 

GSK15 508 5.03 b 8.69 n NA 1 2.1 1.18 <0.01‡ 1.1 NA 1.1 1.3 1.23 <0.01‡ 0.9 NA 0.9 

average 481 4.2 - - - - - 1.0 1.1 0.03 - - 2.0 0.9 1.2 - - - 0.8 

min 334 2.5 - 1.39 - low 1 0.5 0.8 0.01 - - 0.3 0.49 1.06 0.001 - - 0.3 

Max 665 7.1 - 9.2 - high 14.09 2.1 1.2 0.133 - - 11 2.1 1.23 0.092 - - 2.2 

* Experimental value if available, otherwise computed based on Equations 5 and 6 
† db: diprotic base; b: monoprotic base; n: neutral; ‡ Value used for predictions: 0.005 
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3.3.3. PK Predictions in humans 

3.3.3.1. Model Parameterization 
The model was also parameterized using anatomical and physiological 

parameters provided in the literature for humans [Brown et al., 1997; Poulin 

and Theil, 2002a; Ritschel, 1992] and summarized within the Supplementary 

Material (Section S1). A correction for the CO in humans of different ages 

was applied. Similarly to what done for rats, the venous or arterial or lung 

blood flow was corrected through the following equation: 

  min)/(899.0min LCOLQB   

The volumes of human organs were calculated as for rats. 

The computed values of the partition coefficients between blood and 

plasma were used, as it was found within this work that they improve the 

prediction of PK in rats (see Section 3.4.1). 

3.3.3.2. Data 

Fifteen of the molecules used for PK prediction in rats (set A) were 

administered to humans as well, as part of different FIM studies performed 

in GlaxoSmithKline. The compounds were administered orally to multiple 

individuals (N between 8 and 19). For each subject, plasma samples were 

submitted to non-compartmental analysis to derive, from the plasma 

concentration time courses, estimates of systemic exposure [maximum 

concentration (Cmax) and AUC calculated using the trapezoidal rule and 

extrapolated to infinity via the terminal half-life (t1/2)] and the 

pharmacokinetic parameters [oral apparent plasma clearance (CLP,PO = 

Dose/AUC) and oral apparent volume of distribution at steady state (V ss,P,PO 

= CL∙t1/2/ln(2), assuming rapid absorption]. Median values of the parameters 

were then computed for each compound. 

3.3.4. Accuracy of Predictions 

The accuracy of the PBPK-predicted parameters (CL and Vss for rats or 

Cmax and AUC for humans) was expressed in terms of fold-error, fe [Wajima 

et al., 2002): 
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where POBS,i is the observed parameter calculated for the i th compound and 

Ppred,i is the corresponding prediction. 

Correlations between observations and predictions were computed as 

Spearman rank correlation coefficients. Any systematic bias was evaluated 

with the 2-sided Wilcoxon Signed-Rank test. Correlations and bias were 

considered significantly different from zero when p ≤ 0.05. 
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3.3.5. Alternative equations and factors influencing model 
predictivity 

The physicochemical and in vitro characteristics of the 23 compounds 

given IV to rats  were analysed by principal components analysis 

[Gabrielsson et al., 2002; Wold et al., 1987] (PCA), in order to identify 

whether any specific cluster of values can be related to the goodness of the 

predictive performance of the implemented whole-body PBPK model. 

PCA was performed only on the basic molecules of the dataset, as only 

one neutral compound and one zwitterionic compound were included in the 

whole set of considered molecules. All the compound-related input 

parameters (i.e., log(Po:w), pKa, fuP, CLint) as well as other structural 

descriptors, such as the molecular weight (MW) and the solubility in water 

(Sw) were considered in the analysis. Before performing PCA, the 6 variables 

in the data matrix were scaled to unit variance. PCA was performed using R 

v3.2.2 (R Core Team, 2016), via the princomp function. 

3.3.6. Sensitivity analysis 

The whole-body PBPK model was investigated through sensitivity 

analysis in order to verify the relevance of the input parameters in 

determining the predictions in the rat (set B) of the major PK parameters. 

The built-in sensitivity analysis tool provided by Berkeley MadonnaTM 

v8.0.2 was used. This tool determines the sensitivity of an output yi to an 

input parameters pj as follows: 

1. the model runs with all parameters at their specified values, 

producing the output yi1; 

2. the parameters pj is modified by adding an amount Δj equal to 

0.001*pj, and the model runs again producing the output yi2; 

3. the sensitivity si,j is computed using: 

j

ii
ji

yy
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,
. (19) 

The investigated outputs were plasma CLPO and Vss,PO (both expressed per 

kg of body weight). The investigated parameters were the drug-specific 

physicochemical and in vitro input data, i.e., log(Po:w), pKa, fuP, and CLapp. 

The parameter α was also included in the analysis as it represents a numeric 

model assumption. As for PCA, sensitivity analysis was performed on the 

basic molecules of the dataset. For the sake of clarity of the following 

section, it is anticipated here that CLPO was found to be mostly sensitive to 

CLapp (especially with low values of CLapp) and to fuP, and that Vss was found 

to be mostly sensitive to fuP, to α, and to log(Po:w). 

3.3.7. Improvements of Predictions in humans 

This section describes the innovative part of this work. It depicts a method 

for improving the prediction of human PK, based on the knowledge produced 

in the pre-clinical phase of drug development. Once the real PK data are 

obtained from rats, the PK profiles simulated with the PBPK model 
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introduced above are fitted to those data, by allowing some parameters in the 

model equations to change their values. The updated values are then used to 

predict the PK profiles in man with greater confidence. 

The parameters whose values were allowed to be modified were the ones 

that sensitivity analysis proved to influence the model predictions to the 

biggest extent: fuP, α, log(Po:w) and CLapp. Besides the indications gathered 

through sensitivity analysis, a conceptual rationale does exist for allowing 

these parameters to change. The values of fuP and log(Po:w) are obtained in 

vitro (log(Po:w) may actually be computed in silico from the experimentally 

available log(Dvo:w)), therefore they are associated with some experimental 

uncertainty. The value for α is 0.5 by assumption. The value for CLapp is 

again known with experimental uncertainty, and it is multiplied by the 

constant β, which is considered equal to one by assumption. The fact that 

CLapp and β are multiplied by each other implies that, when fitting the data, 

allowing CLapp or β to change is equivalent: this analysis used the latter as 

modifiable parameter, as this can be viewed as a multiplicative factor of 

CLapp and is thus more easily interpretable. In the fitting operation, the 

experimental (or in silico) values for fuP and log(Po:w) and the default values 

for α and β were used as priors, in order not to lose the a priori knowledge 

on these parameters. The standard deviation expressing the priors strength 

was fixed to 0.25 for α, log(Po:w) and β, and to 10% of the prior value for fuP. 

PB:P,comp was used for the blood-to-plasma-ratio. The fit was performed with 

SAAM IITM v1.1.2. 

The modulated values of the parameters were used to produce new PK 

profiles in man, and the predictive performance was evaluated de novo in 

order to assess whether the new values improve the accuracy of the PK 

predictions. Since experimental values for fuP were available for both rats 

and humans, the ratio between the modulated value obtained through fitting 

and the prior value in the rat was used as multiplying factor of the 

experimental value in man to obtain the new PK prediction. 

3.4. Results 

3.4.1. PK Predictions in Rats 

The observed and predicted values of CL and Vss after intravenous dosing 

in rats are reported in Table 3.2 for each compound, together with the 

correspondent fold-errors. The predictive performance of the model is 

similar considering set A alone (those molecules for which oral PK was 

available in humans) or all of the drug candidates. The focus here is on set 

A. The performance is slightly better using PB:P,comp instead of PB:P,exp, with 

fe being ≤ 2 in 80% of the cases and ≤ 3 in 93% of the cases for V ss, using 

PB:P,comp. The percentages are similar for CL (80% and 87%, respectively, 

using both PB:P,comp and PB:P,exp). The correlation between observed and 

predicted values of Vss is non-significant using PB:P,exp and is 0.509 (p = 

0.0066) using PB:P,comp. With respect to CL, the correlation is 0.602 (p = 
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0.0015) using PB:P,exp and 0.689 (p = 0.0002) using PB:P,comp. No significant 

bias is detected between observations and predictions of both V ss and CL, 

using both PB:P,comp and PB:P,exp. These outcomes made us choose PB:P,comp as 

the parameter to be used for the following analyses. 
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Table 3.2. Predicted and observed PK parameters in rats. 

Compound 
CL (mL/min/kg) Vss (L/kg) 

observed predictedexp predictedcomp feexp fecomp observed predictedexp predictedcomp feexp fecomp 

GSK1 39 24.2 24.2 1.6 1.6 2.0 0.9 0.7 2.2 3.0 

GSK2 4 17.9 17.9 4.5 4.5 1.6 7.0 4.7 4.4 3.0 

GSK3 12 21.1 21.1 1.8 1.8 2.7 6.2 4.0 2.3 1.5 

GSK4 32 19.5 19.5 1.6 1.6 8.0 2.3 3.9 3.4 2.0 

GSK5 36 23.1 23.1 1.6 1.6 6.1 3.3 4.4 1.9 1.4 

GSK6 27 18.2 26.1 1.5 1.0 9.4 4.9 4.9 1.9 1.9 

GSK7 10 9.2 9.2 1.1 1.1 2.9 2.6 3.0 1.1 1.0 

GSK8 18 17.6 17.6 1.0 1.0 4.3 7.2 4.0 1.7 1.1 

GSK9 23 15.6 15.6 1.5 1.5 1.9 4.5 3.4 2.4 1.8 

GSK10 5.4 20.1 20.0 3.7 3.7 2.4 5.3 3.6 2.2 1.5 

GSK11 37 36.3 60.0 1.0 1.6 3.2 4.8 4.9 1.5 1.5 

GSK12 29 18.7 26.8 1.5 1.1 3.7 4.5 4.5 1.2 1.2 

GSK13 19 39.1 39.0 2.1 2.1 2.4 4.6 4.6 1.9 1.9 

GSK14 24 48.3 48.3 2.0 2.0 1.1 9.6 4.1 8.8 3.8 

GSK15 15 25.8 25.8 1.7 1.7 7.0 2.2 3.9 3.1 1.8 

average 22 23.6 26.3 1.9 1.9 3.9 4.7 3.9 2.7 1.9 

min 4 9.2 9.2 1.0 1.0 1.1 0.9 0.7 1.1 1.0 

max 39 48.3 60.0 4.5 4.5 9.4 9.6 4.9 8.8 3.8 

fe ≤ 2 (%) - - - 80 80 - - - 47 80 

fe ≤ 3 (%) - - - 87 87 - - - 73 93 

* Predicted values and fe are computed using the experimental and computed values of blood-to-plasma partition coefficient (subscript “exp” and “comp”, respectively ).  
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Figure 3.2, providing a visual representation of the correspondence 

between observed and predicted PK parameters, clarifies that systemic 

clearance is predicted with higher precision than steady-state volume of 

distribution (R2 = 0.18 and 0.08, respectively).  

 

 

 

Figure 3.2. Correlation between observed and predicted values of systemic 

clearance (CL) and of steady-state volume of distribution (Vss) for the 

implemented PBPK model. The black line is the identity line, the area 

between the two grey solid lines verifies the condition fold-error < 2 and the 

area between the two grey dashed lines verifies the condition fold-error < 3. 

 

Both the compounds for which fe on CL is greater than 3 (GSK2 and 

GSK10) are imprecisely characterized in terms of hepatic intrinsic clearance, 

as its value is close to the lower limit of quantification: the range is <0.5 - 
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0.9 and <0.5 - 0.6 mL/min/g liver, respectively. The 90% prediction interval 

on the Vss predictions goes from 2.3 to 4.9 L/kg while the correspondent 

observed range is considerably wider (1.5 to 8.4 L/kg). Nevertheless, as 

anticipated in the previous paragraph, the number of unacceptable 

predictions for Vss (fe > 3) is low (7%, i.e., one compound) and under-

predictions and over-predictions are balanced. The compound with fe > 3, 

GSK14, is characterized by high lipophilicity. 

3.4.2. PK Predictions in Humans 

The observed and predicted values of Cmax and AUC in man are reported 

in Table 3.3 for each compound, together with the correspondent fold-errors. 

The model predictive performance is poor (fe ≤ 3 in 67% and 33% of the 

cases, respectively). However, the correlation between observations and 

predictions is significantly different from zero for all parameters (0.889 for 

Cmax, p < 0.0001, R2 = 0.81; 0.918 for AUC, p < 0.0001, R2 = 0.62). AUC is 

almost consistently underpredicted by the PBPK model, as shown by Figure 

3.3, bottom left panel. 

The fold error is greater than 10 in one case for Cmax and 2 cases for AUC 

(GSK8 and GSK14). It has to be noted that for GSK8 the quantification of 

hepatic intrinsic clearance is imprecise (between <0.5 and 1 mL/min/g liver), 

and for GSK8 the difference between intrinsic clearance as derived from 

microsomes and from hepatocytes is large (15.1 vs 0.46 mL/min per gram of 

liver, respectively). 

Table 3.3 Observed, PBPK predicted and revised values for humans. 

Compou

nd 

Cmax (ng/mL) AUC (ng*h/mL) 

obse

rved 
predi

cted 
revis

ed 
fe on 

predict

ed 

fe on 

revis

ed 
Observ

ed 
predict

ed 
revis

ed 
fe on 

predict

ed 

fe on 

revis

ed 
GSK1 2.03 3 6 1.5 3.1 38.3 7 16 5.4 2.3 
GSK2 26.6 318 99 11.8 3.6 569 717 194 1.3 2.9 
GSK3 46.3 96 40 2.1 1.2 795 214 79 3.7 10.1 
GSK4 274 151 93 1.8 2.9 3302 549 430 6.0 7.7 
GSK5 3.47 16 12 5.3 4.0 82.5 40 30 2.1 2.7 
GSK6 81 27 24 3.0 3.4 429 56 50 7.7 8.5 
GSK7 397 456 387 1.1 1.0 4848 1274 560 3.8 8.7 
GSK8 5 1 3 5.0 2.0 166 3 21 55.3 7.8 
GSK9 1273 1170 872 1.1 1.5 13752 2994 1337 4.6 10.3 

GSK10 26.3 45 212 1.7 8.2 182.2 84 417 2.2 2.3 
GSK11 211 190 355 1.1 1.7 1183 883 2034 1.3 1.7 
GSK12 404 446 536 1.1 1.3 2443 2092 1922 1.2 1.3 
GSK13 520 452 1041 1.2 2.0 9205 1223 4463 7.5 2.1 
GSK14 522 103 413 5.1 1.3 3850 324 3170 11.9 1.2 
GSK15 8.14 57 57 7.1 7.1 433 130 285 3.3 1.5 

Average 253 235 277 3.3 2.9 2752 706 1000 7.8 4.7 
Min 2 1 3 1.1 1.0 38 3 16 1.2 1.2 
Max 1273 1170 1041 11.8 8.2 13752 2994 4463 55.3 10.3 

fe ≤ 2 

(%) - - - 53 47 - - - 20 27 

fe ≤ 3 

(%) - - - 67 60 - - - 33 60 
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Figure 3.3. Correlation between observed and predicted values (left panels) 

or revised values (right panels) of maximum concentration (Cmax) and area-

under-the-curve (AUC) for the implemented PBPK model. The black line is 

the identity line, the area between the two grey solid lines verifies the 

condition fold-error < 2 and the area between the two grey dashed lines 

verifies the condition fold-error < 3. 

3.4.3. Improvements of PK Predictions in Humans 

3.4.3.1. Principal Component Analysis 

Two score plots are provided in order to analyse the goodness of the 

prediction of CL and Vss separately (Figure 3.4, left and right, respectively). 

The compounds are coded, based on the fold error between the predicted and 

observed parameter (CL or Vss), as “over-predicted” (fe > 2 and prediction 

> observation), “correctly predicted” (fe < 2) and “under-predicted” (fe > 2 

and prediction < observation). Such thresholds are chosen because a 2-fold 

error in the prediction of CL or Vss is considered the upper bound in the 

identification of a good predictions, and because this threshold is suitable to 

identify a limited but sufficient number of relatively poor predictions useful 

to recognize possible clusters in the score plots (4 in both the CL and V ss 

score plots). The values for the two principal components, i.e., the 

coordinates of the points in the score plots, are provided in the 
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Supplementary Material (Section S2). The loading plot is shown in Figure 

3.4, centre panel. 

 

 
Figure 3.4. Loading and score plot from the principal component analysis 

for CL and Vss.  

The first two principal components explain 65% of the total variance. The 

four compounds for which CL is over-predicted stay in the second and third 

quadrants of the score plot. The loading plot shows that this placement 

corresponds to high log(Po:w)and CLapp, and to low fuP. These results are in 

agreement with those reported by Germani et al. [Germani et al., 2007), 

especially for what concerns lipophilicity and protein binding. Therefore, 

when the CL of a new compound is predicted with the implemented PBPK 

model, a potential over-prediction can be expected if the drug is highly 

lipophilic and highly bound to proteins. With respect to Vss, since no cluster 

can be recognized in the score plot, it can be inferred that according to our 

dataset there are no drug properties, among the considered ones, which may 

anticipate a bias in Vss prediction. 

3.4.3.2. Sensitivity Analysis 

Table 3.4 shows the values of the sensitivity coefficients si,j (Eq. 19) for 

each input parameter considered in the analysis and for all compounds. The 

reader needs to consider that, for each input parameter, the ratio between its 

relative change (0.001), used to perform sensitivity analysis, and the input 

parameter range calculated from the considered compounds set and divided 

by the average parameter value, has the same order of size. Therefore, the 

values provided by Table 3.4 can be considered comparable when 

contrasting the effects of the different parameters on CL, or the effects of the 

different parameters on Vss. 

The average values show that systemic clearance is mostly influenced by 

CLapp, and to a lesser extent by fuP. Principal components analysis performed 

on the values in Table 3.4 shows that the effect of CLapp is stronger when 

CLapp is low (see Figure S2.1 in the Supplementary Material): indeed, from 
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Eq. 9, increasing values for hepatic intrinsic clearance determine the gradual 

saturation of hepatic clearance (which reaches the level of the liver blood 

flow). 

Steady-state volume of distribution is sensitive to fuP, α, log(Po:w) and pka, 

from the highest to the lowest impact. In particular, principal components 

analysis (see Figure S2.1 in the Supplementary Material) reveals that, in the 

considered set of drug candidates: when log(Po:w) is low or fuP is high, 

variations in log(Po:w) are not relevant; when log(Po:w) is high or fuP is low, 

variations in log(Po:w) are less relevant; decreasing values of log(Po:w) or 

increasing values of fuP increase the effect of variations in α; the small effect 

of pKa variations seems to appear at higher values of pKa itself. 

Table 3.4 Sensitivity coefficients (s i,j) for all compounds. 

 

Compou

nd 

CL (mL/min/kg) Vss (L/kg) 

log(Po:w) pKa fuP 

CLint 

(mL/min

/g liver) 

α log(Po:w) pKa fuP 

CLint 

(mL/m

in/g 

liver) 

α 

GSK1 -0.0034 0 0.9 16 0 1.539 -0.003 15.0 0 6.4 

GSK2 0.0000 0 0.8 18 0 0.230 -0.140 7.4 0 7.3 

GSK3 -0.0004 0 1.0 15 0 0.415 -0.319 19.8 0 7.3 

GSK4 -0.0015 0 0.9 14 0 0.997 -0.005 21.0 0 6.9 

GSK5 0.0000 0 1.0 30 0 0.000 0.000 6.8 0 5.1 

GSK6 -0.0012 0 1.0 20 0 1.425 -0.037 4.9 0 5.9 

GSK7 -0.0076 0 0.9 22 0 1.573 -0.193 5.2 0 5.8 

GSK8 -0.0315 0 1.2 18 0 3.075 0.000 6.8 0 4.6 

GSK9 -0.0131 0 1.1 13 0 2.167 -0.060 2.7 0 3.6 

GSK10 0.0000 0 1.0 23 0 0.020 -0.018 32.9 0 7.3 

GSK11 -0.0007 0 1.0 0 0 0.023 -0.005 32.9 0 7.3 

GSK12 -0.0005 0 1.0 15 0 0.521 -0.005 22.6 0 7.1 

GSK13 0.0000 0 0.8 7 0 0.377 -0.019 25.1 0 7.2 

GSK14 0.0000 0 1.2 1 0 0.047 0.000 32.4 0 7.4 

GSK15 -0.0004 0 0.8 12 0 0.118 -0.077 21.8 0 7.4 

GSK16 -0.0740 0 1.3 7 0 1.688 0.000 0.9 0 0.9 

GSK17 0.0000 0 1.0 15 0 0.046 -0.007 32.4 0 7.4 

GSK18 0.0000 0 0.7 30 0 0.023 0.000 32.7 0 7.4 

GSK19 -0.0209 0 1.2 31 0 2.666 0.000 6.7 0 4.8 

GSK20 -0.0003 0 0.8 30 0 0.635 -0.002 19.0 0 6.9 

GSK21 0.0000 0 0.0 3 0 0.005 0.000 33.1 0 7.5 

GSK22 0.0000 0 0.9 2 0 0.085 -0.009 31.3 0 7.4 

GSK23 0.0000 0 1.1 15 0 0.032 -0.004 32.5 0 7.4 

Average -0.0068 0 0.9 16 0 0.770 -0.039 19.4 0 6.4 

Min -0.0740 0 0.0 0 0 0.000 -0.319 0.9 0 0.9 

Max 0.0000 0 1.3 31 0 3.075 0.000 33.1 0 7.5 

3.4.3.3. Improvement of the PK predictions in humans 

The results of the modulation of the parameters fuP, log(Po:w), α and β 

achieved by fitting the PK data (set A) in rats are presented in Table 3.5. The 

median ratio between modulated and prior values of log(Po:w) is significantly 

less than one (p = 0.0039). The median ratios for the other three parameters 

are not significantly different from one (p > 0.1). 

 



PBPK modelling for predicting human pharmacokinetics 

 

 41 

Table 3.5 Modulated values of the parameters modified by fitting of the PK 

data in rats. 

 Modulated values Ratio between modulated and prior values 

Compound Rat fuP log(Po:w) α* β† Rat fuP log(Po:w) α Β 

GSK1 0.038 2.83 0.50 0.50 0.94 0.81 1.00 0.50 

GSK2 0.019 4.49 0.77 3.78 0.99 0.97 1.54 3.78 

GSK3 0.021 5.15 0.71 2.77 1.06 1.06 1.43 2.77 

GSK4 0.028 3.18 1.50 1.47 0.90 0.84 2.99 1.47 

GSK5 0.028 2.76 0.79 1.35 0.95 0.94 1.58 1.35 

GSK6 0.011 3.86 0.57 1.15 0.94 0.88 1.14 1.15 

GSK7 0.054 2.72 0.27 2.44 0.97 0.85 0.54 2.44 

GSK8 0.130 2.55 0.50 0.20 0.98 0.87 1.00 0.20 

GSK9 0.059 2.53 0.34 2.24 0.99 1.00 0.69 2.24 

GSK10 0.030 7.11 0.08 0.20 1.06 1.00 0.16 0.20 

GSK11 0.011 3.22 0.49 0.23 0.93 0.71 0.98 0.23 

GSK12 0.010 3.26 0.50 1.35 0.96 0.84 1.00 1.35 

GSK13 0.010 3.91 0.23 0.28 1.00 1.00 0.46 0.28 

GSK14 0.011 5.07 0.08 0.10 1.05 1.00 0.15 0.10 

GSK15 0.005 5.15 1.07 0.48 1.02 1.02 2.15 0.48 

average 0.03 3.85 0.56 1.23 0.98 0.92 1.12 1.23 

min 0.01 2.53 0.08 0.10 0.90 0.71 0.15 0.10 

max 0.13 7.11 1.50 3.78 1.06 1.06 2.99 3.78 

* Before fitting this is assumed equal to 1 

† Before fitting this is assumed equal to 0.5 

 
The revised values of Cmax and AUC in man are reported in Table 5.3 for 

each compound, together with the correspondent fold-errors. With respect to 

the comparison between observations and predictions, the average fe 

decreases from 3.3 to 2.9 for Cmax (fe is ≤ 3 in 60% vs 67% of cases) and 

from 7.8 to 4.7 for AUC (with fe ≤ 3 in 60% vs 33% of cases). The correlation 

between observations and revised predictions slightly increases for Cmax and 

AUC (0.913 for Cmax, p < 0.0001, R2 = 0.64; 0.903 for AUC, p < 0.0001, R2 

= 0.23). As visible from Figure 3.3 (bottom panel on the right), the under-

prediction of AUC is reduced but still significant (p = 0.01 and p = 0.04, 

respectively). 

With respect to predictions with fe > 10, the integrated PBPK approach 

improved both the Cmax prediction (the compound with fe = 11.8 got a 

revised fe of 3.6) and the AUC prediction (two cases of fe > 10 without using 

the prior knowledge, with values 55.3 and 11.9, vs two cases after integrating 

the priors, but with smaller values, 10.1 and 10.3, respectively).  

Figure 3.5 shows how the proposed integrated approach for human PBPK 

prediction works in a representative case (GSK13). The fit of the rat IV 

plasma concentration data produces a change of the modifiable parameter 

values (see Table 3.5) and a consequent improvement of the PBPK 

prediction. However, the model structure, the fixed values for most model 
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parameters, and the prior knowledge on the values of the modifiable 

parameter, together with the measurement errors affecting the observations, 

still do not allow to achieve a perfect match between data and model 

predictions. The reduction of the values of α and β decreases the predicted 

values of both CL and Vss in rat, thus reducing the fold errors on these PK 

parameters (from 2.1 to 1.3 and from 1.9 to 1.0, respectively). When the 

modulated parameter values take the place of the original values in the 

human PBPK model, the predicted values for Cmax and AUC increase, 

producing a slight decrease in the fold-error in Cmax, but a more consistent 

decrease in the fold-errors for AUC. 

 
Figure 3.3. Improvement of the prediction of PK profiles for compound 

GSK13 using the integrated PBPK approach. The original parameter values 

produce the plasma concentration profiles in blue. The fit of the rat plasma 

concentration data using prior knowledge as priors produce new parameter 

values and the profiles in blue shown in the upper panels. The modulated 

parameter values are used in the human PBPK model and produce the profiles 

in blue shown in the lower panels. 
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3.5. Discussion 

As a rule of thumb, a PK prediction from non-clinical assessment is 

considered good (both for animal and human PK predictions) when the main 

metrics of systemic exposure and parameters are predicted within a factor of 

2 or lower from the average experimental value. When instead the fe between 

prediction and observation is larger than 3, the prediction is considered poor. 

In the current assessment for the prediction of PK parameters in rats 

following IV dosing, the fe for CL is < 2 in 80% of the examined compounds 

and < 3 in 87% of them. The fe statistics are also good for the volume of 

distribution, being < 2 in 80% of the examined compounds and < 3 in 93% 

of them. However, the implemented computational model provides Vss 

predictions that are constrained within a narrow range, whilst the actual 

observations are characterized by a wider range of values. This indicates that 

the equations for the tissue partition coefficients still need to be refined, and 

possibly complemented with additional considerations (effect of 

transporters, permeability limitations, etc.) that are lacking in the currently 

implemented mathematical model and that may allow to differentiate among 

the considered set of molecules. In any case, the model seems to be relatively 

accurate for this dataset, even in case the blood-to-plasma ratio is not 

experimentally available. These observations essentially confirm the 

behaviour of the whole-body PBPK model for predicting the PK in animals 

obtained in previous assessments in analogous conditions [Germani et al., 

2007]. It is interesting to notice that, with the available data, the use of other 

approaches to predict the tissue partition coefficients [Berezhkovskiy, 2004; 

Rodgers et al., 2005; Rodgers and Rowland, 2006] did not provide additional 

benefit to the prediction (data not shown). It may be that this data set, 

obtained from a single therapeutic area, characterized by relatively 

homogeneous physical-chemistry and biochemical properties (mostly basic, 

with high lipophilicity and protein binding), is better described by an 

approach that is compressing the dynamic range of the predicted volumes of 

distribution, such as the one adopted here [Paulin and Theil, 2002b]. 

The predictions are substantially worsening when the predictions concern 

the human PK following oral dosing. The basic PBPK approach allows to 

determine the overall systemic exposure (AUC) after oral dose with a fe 

within 2 and 3 only in 20% and 33% of the examined compounds, 

respectively.  The use of the input parameters modulated using the proposed 

integrated approach based on the Bayesian fitting of in vivo data obtained in 

rats after IV dosing substantially improves the predictions, the fe on AUC 

predictions being within 2 and 3 in 27% and 60% of the cases, respectively, 

indicating that the fitting approach, although not fully suited to correct the 

inaccuracies, substantially improves the predictive outcome. It can be 

speculated what are the quantitative assumptions underlying this procedure, 

i.e., whether the error in the estimates of the input parameters in rats should 

be similar to that in human. Without getting that far, the basic consideration 

is that preclinical data contain information that can be extracted to provide 



 

 

 44 

more accurate predictions. It is particularly interesting that, in this particular 

case, the fitting concerns extravascular dosing of compounds in rats (and 

thus disposition: distribution and elimination), whilst the benefit on human 

predictions concerns oral dosing (thus including in the PK processes also the 

absorption, for which the rat data did not provide any basic information). An 

even more comprehensive integration of preclinical data (including oral 

administration, and different species) would likely be even more efficient in 

improving the predictions.   

In the vast majority of our cases, the predicted exposures under-estimate 

the observed values suggesting that oral CL is overpredicted in this set of 

compounds. The same bias does not appear to be present for Cmax values. 

The absolute bioavailability of the PBPK model is based on many 

assumptions (complete absorption, linear pharmacokinetics and metabolism 

occurring only in the liver), which may be faulty in this case. Unfortunately, 

actual F values were not available for these compounds, so that it could not 

be checked whether the under-prediction of the exposure can be due over-

prediction of the oral clearance or to the underprediction of the absolute 

bioavailability. Over-prediction of clearance can be particularly severe for 

compounds, such as those used for this evaluation, characterized by high 

lipophilicity and avid protein binding, as shown by the PCA and previously 

in the literature [Germani et al., 2007]. An analogous over-prediction of oral 

clearance was reported in the extensive blinded evaluation performed as part 

a Phrma initiative, which indicated the limitation of the PBPK approach 

when considered on its own [Poulin et al., 2011].  

These general, blinded assessments, however, do not consider the 

knowledge on a specific compound that can emerge from the involvement in 

drug research project teams. An interesting example in this respect is the 

prediction for GSK9, a compound in which in vitro clearance was at the 

lower limit of determination of the system. Based on the knowledge derived 

from other candidates of the same project, it was found that in vivo monkey 

data were predictive for human PK. The assessment based on the human 

predicted clearance obtained from allometric scaling of monkey clearance 

was substantially improved (with fold error decreased from 4.6-10.1 down 

to 1-1.5).  

It must be highlighted that for most of the compounds analysed here, 

CLapp was measured in liver microsomes, which was reported to be less 

accurate that that obtained in hepatocytes, in which a more comprehensive 

battery of drug metabolizing enzymes is accounted for [Ito and Houston, 

2004].  

The exercise reported in this Chapter does not intend to provide a receipt 

to success for the human PK prediction: from this assessment, only emerges 

that it is always advisable to proceed with the most comprehensive 

integration of the knowledge obtained from non clinical assessments (in 

silico, in vitro, in vivo) using the PBPK approach. In this way the intrinsic 

uncertainty of some parameters can be accounted for or the robustness of 

some of the assumptions of the more basic PBPK model can be tested on 

experimental data.   
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SUPPLEMENTARY MATERIAL TO CHAPTER 3 

S1. Species-specific anatomical and physiological parameters 

Table S1.1. Tissue compositions. Data taken from the literature [Poulin and 

Theil, 2002a, 2002b). 

Tissue 

Water fractional 
weight 

Neutral lipids 
fractional weight 

Phospholipids 
fractional weight 

Rat Man Rat Man Rat Man 

Adipose tissue 0.12 0.18 0.853 0.79 0.002 0.002 
Bone 0.446 0.439 0.0273 0.074 0.0027 0.0011 
Brain 0.788 0.77 0.0392 0.051 0.0533 0.0565 
Gut 0.749 0.718 0.0292 0.0487 0.0138 0.0163 
Heart 0.779 0.758 0.014 0.0115 0.0118 0.0166 
Kidney 0.771 0.783 0.0123 0.0207 0.0284 0.0162 
Liver 0.705 0.751 0.0138 0.0348 0.0303 0.0252 
Lung 0.79 0.811 0.0219 0.003 0.014 0.009 
Muscle 0.756 0.076 0.01 0.0238 0.009 0.0072 
Skin 0.651 0.718 0.0239 0.0284 0.018 0.0111 
Spleen 0.771 0.788 0.0077 0.0201 0.0136 0.0198 
Plasma a 0.96 0.945 0.00147 0.0035 0.00083 0.00225 
Blood  0.78642 0.766 0.001295 0.0031 0.002445 0.00684 

a A similar composition is assumed for the arterial and venous plasma. 

 

Table S1.2. Tissue volumes. Data taken from the literature [Brown et al., 

1997; Poulin and Theil, 2002a). 

Tissue 
Volume (mL/kg)a 

Rat Dog Man 

Adipose tissue 70.012 138.00 110.0044 
Bone 73.005 142.56 143.0021 
Brain 5.7 8.0 20.0 
Gut 27.0 37.0 17.1 
Heart 3.3 8.0 8.0 
Kidney 7.3 5.0 4.4 
Liver 36.6 33.0 26.0 
Lung 5.0 5.0 7.6 
Muscle 404.0 457.0 400.0 
Skin 190.0 91.0 37.1 
Spleen 2.0 35.0 2.6 
Arterial blood 27.2 30.0 25.7 
Venous blood 54.4 60.0 51.4 

a Values to be scaled allometrically. 
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Table S1.3. Tissue blood flows. Data taken from the literature [Brown et al., 

1997; Poulin and Theil, 2002a). 

Tissue 
Blood flow 

Rata Dogb Manc 

Adipose tissue 16.450 36 52 
Bone 28.670 120 42 
Brain 4.700 45 114 
Gut 30.785 216 157 
Heart 11.515 54 40 
Kidney 33.135 216 175 
Liver 41.125 312 227 
Lung 214.555 1149 899 
Muscle 65.330 264 191 
Skin 13.630 102 58 
Spleen 4.700 24 24 

a Values expressed as mL/min/kg. 
b Values expressed as mL/min for a 10 kg-dog. 

c Values to be multiplied by -6.846 * log10(age) + 16.775 to obtain the blood flow expressed 
as mL/min. 

Table S1.4 - Haematocrit, liver weight and glomerular filtration rate. 

Data taken from the literature [Brown et al., 1997; Poulin and Theil, 2002a; 

Ritschel, 1992). 

Species Rat Dog Man 

Haematocrit 
(vol/vol %) 

47.4 45.1 44.8 

Liver weight 
(g/kg of body 
weight) 

44 32 26 

Glomerular 
filtration rate 
(mL/min) 

0.36 61.3 120 
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S2. Details on Principal Component and Sensitivity Analyses 

Table S2.1. First and second principal components for each compound 

considered in the PCA 

Compound Comp.1 Comp.2 CL: fe with sign Vss: fe with sign 

GSK1 0.65 -0.96 -1.6 -3 

GSK2 0.17 1.47 4.5 3 

GSK3 -0.30 1.47 1.8 1.5 

GSK4 0.47 -1.14 -1.6 -2 

GSK5 -0.05 -1.44 -1.6 -1.4 

GSK6 -0.30 1.69 -1 -1.9 

GSK7 1.13 0.94 -1.1 1 

GSK9 1.70 0.62 -1.5 1.8 

GSK10 -1.89 2.17 3.7 1.5 

GSK11 -2.60 1.26 1.6 1.5 

GSK12 -0.97 1.23 -1.1 1.2 

GSK13 0.17 -0.83 2.1 1.9 

GSK14 -1.71 -2.28 2 3.8 

GSK15 NA NA 1.7 -1.8 

GSK16 4.26 1.17 1.3 -1.5 

GSK17 -0.47 -0.46 1.1 -1.8 

GSK18 -0.52 -0.79 -1 -1.2 

GSK19 1.12 -1.99 -1.9 2.3 

GSK20 0.07 -0.83 -1.5 -2 

GSK21 -0.91 -1.30 2.2 -1.2 

GSK22 NA NA -1.1 1.1 

NA: not computable as solubility in water is not available 
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Figure S2.1. Score plots and loading plot for the first two principal 

components identified by principal components analysis on the values of s i,j 

(Eq. 23) provided with Table 3.4. The two components explain 71% of the 

total variance. Score plots: the compounds have different colour codes 

depending on the size of the effect of the considered input parameter (e.g., 

logP in the top left score plot) on the considered output (e.g., CL in the top 

left score plot), as determined by sensitivity analysis. The thresholds on the 

effect size are provided by Table S2.2. Loading plot: fup is the fraction of 

unbound drug in plasma, pKa is the association constant (the highest for 

diprotic bases), logP is the logarithm of the n-octanol:water partition 

coefficient of the non-ionized species, CLint is the hepatic intrinsic 

clearance. 

Table S2.2. Thresholds on the effect size to be used in the principal 

components analysis in Fig. S.2.1 

Output CL (mL/min/kg) Vss (mL/kg) 

Input |log(Po:w)| pKa fuP CLint α log(Po:w) |pKa| fuP CLint α 

1st threshold 0.001 - 0.6 10 - 0.1 0.01 10 - 1.0 

2nd threshold 0.010 - 1.0 25 - 1.0 0.10 30 - 6.5 
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Chapter 4 

4 PBPK considerations for predicting PK 
in liver disease3 

Another field in which PBPK is sometime failing is the prediction of the 

PK in subjects suffering from liver impairment. In the experience of the 

author, the extent of the PK changes are often overestimated using the PBPK 

models implemented in the commercial platforms, especially for the mild 

and moderate stage of liver disease. In the following Chapter, some of the 

reasons for these discrepancies are examined. After developing a database of 

marketed drug with information on the PK changes in liver disease, this 

Chapter proposes the utility of multivariate regression techniques to improve 

the accuracy of the predicted changes. Analogous techniques could be 

implemented in a more comprehensive PBPK approach. 

4.1. Abstract 

4.1.1. Introduction 

The liver is one of the most important organs responsible for the 

elimination of xenobiotics and there is considerable regulatory pressure to 

characterize the in vivo pharmacokinetic (PK) changes in subjects with liver 

disease (LD). Despite this, predictions of the potential effect of LD on the 

PK of compounds presents several limitations. 

                                                        
3 This chapter is based on the paper: Gonzalez M, Goracci L, Cruciani G, 

Poggesi I. Some considerations on the predictions of pharmacokinetic 

alterations in subjects with liver disease, published in Expert Opin Drug 

Metab Toxicol 2014, 10: 1397-408. Please note that the conclusion section 

has been named ‘Expert Opinion’ following the journal requirements.  
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4.1.2. Methods 

We examined a list of marketed drugs with the aim to identify compound 

PK characteristics potentially correlated with PK changes in LD. 

4.1.3. Expert opinion 

Extensive renal elimination (>40%) was the only predictor of the lack of 

significant changes in PK in subjects with LD.  Parameters related to hepatic 

extraction (extraction ratio, clearance, oral clearance) were only weakly 

correlated to PK changes. The interplay of the effects of liver impairment on 

bioavailability and systemic clearance may prevent compound 

characteristics predictive of large increases of systemic exposure in subjects 

with LD compared to healthy subjects from being highlighted. A wider 

knowledge-base and a deeper scientific understanding may be needed to 

obtain predictive assessments of PK alterations in these conditions. The use 

of multivariate analysis can provide a stimulus for a more detailed 

mechanistic understanding of the absorption and disposition changes to be 

expected in LD. 

4.2. Introduction 

4.2.1. Background 

The liver is one of the most important organs responsible for the 

elimination of xenobiotics [Peters, 2008]. The high activity of the liver’s 

metabolizing enzymes combined with a large blood flow (approximately 

25% of the cardiac output [Luttringer et al. 2003]) makes the liver the most 

important site of metabolism.  

Liver disease is on the rise worldwide, with sharp increases in hepatitis C 

[Ly et al., 2012, Davis et al., 2010]. The incidence of cirrhosis due to alcohol 

consumption is also high (approximately 1/10000 [Featherstone, 2008]. It is 

therefore important to have information regarding the potential changes in 

the drug pharmacokinetic (PK) behavior induced by liver disease and the 

subsequent dose changes to be adopted in these cases. 

It must be emphasized that liver disease is not a single disease and that 

different indications may have different impacts on the PK of a drug. A 

guidance on the design of PK studies in subjects with hepatic impairment 

and the subsequent impact on drug labeling was finalized by the United 

States Food and Drug Administration (FDA) in 2003 [FDA Guidance on             

liver impairment, 2006]. Since then, regulatory authorities are requesting 

these studies more frequently than in the past, also as part of post-marketing 

commitments. Pharmacokinetic studies in subjects with hepatic impairment 

are difficult to design: these assessments are not typically conducted in the 



PBPK considerations for predicting PK in liver disease 

 

 55 

patient population for which the drug is proposed. In most cases, these 

studies enroll few subjects per group (both healthy subjects and subjects with 

mild, moderate and severe hepatic impairment), if possible with similar age 

and body mass index. The goal of these studies is to identify the dose level 

that is able to realize in subjects with hepatic impairment a similar drug 

systemic exposure (for instance, described by the area under the plasma 

concentration-time curve) compared to healthy subjects.  The recruitment of 

subjects in these studies may be slow and unbalanced across subjects with 

different stages of liver disease. In addition, there are ethical limitations 

concerning the treatment of very ill patients with drugs that are not necessary 

for the treatment of their disease. Despite these difficulties, based on the 

results of these studies, some conclusions can be drawn regarding the need 

for a dosage change in these liver disease conditions: drug labels report these 

conclusions and physicians can rely on the achievement of similar systemic 

exposure to adjust the dose when patients suffering of a certain disease are 

also affected by some degree of hepatic impairment. This approach, 

surrogating efficacy and safety endpoints with a PK endpoint, may be too 

simplistic due to many unknowns (dependency of the drug effects on peak 

or average, total or unbound concentrations, etc.) and, even in presence of a 

relatively well designed study, the accompanying drug information (for 

instance regarding the involvement of hepatic metabolism) may be limited 

or the label language may be vague [Chang et al., 2013].  

In two recent papers, the effects of liver disease on the disposition of drugs 

have been assessed in light of physiologically-based pharmacokinetic 

(PBPK) modeling [Edginton and Willlmann, 2008, Johnson et al., 2010]. In 

this system pharmacology-related approach, the body is represented as a 

collection of compartments, representing real organs and anatomical spaces, 

with their interconnectivity via the vasculature. In vitro and in vivo data are 

considered in such models, for instance, using tissues and organs 

compositions and volumes, blood perfusions, and all the knowledge related 

to system processes governing absorption and disposition of drugs [Rowland 

et al, 2011]. Using this approach, the modifications of the system parameters 

associated with hepatic impairment (anatomical-physiological 

characteristics such as liver size, liver enzyme activity, liver blood flow, 

protein levels, etc.) can be considered to anticipate the effect to be expected 

on the absorption and disposition of a drug approaches [Holt and Smith, 

2008; Vaghjiani, 2008]. Unfortunately, based on the experience of the 

authors and of other groups (Jan Snoeys, personal communication) the PBPK 

models, as implemented in the currently available commercial platforms, do 

not always provide accurate predictions. In particular, the extent of the PK 

changes are sometimes overestimated, especially in the population of 

subjects characterized by the mild and moderate stages of liver disease. 

The main objective of this Chapter was to examine a list of marketed drugs 

with the aim to identify compound PK characteristics potentially correlated 

to the extent of PK changes in LD in order to have a predictive assessment 

of new drug exposure in these conditions prior to in vivo assessment. The 

approach highlighted here could be used for a better parameterization of 
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PBPK models or could help prioritize programs for PBPK modeling in view 

of liver impairment studies. Some considerations will be drawn to determine 

whether the science may be considered adequate to allow anticipating the PK 

alterations to be expected in subjects with hepatic impairment based on 

PBPK approaches. 

4.2.2. Anatomical changes in LD 

The liver is the largest internal organ of the body; its weight represents 

approximately 2% of the body weight in adult subjects. The healthy liver 

receives approximately 1.3 L/min of blood (approx. 25% of the cardiac 

output [Luttringer et al., 2003]), 75% of which is provided by the portal 

circulation arriving from the gut and the remaining provided by the hepatic 

artery. The majority of the weight of the liver is represented by hepatocytes, 

the cells responsible for most of the liver functions [Holt and Smith, 2008]. 

Among other things, hepatocytes are responsible for the synthesis of plasma 

proteins, including immune factors, the metabolism of amino acids and other 

nitrogen compounds, the regulation of the excess glucose via formation and 

storage of glycogen, the synthesis and metabolism of different kind of lipids, 

and the conjugation and excretion of bilirubin [Vaghjiani, 2008]. Last, but 

not least, the liver is responsible for the metabolism of xenobiotics and the 

subsequent excretion into the bile of catabolism products [Vaghjiani, 2008].  

Liver disease can be classified as acute or chronic depending on the 

duration of the symptoms (≤6 months and >6 months, respectively) [Chang 

et al., 2013]. Based on the pattern of damage, the liver disease can be 

cholestatic (when there is retention of the bile in the bile ducts that may be 

due to disruption of the intrahepatic biliary ductules network or to 

extrahepatic obstruction) or hepatocellular (when there is a direct injury to 

the hepatocytes, that can result in fat infiltration [steatosis] or inflammation 

[hepatitis]). It is important to underline that in cases of mild condition 

(compensated liver disease) the amount of hepatocytes is enough to perform 

the function of a normal liver. Sustained hepatocellular disease may further 

degenerate in necrosis: this event is then followed by deposition of scar 

tissue, resulting in fibrosis. If the fibrosis is extensive, the regeneration of 

hepatocytes is erratic and further disrupts the liver architecture: small 

nodules (cirrhosis) are formed that impair the blood flow into the liver, 

giving rise to increased blood pressure in the liver portal system (portal 

hypertension) and liver dysfunction, which typically leads to severe 

impairment of the drug disposition [Davis et al., 2010]. This condition 

(decompensated liver disease) is a vicious cycle which leads to the 

progressive worsening of the liver condition (see scheme reported in Fig. 

4.1). Johnson et al. [Johnson et al, 2010] and Edginton & Willman [Edginton 

& Willman, 2008] described in their papers the changes in the anatomical 

and physiological liver characteristics in subjects with hepatic impairment 

compared to those of normal hepatic function. A comparison of these data, 

which represent the basis of their PBPK models, is shown in Table 4.1. 
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Figure 4.1. Different pattern of liver disease. Two-sided arrows represent 

potentially reversible processes, one-sided arrows represent irreversible 

processes. 

Table 4.1. Examples of liver-related anatomical and physiological 

characteristics (expressed in fraction of a normal liver) in subjects with 

different degrees of hepatic impairment (Child-Pugh classification). 

Characteristics Authors Liver disease* 

Mild Moderate Severe 

Liver mass Johnson et al. 
2008 

0.81 0.65 0.53 

 Edginton et al. 
2010 

0.69 0.55 0.28 

Portal blood flow Johnson et al. 
2008 

0.91 0.63 0.55 

 Ediginton et 
al. 2010 

0.40 0.36 0.05 

Enzyme activity     

CYP1A2 Johnson et al. 
2008 

0.63 0.26 0.12 

 Edginton et al. 
2010 

1.00 0.10 0.10 

CYP2E1 Johnson et al. 
2008] 

0.74 0.48 0.11 

 Edginton et al. 
2010 

1.00 0.83 0.83 

CYP3A4 Johnson et al. 
2008 

0.59 0.39 0.25 

 

Numerous factors may lead to liver disease. Alcohol consumption is the 

most important cause of chronic liver disease, while viral infections and drug 

reactions are the main causes of acute liver disease. In some cases, the 

hepatitis condition may become chronic (for instance in approximately 5% 

of hepatitis B) leading to a higher probability of developing cirrhosis and 

hepatocellular carcinoma with aging [Featherstone. 2008]. 
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4.2.3. Assessments tools and tests 

A number of quantitative tests are available to estimate the degree of 

hepatic impairment and liver function. For this purpose, liver function tests 

(LFT) related to synthetic (such as urea synthesis, ammonia metabolism, 

albumin, etc.) or excretory liver functions (e.g., serum bilirubin) have been 

proposed [Hughes, 2008]. Other markers (such as alanine (ALT) and 

aspartate aminotransferases (AST), alkaline phosphatase), indicative of 

acute hepatotoxicity, can be used [Hughes, 2008]. More comprehensive 

diagnostic or prognostic LFT (Child-Pugh classification [Child and Turcotte, 

1964; Pugh et al., 1973], National Cancer Institute-Organ Dysfunction 

Working Group [Patel et al., 2004]) have been devised. In addition, the use 

of probe compounds (for instance, galactose, sorbitol, erythromycin, 

antipyrine, caffeine, erythromycin, and midazolam [Dourakis, 2008; 

Albarmawi et al, 2013]) has also been proposed to describe the impairment 

of specific metabolic and excretory liver functions.   

Table 4.2. Child-Pugh and NCI-ODWG classification criteria [Hughes, 

2008; Child and Turcotte, 1964; Pugh et al., 1973] 

 
Classification Liver disease 

    Mild Moderate Severe 

Child-Pugh score, calculated considering: 

Criteria 1 point 2 points 3 points 

5-6 7-9 10-15 

Total serum 
bilirubin (mg/dL) 

<2 2-3 >3 

Serum albumin 
(g/dL) 

   

Prothrombin time 
(sec > controls) 

<4 4-6 >6 

Encephalopathy 
(grade) 

None 1-2 3-4 

Ascites Absent Slight Moderate 

NCI-ODWG 

Total bilirubin ≤1,5 
ULN 

>1,5-3 
ULN 

>3-10 
ULN 

AST > ULN Any Any 

 

It must be underlined that no individual LFT, diagnostic or prognostic 

tests, or probe compounds can be used to describe all possible liver disease 

situations. To specify the different profiles of liver dysfunction, different 

LFT may be characterized by a significant rate of false positives (i.e., a 

significant movement of the LFT may not be accompanied by a significant 

reduction of the assessed liver function, for instance the efficiency in 

metabolizing a certain drug) or false negatives (i.e., a LFT may not be 

moving, but a certain liver function can be significantly impaired). 

Composite scores or combination of these tests can also be used. Currently 

Child-Pugh Score (see Table 2) [Child and Turcotte, 1964; Pugh et al., 1973] 

is the most commonly used method to assess hepatic impairment.  

Following the FDA guidance, the Child-Pugh Score classification system 

is used to design the clinical pharmacology studies in which the effect of 
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liver impairment on the pharmacokinetics of a certain drug is assessed [FDA 

Guidance on liver impairment, 2006]. However, the Child-Pugh Score 

classification system was developed as prognostic index, and does not 

necessarily reflect the effect of the hepatic impairment on xenobiotic 

disposition. For instance, it does not differentiate between liver disease due 

to hepatitis or cirrhosis [Albarmawi et al., 2013], each having different 

effects on specific metabolizing enzymes within the liver. For subjects with 

cancer, the National Cancer Institute Organ Dysfunction Working Group 

introduced a classification based on total serum bilirubin and aspartate 

transaminase (AST) (Table 4.2) [Patel et al., 2004; Ramanathan et al., 2008]. 

However, the scope of the classification was not specifically related to be 

prediction of changes in drug elimination. 

4.2.4. Effect of hepatic impairment on the PK of drugs 

Liver disease is not a unique condition, depending on its specific 

characteristics (acute or chronic, typology and severity) it may affect 

different elimination pathways in different ways. The effect of liver disease 

on pharmacokinetics will also depend on the elimination pathway for a 

particular drug.  

A number of excellent reviews have been published on this matter, either 

general [Edginton and Willlmann, 2008, Johnson et al., 2010, Johnson and 

Thomson, 2008; Verbeeck 2008; Rodighiero, 1999] or dedicated to specific 

therapeutic areas or group of compounds [Wyles and Gerber, 2005; Sheen, 

2014; Budingen et al., 2014; Superfin et al., 2007; Bosilkovska et al., 2012; 

Schlatter et al., 2009]. Other papers were dedicated to the general 

suggestions when prescribing drugs to subjects with hepatic impairment 

[Branch, 1998, Spray, 2007]. 

In cirrhosis, the disruption of the liver vascular architecture may lead to 

increased blood flow resistance which limits blood flow through the liver 

and causes portal vein pressure to rise (portal hypertension) [Le Couteur et 

al., 2005]. As a consequence, formation of portocaval shunts may occur that 

allow the drug to bypass the first pass in the liver, with subsequent higher 

drug exposure [Johnson and Thomson, 2008]. Chronic disease causes 

damage to hepatocytes which in turn may cause a decreased intrinsic 

clearance of the drug metabolizing liver enzymes. Different cytochromes 

P450 may be affected differently by the hepatocyte damage [Branch, 1998; 

Frye et al, 2006] and in addition, the damage may also be different in the 

different regions of the liver. Cholestasis will impair the elimination of drugs 

that are excreted in the bile [Johnson and Thomson, 2008]. Liver disease 

causes a decrease of albumin in serum, which implies variation of the binding 

of drugs to the circulating proteins, which can potentially affect the 

distribution volume of certain drugs [Verbeeck, 2008]. In general, a complex 

interplay of these modifications need to be considered. Some of the potential 

situations are shown in Fig. 4.2. 
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Figure 4.2. Physicologically based PK characteristics for drugs with low, 

moderate or high hepatic extration (EH) and potential alterations in liver 

disease, depicted by the red arrows. 

4.3. Methods 

4.3.1. Data search methods 

An extensive list of marketed medications, PK changes, and 

corresponding recommended dosage adjustments for subjects with hepatic 

impairment was prepared with data obtained from drug labels via Daily Med 

[NCI Daily Med website]. Additional information was collected from other 

literature sources (references are available in the supplementary material). 

The list was reduced to include only marketed drugs (small molecules) given 

orally or intravenously, for which the relevant PK information was available. 

Drugs with inconsistent or incomplete records were discarded. The change 

in pharmacokinetics in subjects with hepatic impairment was summarized 

using the ratio of the average area under the plasma concentration-time curve 

(AUC) obtained in subjects with hepatic impairment to the average AUC in 

subject with normal hepatic function. If data was available, the ratio was 

calculated for all categories of subjects with hepatic impairment (Child-Pugh 

A: mild; Child-Pugh B: moderate; Child-Pugh C: severe). In case of studies 

in which Child-Pugh classification was not used, reference to more generic 

terms (such as mild, moderate or severe hepatic impairment) was used. Some 

studies included indications on mixed group (i.e., mild and moderate hepatic 

impairment) and in this case, the same AUC ratio was attributed to both the 

categories. For each compound the minimum amount of PK information 

needed for analysis was: intravenous plasma clearance (CL) (or oral 

clearance (CL/F) and absolute bioavailability (F)), amount excreted 

unchanged in urine (Ae), and binding to plasma or serum protein. An 

estimation of the hepatic extraction ratio (EH) was obtained using the ratio 
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of non-renal intravenous clearance to the hepatic blood flow. In absence of 

this, the intravenous clearance was calculated assuming that the (non-renal) 

oral clearance is a good estimator of the intrinsic clearance, using the formula 

𝐶𝐿𝐼𝑉 =
𝑄𝐻∙𝐶𝐿𝑃𝑂

𝑄𝐻+𝐶𝐿𝑃𝑂
.  

For this aim, no limitation due to plasma protein binding restrictions was 

assumed. Also, it was assumed that non-renal clearance was due to hepatic 

metabolism or biliary excretion only and blood to plasma ratio was not much 

different from 1. To test that these assumptions were reasonable the 

estimated bioavailability (calculated using 1-EH) was checked to be within 

±30% of the observed, if this condition was not met, the compound was not 

considered. Other PK descriptors where also collected (i.e., whether the 

compound was under the control of a single metabolic route, CYP versus 

non-CYP, etc.) and the data were explored graphically. 

The final list included the information for 84 drugs; for approximately 

half of them, the study of liver disease was done by characterizing the hepatic 

impairment using the Child-Pugh Score classification system, as suggested 

by the FDA guideline [FDA Guidance on liver impairment, 2006]. Graphical 

exploration of the correlations between the AUC ratio in the different 

categories of liver disease and the various PK descriptors were assessed 

using SigmaPlot 12.5 (Systat Software, San Jose, CA). Multivariate analysis 

was also carried out by PCA using a non-linear estimation by iterative partial 

least squares (NIPALS) approach [Wold, 1966], as implemented in the 

VolSurf software [Cruciani et al., 2000], to explore the potential 

relationships between AUC ratio and the continuous variables (total and 

unbound CL and CL/F, F, Ae, protein binding, EH). 

4.4. Results 

Some of the collected data are reported in Table 4.3. The estimate of 

hepatic extraction ratio, EH, is a reasonable candidate summary parameter to 

describe quantitatively how much the disposition of a compound is 

dependent on hepatic elimination. The univariate correlation between EH 

ratio and the AUC ratio is reported in Fig. 4.3. Considering the population 

of subjects with mild hepatic impairment, no evident trend between the two 

variables was observed. When evaluating the subjects characterized by 

moderate or severe hepatic impairment, there is a tendency towards an 

increase of the AUC ratio with an increase of the EH. The correlation was 

significant (based on p-value) for the moderate to normal and severe to 

normal AUC ratio; however, considering the relative position of the 

observations compared to the regression line, this model cannot be used for 

prediction purposes. However, a predictive quantitative assessment of the 

expected changes in AUC cannot be based on this. Indeed, despite the 

observed trends, it can be appreciated that there are some drugs with low EH 

(≤0.3) that show a significant increase of AUC (AUC ratio>2) in subjects 

with hepatic impairment compared to those with normal hepatic function, 
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and vice versa, some compounds with moderate (0.3<EH≤0.7) or high EH 

(>0.7) show no relevant changes of AUC (AUC ratio ≤2) in subjects with 

hepatic impairment. Similar behaviors were observed considering other PK 

parameters (CL and CL/F, total and unbound, data not shown). Also the 

involvement of a unique versus many disposition pathways, as well as the 

involvement of certain drug metabolizing enzymes (e.g., CYP3A, 2D6, etc.) 

in the metabolism of a drug was not able to provide a clear-cut discrimination 

of drugs with large increases of AUC in subjects with hepatic impairment 

(AUC ratios>2) from those for which the increase was mild (AUC ratio<2). 

Extensive renal elimination was the only significant (and relatively trivial) 

determinant predictive of the lack of significant changes in PK in subjects 

with hepatic impairment. Considering the whole dataset, AUC ratio in 

subjects with hepatic impairment of any severity was ≤2 when Ae>40%.  
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Table 4.3. The PK characteristics and AUC ratio in subjects with hepatic impairment versus subjects with normal hepatic function  for 83 

different drugs. 

Generic name F 
(%) 

CL/F 
(l/h) 

CL 
(l/h) 

Ae 
(%) 

Plasma 
protein 
binding  (%) 

Estimated  
EH 

AUC ratio 

Mild LD/ normal Moderate LD/ normal Severe LD/ Normal 

Abacavir 83 56 NA 1 50 0,36 1,89 NA NA 

Abiraterone 5 1550 NA 0 99 0,94 1,1 3,6 6,976 

Alvimopan 6 NA 24 35 80 0,16 1,5 2 NA 

Anidulafungin NA NA 0,9 0 99 0,01 NA NA 1 

Argatroban NA NA 22 16 54 0,18 2,5 2,5 NA 

Aripiprazole 87 4 NA 0 99 0,03 1,31 1,08 0,8 

Asenapine 35 146 NA NA 95 0,59 1 1 7 

Atomoxetine 63 26 NA 3 98 0,29 NA 2 4 

Axitinib 58 38 NA 0 99 0,28 NA 2 NA 

Bortezomib NA NA 23 NA 83 0,23 NA 1,6 NA 

Budesonide 11 NA 84 0 87,5 0,84 1 2,5 NA 

Caspofungin NA NA 0,7 1 96 0,01 1,2 1,76 NA 

Cefditoren 14 NA 5,0 100 88 0,00 1,1 1,1 NA 

Cinacalcet 27,7 273 76 NA 95 0,76 NA 2,4 4,2 

Ciprofloxacin 70 56 NA 30 30 0,25 1 1 NA 

Conivaptan 44 NA 15 1 99 0,15 NA 2,8 NA 

Cyclobenzaprine 44 NA 42 0 95 0,42 2 NA NA 

Dasatinib 23 294 NA 0 96 0,75 NA 1,08 0,72 

Didanosine 42 NA 21 18 2,5 0,17 NA 1,13 1,13 

Diltiazem 40 NA 50 3 75 0,49 NA 1,69 NA 

Docetaxel NA NA 36 4 94 0,35 NA 1,38 NA 

Dofetilide 92 NA 24 78 65 0,05 1 1 NA 

Dronedarone 15 NA 140 0 98 1,00 NA 1,3 NA 

Eletripan 50 NA 28 10 85 0,25 1,34 1,34 NA 

Entacapone 36 118 43 0 98 0,43 2 2 NA 

Entecavir 100 28 28 100 13 0,00 1 1 1 

Epirubicin NA NA 65 6 77 0,61 1,43 2 NA 
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Generic name F 
(%) 

CL/F 
(l/h) 

CL 
(l/h) 

Ae 
(%) 

Plasma 
protein 
binding  (%) 

Estimated  
EH 

AUC ratio 

Mild LD/ normal Moderate LD/ normal Severe LD/ Normal 

Eplerenone 69 10 NA 5 50 0,09 NA 1,42 NA 

Eribulin NA NA 3,2 9 57 0,03 1,8 2,5 NA 

Erlotinib 60 NA NA 9 93 0,00 NA 1 NA 

Escitalopram 80 36 NA 8 55 0,24 NA 1,5 NA 

Eszopiclone 78 16 NA 10 55 0,12 1 1 2 

Ezogabine 60 NA 35 36 80 0,22 1 1,5 2 

Famciclovir 77 NA NA NA 10 0,23 1 1 NA 

Fenoldopam 5,7 NA 160 1 88 1,00 NA NA 1 

Fingolimod 93 NA 6,3 0 99 0,06 1,12 1,44 2,03 

Fluvastatin sodium 25 NA 68 0 99 0,75 NA 2,5 NA 

Hydromorphone 24 484 NA 7 27 0,77 NA 4 NA 

Icatibant NA NA 18 5 44 0,17 1 1 1 

Lacosamide 100 NA 2,8 40 15 0,02 NA 1,6 NA 

Lamivudine 85 30 21 75 36 0,05 1 1 NA 

Lamotrigine 98 2,2 NA 78 60 0,00 1,23 1,54 1,76 

Lansoprazole 85 17 NA 0 97 0,14 NA 6 NA 

Letrozole 100 2,2 NA 4 60 0,02 1,37 1,37 2 

Meropenem NA NA 15 74 2 0,04 1 1 1 

Miglitol 59 NA 7,2 100 4 0,00 1 1 1 

Montelukast 64 NA 2,7 0 99 0,03 1,41 1,41 NA 

Moxifloxacin 89 15 13 23 48 0,10 0,78 1,02 NA 

Naratriptan 78 38 27 50 29 0,13 1,43 1,43 NA 

Nelfinavir 75 50 38 2 98 0,37 1 1,62 NA 

Olmesartan 
medoxomil 

26 NA 1,3 13 99,7 0,01 NA 1,6 NA 

Paliperidone 282 72 27 60 74 0,11 NA 1 NA 

Palonosetron NA NA 11 40 62 0,07 NA 1 NA 

Pantoprazole 77 NA 7,0 0 98 0,07 1,5 1,5 1,5 

Paricalcitol 80 NA 2,7 6 99,8 0,03 1 1 NA 

Perindopril 
erbumine 

80 NA 31 9 60 0,29 NA 1,5 NA 

Quetiapine 9 NA 80 20 83 0,64 NA 1,43 NA 
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Generic name F 
(%) 

CL/F 
(l/h) 

CL 
(l/h) 

Ae 
(%) 

Plasma 
protein 
binding  (%) 

Estimated  
EH 

AUC ratio 

Mild LD/ normal Moderate LD/ normal Severe LD/ Normal 

Ribavirin 52 NA 25 28 0 0,18 1 1 1 

Riluzole 64 NA 48 0 96 0,48 1,7 3 NA 

Risperidone 66 NA 43 1 90 0,42 1 1 1 

Rivaroxaban 90 10 NA 30 94 0,06 1,15 2,27 NA 

Roflumilast 80 10 NA 0 95 0,09 1,51 1,92 NA 

Romidepsin NA NA 15 NA 93 0,09 1 NA NA 

Rosuvastatin 20 NA 44 NA 88 0,44 1,05 1,21 NA 

Saxagliptin 67 73 NA 24 0 0,32 1,77 1,77 1,77 

Sildenafil 41 NA NA 2 96 0,60 1,85 1,85 NA 

Solifenacin 88 NA 10 7 98 0,09 NA 1,35 NA 

Tapentadol 32 NA 92 3 20 0,70 1,7 4,2 NA 

Telavancin NA NA 0,9 68 90 0,01 NA 1 1 

Telbivudine NA 21 18 42 3 0,10 1 1 1 

Telithromycin 57 64 59 7 65 0,54 1 1 1 

Temozolomide 100 NA 12 NA 15 0,00 1 1 NA 

Teriflunomide 100 NA 0,03 0 99 0,00 1 1 NA 

Tolcapone 65 NA 7,0 0 99,9 0,15 NA 2 NA 

Triptorelin NA NA 13 40 0 0,08 3 3 NA 

Trovafloxacin 88 NA 6,0 10 76 0,05 1,45 1,5 NA 

Valproic acid 100 NA 0,5 3 90 0,00 NA 2 NA 

Valsartan 25 NA 2,0 13 95 0,01 2 2 NA 

Vardenafil 15 NA 56 4 95 0,54 1,17 2,6 NA 

Vilazodone 72 34 NA 1 98 0,25 1 1 1 

Voriconazole 96 NA 16 2 58 0,16 2,3 3,2 NA 

Zaleplon 30 266 70 0 60 0,70 NA 4 7 

Zolmitriptan 40 141 NA 8 25 0,54 NA NA 3 

Zolpidem 70 NA 18 0 92 0,18 NA 5 NA 
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Figure 4.3. correlation of the ratio AUC in subjects with hepatic impairment 

to AUC in subjects with normal hepatic function with EH, from top to 

bottom: mild/normal, moderate/normal and severe/normal, respectively. In 

the plot, the regression line, correlation coefficient and Pearson p-value are 

shown. 
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Figure 4.4. Outcome of the PCA-NIPALS model. Upper left panel: score 

plot (lower flet panel reports the name of the compounds in the score plot);  

upper right panel: loading plot; lower right panel: correlation between the 

observed and predicted AUC ratio in mild, moderate or severe hepatic 

disease.  

The outcome of this multivariate analysis is reported in Figure 4.4. This 

approach, particularly indicated in case of matrices of data with missing data, 

is a multivariate regression technique in which the variables are projected on 

principal components (PCs), which are linear combinations of the variables, 

with the aim of reducing the dimensionality of the problem and accounting 

for the collinearity of the original set of variables. The outcome of PCA-

NIPALS can be summarized into two plots, the score and the loading plots, 

both depicted in the space of the PCs (Figure 4.4, upper left and right panels). 

The score plot represents the position of the compounds, and it is reported 

with background color, which corresponds to the moderate to normal AUC 

ratio values that linearly increase from red (low AUC ratios) to blue (high 

AUC ratios). The loading plot represents the relationships among the 

descriptors. The latter can be used to interpret the position of the compounds 

in the score plot. A compound in the score plot will be characterized by high 

values of the properties reported in the corresponding position of the loading 

plot, and vice versa, low values of the properties reported in the opposite 

quadrant of the loading plot. Additional details on NIPALS and on the other 

multivariate analysis tools based on projection techniques can be found in 

[Varmuza and Filzmoser, 2009]. The NIPALS model was able to describe 
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well the AUC ratio of the training dataset: model-predicted AUC ratio were 

in good agreement with the observations (see Fig. 5.4, bottom right panel). 

Using an AUC threshold ratio of 2 to discriminate between a relevant AUC 

increase in subjects with hepatic impairment, the model was able to correctly 

classify the compounds in approximately 90% of the cases. Being located in 

opposite quadrants of the loading plot, and as underlined by the univariate 

analysis, the amount excreted unchanged in urine is a strong determinant of 

the absence of large AUC ratio values 

It can be appreciated that clearance and hepatic extraction and oral 

bioavailability are also in opposite quadrants and both are adjacent to the 

quadrant in which the AUC ratio values properties are located, suggesting 

some interplay between the effects of these characteristics on the outcome 

variables. A limited external validation of the approach was performed for 

assessing the predictive ability of this approach based on the AUC ratio for 

4 compounds (chosen randomly while avoiding similar PK characteristics 

and not included in the original dataset): the comparison between observed 

and predicted AUC ratios are shown in Table 4.4. The NIPALS approach 

was able to predict the effect of liver disease on the PK of these compounds 

with reasonable accuracy. 
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Table 4.4. The PK characteristics and observed and model-predicted AUC ratio in subjects with hepatic impairment versus subjects with normal 

hepatic function for 4 drugs (test dataset) 

Generic name F 
(%) 

CL/F 
(l/h) 

CL 
(l/h) 

Ae 
(%) 

Plasma 
protein 
binding  
(%) 

Estimated  
EH 

AUC ratio 

       Mild LD/ normal Moderate LD/ normal Severe LD/ Normal 

       observed Predicted Observed Predicted Observed Predicted 

Midazolam 
Dundee et al, 
1984 

NA 27,60 NA 0,5 95,5 0,27 1 1,3 2,21 1,7 2,92 2,5 

Omeprazole 
Piquè et al, 
2002 

35 NA 33 0 95 0,12 1,57 1,6 1,83 1,8 2,10 2,3 

Rosuvastatin 
Simonson et al., 
2003; 
Martin et al., 
2003 

NA 48,9 NA 28 88 0,35 1,05 1,0 1,21 1,4 NA 1,9 

Sildenafil 
Muirhead et al., 
2008 
 

41 NA 85 0 96 0,35 1.84 1,6 1,84 2,1 NA 2,9 
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4.5. Expert opinion 

The analysis performed in this review showed that the quantitative 

prediction of the increase of the AUC ratio based on the PK characteristics 

cannot be done with a reasonable degree of accuracy using a univariate 

regression analysis. In some previous papers it was suggested that significant 

change of the pharmacokinetics in liver disease could be anticipated for 

drugs with high hepatic extraction [Schlatter et al., 2009], but these trends 

could not be used for a predictive approach as this was not consistently 

observed in the behavior of drugs included in the present assessment. 

Individual PK determinants (EH, for instance) are able to provide only weak 

hints of the expected PK changes in subjects with hepatic impairment.  

It is possible that drug PK characteristics show a complex interplay that 

is responsible for the overall effect of the change in exposure observed in 

these liver disease conditions, providing a confounded picture. Some 

limitations in the design of these studies may contribute to this situation: for 

instance, in many of the reported studies in subjects with hepatic impairment 

there was no assessment of the unbound concentrations. Also, for oral drugs, 

the characterization of the PK in subjects with hepatic impairment after IV 

dosing is almost never done, despite the fact that it would provide precious 

information for the study of the changes of the disposition in these liver 

disease conditions. Another important aspect of this problem is that liver 

disease may be characterized by different presentations (cholestatic, 

inflammatory, fibrotic, cirrhotic) and this is likely to differently modify the 

expression and function of hepatocyte membrane transporters and metabolic 

enzymes which characterize the intrinsic hepatic clearance of the liver.  

Some physiological information related to the characterization of subjects 

with hepatic impairment is still missing or uncertain. An appreciation of this 

aspect can be obtained from the comparison of the sometime different PBPK 

parameters used in the two papers assessing the use of PBPK in this patient 

population (see Table 4.1) [Edginton and Willlmann, 2008, Johnson et al., 

2010]. More experiments are needed to try and consolidate the 

characteristics of the system “subjects with hepatic impairment”.  

The application of multivariate techniques, especially those that can deal 

with incomplete data, may overcome part of the uncertainties and missing 

information underlined above and can provide momentum for a more 

detailed mechanistic understanding of the absorption and disposition 

changes to be expected in the different pathological conditions linked to liver 

disease. In the example we showed here, NIPALS approach was able to 

provide a model characterized by adequate accuracy in approximately 90% 

of the cases and this was also confirmed based on the outcome of an external 

dataset. The loading plot (Figure 4.4, upper right panel) provided some 

suggestion related to the previously mentioned interplay between the PK 

characteristics responsible for the outcome variable. Compounds with either 

low or high extraction ratios can undergo significant increases in exposure 
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in subjects with hepatic impairment via different mechanisms (for instance, 

portocaval shunts may significantly increase the exposure [AUC] of drugs 

characterized by high hepatic extraction via an increased oral bioavailability, 

while the decreased liver enzyme activity may affect in the same sense the 

exposure of drugs with low hepatic extraction).  

In conclusion, for their predictive use (for instance, for the 

parameterization of PBPK approaches), the assessments of PK alterations in 

subjects with hepatic impairment are still limited by some uncertainties 

partially attributable to constraints in the study design and conduct. In 

absence of additional information that may contribute to fix these aspects, a 

smarter statistical analysis, making use of the overall pattern of information 

available, may provide useful guidance for designing the studies of new 

compounds and for highlighting the specific physiological aspects that need 

additional investigations.  
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Chapter 5 

5 Predictive assessments of PK in renal 
disease4 

This is the natural companion to the previous Chapter, dealing with the 

prediction of PK changes in subjects with renal disease. Analyses were 

performed based on the same database previously considered. Regression 

analyses suggested that the relevant descriptors for predicting the effect of 

renal impairment on PK of drugs were the amount excreted unchanged in 

urine and fraction unbound in plasma, which is expected based on the 

physiology of renal excretion. Whilst the accuracy of the predictions of the 

PK changes in renal impairment is better than in case of liver disease (as well 

as the predictive performance of PBPK models), there are still cases in which 

the reason for the PK changes are escaping the current physiological 

description. The use of more sophisticated multivariate techniques was not 

as successful as in the previous case to correct these discrepancies.   

5.1. Abstract 

Renal disease has important effects on the pharmacokinetics of drugs. Ad 

hoc pharmacokinetic studies are required by the regulatory authorities in 

subjects with renal impairment for proposing dose adjustments to be adopted 

in subjects with renal disease, in order to obtain similar systemic exposures 

compared to healthy subjects. To establish a predictive model of the effect 

of renal impairment on the exposure of drugs in development, we considered 

73 marketed drugs, for which studies in subjects with different degrees of 

renal impairment were available in the literature. Multivariate analysis was 

performed using the principal pharmacokinetic parameters and physiological 

                                                        
4 This chapter is essentially based on the manuscript: Borella E, Poggesi  I. Magni P. 
Predictive assessments of pharmacokinetic alterations in subjects with renal disease, 
that is being submitted to Clinical Pharmacokinetics. 
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considerations. As expected based the basic physiological description of the 

renal clearance processes, stepwise multivariate regression analyses revealed 

that the fraction of dose excreted unchanged in urine and plasma protein 

binding were primarily related to the change in exposure for subjects with 

renal impairment versus subjects with normal renal function. Other 

methodologies, including data mining and machine learning techniques, 

were used to propose models based on a categorical definition of the 

exposure changes, providing similar results. The predictions were however 

not always satisfactory, especially to describe drugs which, despite the 

negligible renal excretion, are characterized by significant increases in the 

systemic exposure. This phenomenon, interpreted considering the 

accumulation of endogenous metabolism inhibitors in subjects with 

moderate and severe renal disease (uremic toxins), cannot be fully described 

likely due to an incomplete understanding of the physiopathological 

phenomena and to some limitations of the clinical studies. 

5.2. Introduction 

Kidneys, together with the liver, are between the main organs responsible 

for the elimination of drugs. Renal disease, which affects glomerular blood 

flow and filtration, tubular secretion and reabsorption, alters the renal 

excretion of unchanged drug and/or their metabolites. The changes 

accompanying renal disease can also lead to other modifications of 

pharmacokinetic processes, for instance, changes in the distribution, 

transport, and biotransformation of drug substances [Yeo et al., 2014; 

Velenosi and Urquhart, 2014; Verbeeck and Musuamba, 2009; Poggesi et 

al., 2009].  

Renal failure is a medical condition in which the kidneys fail to 

adequately filter waste products from the blood. The two main forms are 

Acute Kidney Injury (AKI), often due to immunologic reactions, oxygen 

deprivation, and exposure to chemical agents, which is often reversible with 

adequate treatment, and Chronic Kidney Disease (CKD), which is often not 

reversible, progressing to end-stage renal failure over a period of months to 

years [Levey et al., 2005]. The incidence of CKD is increasing in western 

countries, the prevalence of CKD among the U.S. adult population recently 

being estimated around 13% [Coresh et al, 2007]. CKD is characterized by 

glomerulosclerosis, interstitial leukocyte infiltration, tubular atrophy and 

tubulointerstitial fibrosis. Given the sequential renal microvasculature 

structure, a decrease in preglomerular or glomerular blood flow due to the 

loss of glomerular capillary loops will inevitably be associated with a 

reduction in postglomerular, peritubular blood flow and, consequently, with 

tubular ischemia and general hypoxia of renal tissue [Schlondorff , 2008].  

In 2002 the Kidney Disease Outcomes Quality Initiative (K/DOQI) of the 

National Kidney Foundation has published guidelines [Eknoyan et al., 2003] 

to define CKD and to classify stages in its progression (Table 5.1). This 

classification is based on the glomerular filtration rate (GFR), typically 



Predictive assessments of PK in renal disease 

 

 77 

expressed using serum creatinine concentration values via the Cockroft-

Gault formula: 

CrCL= 
(140-Age)x Weight (kg)

72 x Creatinineserum (
mg
dL

)
x 0.85 if female 

 or, if available, using the more precise values provided by the actual 

measurements of creatinine clearance (CrCL). When GFR is impaired, less 

creatinine is excreted by the glomerulus, causing serum creatinine 

concentrations to increase and CrCL to decrease in patients with acute or 

chronic renal insufficiency. Despite some polemics centred on the fact that 

CrCL may be somewhat biased as a descriptor for GFR (inuline clearance 

may be a more accurate one) and that GFR may not be a comprehensive 

descriptor of renal disease [Kliger et al., 2013], this appears to be a very 

reasonable candidate as descriptor of pharmacokinetic changes. 

Table 5.1. Classification of Chronic Kidney Disease. 

Stage Description GFR (mL/min/1.73m2) 

1 Kidney damage with 

normal or increased GFR 

≥90 

2 Kidney damage with 

mildly decreased GFR 

60-89 

3 Moderately decreased 

GFR 

30-59 

4 Severely decreased GFR 15-29 

5 Kidney failure <15 or dialysis 

 

For a drug eliminated primarily via renal excretory mechanisms, impaired 

renal function may alter its pharmacokinetic to an extent that the dosage 

regimen needs to be changed from that used in patients with normal renal 

function [Poggesi et al., 2009]. Although the most obvious change arising 

from renal excretion or metabolism of both drug and metabolites, renal 

impairment may also be associated with other changes, such as changes in 

absorption, plasma protein binding, and drug distribution 

[http://www.fda.gov/downloads/Drugs/.../Guidances/UCM204959.pdf, 

accessed Aug 1, 2016].  

The time at which the maximum plasma concentration occurs was found 

slightly increased for drugs given to patients with severe renal dysfunction 

[Verbeeck and Musuamba, 2009]. Drug absorption may also be altered in 

these subjects due to vomit or diarrhoea; use of antacids or uraemia can 

increase the gastric pH with further effects on absorption time.  

The plasma protein binding of many acidic drugs is decreased in patients 

with renal dysfunction due to hypoalbuminemia or accumulation of 

endogenous substances which competitively displace acidic drugs from 

albumin. Besides, an increased volume of distribution may be the result of 

fluid overload, decreased protein binding, or altered tissue binding 

[Verbeeck and Musuamba, 2009]. While acidic drugs usually bind to 

albumin, basic drugs have often a high affinity for α1-acid glycoprotein 
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(AGP). AGP has been found increased in certain patients with renal disease; 

subsequently, differently from the drug binding to albumin, the plasma 

protein binding of basic drugs may be increased in these patients.  

Pharmacokinetic studies in patients with renal dysfunction have shown 

that also non-renal clearance is reduced for many drugs providing indirect 

evidence that the also hepatic metabolism of these drugs is impaired in these 

patients. Many in vivo and in vitro studies, using rat models of both acute 

and chronic renal failure, have shown a down-regulation of the activity of 

not only CYP450 enzymes, but also other drug-metabolizing enzymes, such 

as N-acetyltransferase. Besides, endogenous inhibitors (sometimes called 

uremic toxins) accumulating in the body as a result of the chronic renal 

failure have been shown to be implicated in these alterations in drug-

metabolizing enzyme activities [Poggesi et al., 2009]. The kidney also 

expresses many of the same drug metabolizing enzymes as those found in 

the liver, even if the efficiency of elimination in this organ is typically lower 

than the liver as a result of the lower blood flow and thus, the lower rate of 

presentation to the eliminating organ.  

Renal disease affects all renal excretory processes: glomerular filtration, 

active tubular secretion and passive tubular reabsorption. Therefore, 

independently of whether a drug is filtered or actively secreted, the loss of 

excretory function in the diseased kidney can be quantified by GFR, a 

measure of glomerular function, such as creatinine clearance [Verbeeck and 

Musuamba, 2009]. In general, renal clearance (CLR), the proportionality 

constant between the rate of renal elimination and the concentration in 

systemic circulation, can be quantified from a physiological point of view 

as: 

CLR=CLfiltration+CLactive secretion-reabsorption 
Where CLfiltration is the clearance due to the process of glomerular 

filtration, CLactive secretion is the renal excretion clearance component which is 

under the control of active processes and reabsorption  is the (negative) 

clearance component accounting for the tubular reabsorption. Filtration is a 

passive process, the efficiency of which is directly proportional to the 

fraction unbound to plasma proteins (fu) and GFR: 

CLfiltration=fu∙GFR 
Active secretion is under the control of active transporters and, whilst its 

extent is decreasing with the decrease of renal function, the effect of renal 

disease on this process is less easily precisely quantified. Reabsorption, as 

filtration, is essentially a passive process.   

Efficacy and safety profile of a drug is established in phase III studies in 

a well-defined patient population, which may not be fully representative of 

the patient population in which the drug will be used once it is on the market. 

For this reason, ad hoc pharmacokinetic and pharmacodynamic studies are 

performed in special population in order to estimate the drug exposure in 

these subpopulations whose characteristics may affect drug exposure, such 

as patients with renal impairment. Both the Food and Drug Administration 

(FDA) and the European Medicines Agency (EMEA) promote 

pharmacokinetic studies to assess the pharmacokinetic characterization of 
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drugs in patients with renal dysfunction. A traditional two-stage method, in 

which, in the first stage a detailed pharmacokinetic study is carried out in 

selected subjects to obtain estimates of individual pharmacokinetic 

parameters, such as plasma clearance, volume of distribution, plasma half-

life, etc. In the second stage, the relationships between patient characteristics 

and the estimated pharmacokinetic parameters are established by 

categorization or regression techniques [Verbeeck and Musuamba, 2009]. 

Based on the results of these studies, conclusions can be drawn for dosage 

adjustments in renal disease conditions and potential dosing advice for renal 

impairment is provided in the label.  

The main objective of this work is to find approaches capable of 

describing the changes in exposure of a series of marketed drugs observed in 

subjects with renal impairment using their pharmacokinetic attributes via 

multivariate analysis to evaluate whether these approaches can be used as 

predictive tools. This could be a starting point to identify the basic molecular, 

biochemical or biological determinants that influence the pharmacokinetics 

(and thus systemic exposure) changes in subjects with renal disease 

compared to those with normal renal function. When these attributes are 

identified, and their effect quantified, they can be used in a more quantitative 

manner to drive comprehensive physiology-based pharmacokinetic (PBPK) 

models. 

5.3. Methods 

5.3.1. Data Collection 

For an extensive list of marketed drugs, pharmacokinetic (PK) parameters 

and recommendations in case of renal impairment were collected from 

DailyMed [https://dailymed.nlm.nih.gov/dailymed/, from the U.S. National 

Library of Medicine, National Institutes of Health, Health & Human 

Services] and other literature resources [Dowell et al., 2007; Mallikaarjun et 

al., 2008; Drusano et al., 1987; Roy et al., 2013; Boike et al., 1994; Johnson 

et al., 1998; Wootton et al., 1997; Delhotal-Landes et al., 1993; Christenssen 

et al., 1992; Snoeck et al., 1995; Kubitza et al., 2010; Boulton et al., 2011]. 

Only drugs given orally or intravenously were selected. To represent the 

change in PK in subjects with renal impairment, the ratio between the 

average area under the plasma concentration-time curve (AUC) in renal 

impaired subjects to the average AUC in subjects with normal renal function 

was considered. If data were available, the ratio was calculated for the three 

categories of renal impairment (mild, moderate and severe) according to the 

classification reported in Table 5.1. Some studies included indications only 

for mixed groups (for instance, for mild and moderate renal impairment), so, 

for these cases, the same AUC ratio was attributed to both the categories. If 

AUC changes in renal impaired population were not reported, the ratio 

between the oral clearance of healthy subjects to the oral clearance of 
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subjects with renal impairment was used instead. If no change in 

pharmacokinetics was observed, the AUC ratio was set to 1. For each drug, 

the following principal PK parameters were collected, as available: 

intravenous plasma clearance (CL), absolute bioavailability (F), oral 

clearance (CL/F), fraction of dose excreted unchanged in urine (Ae, 

expressed as fraction of dose), and fraction of dose bound to plasma serum 

protein (ppb). An estimation of the hepatic extraction ratio (EH) was 

calculated using the ratio of non-renal CL after intra-venous dosing to the 

hepatic blood flow (Qh), or, in absence of this, it was calculated from the 

non-renal oral clearance (CLnr,PO) using the following formula:  

CLnr, IV=
Q

H
∙ CLnr,PO

Q
H

+CLnr,PO

 

assuming complete absorption, non-renal clearance only occurring in the 

liver, and no restrictions due to protein binding and blood to plasma ratio not 

significantly different from unit [Germani et al., 2007]. Other information 

was also recorded: the main way of extraction, whether the compound was 

under the control of a single metabolic route, information about the 

cytochrome mainly involved in the metabolism processes or, if no 

cytochrome was involved, the type of enzyme or membrane transport 

proteins involved. 

The full dataset includes information about 73 drugs and it is reported in 

Table 5.9 at the end of this chapter. Summary statistics for PK parameters 

and AUC ratios are reported in Table 5.2.  

Table 5.2. Summary statistics of PK parameters and AUC ratios. 

 CL/F  
(L/h) 

F  
(%) 

CL  
(L/h) 

Ae  
(%) 

ppb  
(%) 

EH  
(-) 

AUC 
ratio 
mild 

AUC ratio 
moderate 

AUC 
ratio 

severe 

Min 2.20 0.79 0.03 0.00 0.00 0.00 0.80 0.98 0.67 

1st Qu. 15.20 29.50 6.22 1.00 50.00 0.04 1.00 1.00 1.00 

Median 34.00 61.50 16.73 7.20 83.00 0.15 1.00 1.00 1.10 

Mean 138.60 57.23 25.98 19.11 68.34 0.23 1.13 1.39 1.85 

3rd Qu. 129.80 85.00 32.30 29.42 97.00 0.29 1.12 1.45 2.00 

Max 1550.00 100.00 140.00 100.00 99.90 1.00 2.49 4.33 10.91 

NA’s 46 13 21 7 0 0 13 6 7 

5.3.2. Data Analysis 

To explore the potential relationships between the AUC ratios and the PK 

attributes selected (CL, CL/F, F, Ae, ppb, EH), two different types of 

analyses have been performed. In the first analysis univariate single 

regressions, multiple linear regression, and non-linear iterative partial least 

squares (NIPALS) multivariate regression [Bastien and Tenenhaus, 2003, 

Abdi, 2010, Preda et al., 2010] were performed for each of the three levels 

of renal impairment and their performances in predicting the AUC ratios 

given the PK parameters were compared. For the univariate single regression 
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each PK parameter was individually tested, while only the most informative 

parameters selected through a stepwise procedure were used as regressors 

for the univariate multiple regression. The following graphical analyses were 

performed for model evaluation: data vs. predictions, fold changes vs. 

predictions, residuals vs. predictions, residuals vs. regressor. The first 

analysis was performed in R v.3.0.3 [R Core Team (2014). R: A language 

and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL http://www.R-project.org/] using lm 

function for linear regression, nipals (available in mixOmics package) and 

plsreg2 function (available in plsdepot package) functions for NIPALS 

regression. The second analysis consisted of a classification approach. Two 

types of classification problems were considered. For this aim, the following 

classification criteria was chosen according to expert’s opinion: an 

administration is considered safe if the AUC ratio is below 1.25; associated 

with low risk if the AUC ratio is between 1.25 and 2; associated with medium 

risk if the AUC ratio is between 2 and 5, and with high risk if the AUC ratio 

is above 5. As a first step, each drug was assigned to a three-level class: 0 

for drugs that are classified as safe, 1 for drugs with low risk, and 2 for drugs 

with medium/high risk. In a second step, each drug was assigned to a binary 

class: 0 for those drugs whose administration is considered safe and 1 for 

those drugs whose administration is associated with some risk (low, medium 

or high) of increased exposure in subjects with renal disease. The following 

data mining and machine-learning methods were tested: Naïve Bayes (NB) 

and Classification Tree (CT) [Fung, 2001]. The analyses were performed in 

Orange v.2.7 [Demsar et al., 2013]. Since NB requests discrete attributes, all 

the six continuous attributes have been discretized through an entropy-MDL 

discretization. Gain Ratio was chosen as attribute selection criterion for CT, 

exhaustive search for optimal split was set as binarization method; for the 

pre-pruning the minimum number of instances in leaves was set to 10; 

recursively merge leaves with same majority and pruning with m-estimate 

(m=2) were used for post-pruning.   

A 10-fold cross validation was adopted to compare the performances of 

the regression and the two classifiers. In a 10-fold cross validation the dataset 

is divided in ten subsets of the same dimension through a stratified sampling 

(in this way the same class distribution is maintained in each subset). At the 

first iteration, nine folds are used to train the classifiers and one is used as 

test set; in the following iterations, the folds are interchanged. A set of scores 

represents the goodness of the classifier: accuracy, AUC of the Receiver 

Operating Characteristic (ROC) curve, sensitivity and specificity. Two-way 

analysis of variance (ANOVA) was used to check if there were significant 

differences among the accuracies calculated with the ten folds of the tested 

classifiers and the majority classifier, with the significance limit (α) set to 

0.01. Then, if a significant difference was detected via two-way ANOVA, 

post-hoc analysis was conducted using the Tukey’s test ( α = 0.01 ), to 

perform comparisons between classifiers. The proportion of false positive 

(FP) and false negative (FN) were calculated and compared to the ones 

obtained with the multiple linear regression, using a paired t-test to check if 
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they were significantly different (α = 0.01). A validation analysis was also 

performed: the proportions of FP and FN obtained on a test set of five drugs 

not included in the original list of 73 drugs were used to compare the best 

classifier with the regression model. Statistical analyses were performed in 

R v.3.0.3 using anova, t.test and glht (available in the multcomp package) R 

functions to carry out the tests above. 

5.4. Results 

5.4.1. Regression Analysis 

Among all the PK parameters, only Ae and ppb showed a correlation with 

the AUC ratios. Univariate regressions with Ae as descriptor for the three 

levels of renal impairment are shown in Fig. 5.1, while the univariate 

regressions with plasma protein binding (ppb) as regressor are reported in 

Fig. 5.2.  

 
 

Figure 5.1. Univariate regression analysis of the renally impaired to normal 

subject AUC ratio with the amount excreted in urine (left) and goodness of 

fit plots (residuals, center; fold error, right); from top to bottom: mild/normal, 

moderate/normal and severe/normal AUC ratio. 
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Figure 5.2. Univariate regression analysis of the renally impaired to normal 

subject AUC ratio with the protein binding (left) and goodness of fit plots 

(residuals, center; fold error, right); from top to bottom: mild/normal, 

moderate/normal and severe/normal AUC ratio. 

The AUC ratio tends to increase with an increase of Ae, and to decrease 

with an increase of ppb (and in turn, a decrease of fraction unbound to plasma 

protein), particularly in case of moderate and severe renal impairment. 

However, these two PK parameters alone were not able to predict accurately 

the expected changes in the AUC ratios.  

Assuming that the CLR can be approximated by the filtration clearance 

(CLR~fu∙GFR, with fu=1-ppb) and CLR=Ae ∙CL (where Ae is expressed as 

fraction of administered dose), AUC can be expressed as: 

AUC=
F∙Dose

CL
=

Dose∙F∙Ae

fu∙GFR
. 

The potential correlation between the AUC ratios and the ratio F∙Ae/fu 

was therefore explored and the corresponding regressions are reported in Fig. 

5.3.  
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Figure 5.3. Univariate regression analysis of the renally impaired to normal 

subject AUC ratio with the amount excreted to fraction unbound ratio (left) 

and goodness of fit plots (residuals, center; fold error, right); from top to 

bottom: mild/normal, moderate/normal and severe/normal AUC ratio. 

According to this outcome, a combination of backward elimination and 

forward selection was performed for each level of renal impairment using as 

initial possible regressors only Ae, ppb, and EH. Other regressors, such as 

CL, CL/F and F, were not considered due to the large number of missing 

values  and the estimated EH summarizes well the information contained in 

the available CL and CL/F data. This procedure confirmed the results of the 

previous analysis. Indeed, for the mild and moderate levels, only Ae was 

selected, instead for the most severe level of renal impairment, both Ae and 

ppb were chosen. This approach was able to provide a more consistent trend 

between the change in AUC and the PK parameters as reported in Fig. 5.4 

where can be observed that all the fold-changes remain inside the interval of 

2-fold. 
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Figure 5.4. Multivariate regression analysis. Left: observed and predicted 

data; right: goodness of fit. 

To test the predictability of this approach, the AUC ratios for four 

compounds in subjects with renal impairment, which were not included in 

the original dataset, have been estimated: the comparison between the 

observed and predicted AUC ratios are shown in Table 5.3. The MLR 

approach was able to predict the effect of renal disease on the PK of these 

compounds with reasonable accuracy. To be noticed that, for drugs such as 

exemestane, that are cleared mainly by metabolism and are highly bound to 

plasma proteins, the model underestimates the AUC ratio and, as 

consequence, the risk. 

Table 5.3. Predictions obtained with the following regression models: 𝑦1 =
1.034004 + 0.007116 ∙ 𝐴𝑒 , 𝑦2 = 1.058059 + 0.018823 ∙ 𝐴𝑒  and 𝑦3 =
1.736347 + 0.030453 ∙ 𝐴𝑒 − 0.008548 ∙ 𝑝𝑝𝑏, with y1, y2, y3 representing 

the AUC ratios relative to mild, moderate and severe renal impairment, 

respectively. Obs: observed; Pred: predicted. 

 
Generic name Ae 

(%) 
ppb 
(%) 

AUC ratio 

mild/normal moderate/normal severe/normal 

obs pred obs pred obs predcted 

Rivaroxaban [1] 36 95 1.44 1.29 1.52 1.73 1.64 2.02 

Lenalidomide 
[1,23] 

82 30 1.30 1.61 3.20 2.60 3.90 3.98 

Dabigatran 
etexilate 
mesylate [1,24] 

80 35 1.50 1.05 3.20 2.56 6.30 3.87 

Capecitabine 
[1,25] 

3 60 1.00 1.05 1.13 1.11 1.18 1.31 

Exemestane 
[1,26] 

1 90 - - 2.70 1.11 1.89 0.997 

 

Since in the dataset there were some missing data, a multivariate NIPALS 

approach was tested, which is particularly indicated in this case. This 

technique is a multivariate regression where the variables are projected on 

principal components (PCs), which are linear combinations of the variables. 

*
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NIPALS is an algorithm to impute the missing data in the original variables. 

The aim of this approach is to reduce the dimensionality of the problem and 

to avoid collinearity between the original set of variables. The outcome of 

PLS-NIPALS can be summarized into the circle of correlations (Fig. 5.5). It 

shows the correlation of the original variables with the two axes that 

represent the first two principal components (PCs) that are the most 

informative ones. In this case, the first two PCs are mostly correlated with 

Ae and ppb and this is a confirmation of the importance of these two 

regressors. From the circle of correlations is evident that Ae is a strong 

determinant of the presence of large AUC ratio, in fact, Ae is related to the 

degree of severity of the renal impairment which affects the excretion of drug 

extracted mainly through the renal way. CL, EH and CL/F are close to each 

other, suggesting some interplay between them. The regressor ppb, located 

in the opposite quadrant, is a strong determinant of the absence of large AUC 

ratios, in fact, drug avidly bound to plasma protein are usually not extracted 

through the renal way to a large extent.  

 

 

 

 
Figure 5.5. NIPALS. Left: circle of correlation; right: goodness of fit; right: 

histogram of the regression coefficients. 

5.4.2. Classification Problem 

To perform the second type of analysis the three dependent variables were 

firstly transformed from continuous to categorical in three class of risk: no 

risk, low, medium-high risk. The moderate and severe classes of risk were 

merged together because of the presence of a small number of drugs in these 

classes, which could worsen the accuracy of the classificators. The missing 

values were imputed with NIPALS method otherwise all the rows with at 

least one missing value would have been discarded, resulting in a massive 

reduction of the dataset. The classification methods selected for this analysis 

were: Naïve Bayes (NB) and Classification Tree (CT). Results are showed 

only for the most severe level of renal impairment. As it can be seen in Table 
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5.4, NB showed less accuracy compared to the majority classifier, while the 

accuracies of the CT in each of the ten folds were not significantly different 

according to a paired t-test of difference with a significance limit set to 

α=0.01.  

Table 5.4. Results in terms of accuracy, AUC of the ROC curve, sensitivity 

and specificity relative to the classification problem with a three-levels class 

and to the most severe renal impairment. A: Values designated by the same 

letter are not significantly different by paired t-test (p-value=0.04127). 

Method Accuracy AUC  Sensitivity Specificity 

Majority 0.49-0.50A 

0.49-0.50 

0.49 (0.01) 

0.5 

0.5-0.5 

0.50 (0) 

1 

1-1 

1 (0) 

0 

0-0 

0 (0) 

Naïve Bayes 0.48-0.53 

0.43-0.55 

0.50 (0.04) 

0.62-0.68 

0.59-0.75 

0.65 (0.04) 

0.61-0.68 

0.55-0.72 

0.65 (0.06) 

0.52-0.58 

0.48-0.62 

0.55 (0.04) 

Classification 

Tree 

0.50-0.58A 

0.39-0.60 

0.54 (0.06) 

0.62-0.70 

0.54-0.74 

0.66 (0.06) 

0.64-0.72 

0.59-0.79 

0.68 (0.06) 

0.58-0.74 

0.52-0.85 

0.66 (0.13) 

 

These low performances could be due to a disproportion of examples in 

the three classes; to overcome this, a binary-class classification problem was 

also tested. The AUC ratios were discretized in a binary class: 0 for those 

drugs with AUC ratio less than 1.25, and 1 for those drugs with AUC ratio 

greater than 1.25. Results are showed in Table 5.5. 

Table 5.5. Results in terms of accuracy, AUC of the ROC curve, sensitivity 

and specificity relative to the classification problem with a binary-levels class 

(threshold 1.25) and to the most severe renal impairment. A, B, C: Values 

designated by the same letter are significantly different by post-hoc analysis 

using Tukey’s test (p-value <0.001). 

Method Accuracy AUC Sensitivity Specificity 

Majority 0.46-0.49B,C 

0.46-0.51 

0.47 (0.02) 

0.5 

0.5-0.5 

0.5 (0) 

0.18-0.48 

0-0.64 

0.33 (0.24) 

0.43-0.77 

0.27-1 

0.60 (0.27) 

Naïve Bayes 0.64-0.67A,B 

0.59-0.69 

0.65 (0.03) 

0.68-0.74 

0.66-0.79 

0.71 (0.05) 

0.66-0.70 

0.62-0.72 

0.68 (0.03) 

0.61-0.65 

0.58-0.67 

0.63 (0.03) 

Classification 

Tree 

0.67-0.75A,C 

0.58-0.78 

0.71 (0.06) 

0.68-0.77 

0.55-0.80 

0.73 (0.07) 

0.65-0.74 

0.55-0.78 

0.69 (0.07) 

0.68-0.78 

0.55-0.79 

0.73 (0.08) 
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In this case, both the classifiers were significantly different (p-

value<0.001) compared to the majority classifier according to a Tukey’s test. 

CT proved to be the best classifier in terms of accuracy since its accuracy 

was significantly different (p-value<0.001) compared to NB.  

The same analysis was repeated with a threshold of 2 rather than 1.25 to 

test if the results were not affected by the proportion of cases in the two 

classes. The results in terms of accuracy, AUC, sensitivity and specificity for 

this binary-class problem obtained with a threshold of 2 are shown in Table 

5.6.  

Table 5.6. Results in terms of accuracy, AUC of the ROC curve, sensitivity 

and specificity relative to the classification problem with a binary-levels class 

(threshold 2) and to the most severe renal impairment. A: Values designated 

by the same letter are significantly different by a paired t-test (p-

value<0.001). 

 

NB proved to be the only classifier better than majority; for this reason, it 

was considered the best classifier for this analysis since the performances of 

CT showed to be dependent on the chosen threshold. The corresponding 

percentages of FP and FN were calculated, and then compared to the ones of 

the regression model as reported in Table 5.7. 

To test the predictability of this approach, the previously reported AUC 

ratios of the five compounds, which were not included in the original dataset, 

were calculated using the multiple regression. For the most severe level of 

renal impairment, the predictions were discretized using thresholds 1.25 and 

2, and the proportions of FP and FN were compared with the same 

proportions obtained with NB (Table 5.8). For this analysis, the classifier 

was firstly trained on all the 73 drugs and then tested only on the new five 

drugs. 

 

 

 

 

 

Method Accuracy AUC Sensitivity Specificity 

Majority 0.71A 

0.71-0.72 

0.71 (0) 

0.5 

0.5-0.5 

0.5 (0) 

1 

1-1 

1 (0) 

0 

0-0 

0 (0) 

Naïve Bayes 0.76-0.79A 

0.75-0.81 

0.78 (0.02) 

0.80-0.83 

0.78-0.86 

0.81 (0.03) 

0.85-0.88 

0.83-0.91 

0.87 (0.02) 

0.51-0.60 

0.47-0.68 

0.56 (0.08) 

Classification 

Tree 

0.64-0.70 

0.59-0.74 

0.67 (0.05) 

0.55-0.64 

0.47-0.70 

0.59 (0.08) 

0.79-0.86 

0.72-0.87 

0.82 (0.05) 

0.24-0.34 

0.21-0.42 

0.29 (0.08) 
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Table 5.7. Proportions of FP and FN calculated as (
FP

FP+TN
) ∗ 100  and 

(
FN

TP+FN
) ∗ 100 respectively, for multiple regression and NB for classification 

problems with thresholds 1.25 and 2. 

A, B, C, D: Values designated by the same letter are not significantly 

different by a paired t-test. 

Table 5.8. Proportions of FP and FN calculated as 
FP

FP+TN
 and 

FN

TP+FN
 

respectively, using the validation dataset for multiple regression and NB for 

classification problems with thresholds 1.25 and 2; the list of drugs resulted 

as FP or FN are reported below. 

 

5.5. Conclusions 

The results of this assessment, aiming to the quantitative prediction of the 

increase of the AUC in subjects with renal impairment compared to subjects 

with normal renal function showed that AUC ratio was directly correlated 

with the amount excreted unchanged in urine and inversely related to the 

protein binding (which is a factor that again limits the urinary excretion). 

This is also expected based on physiological considerations. Anyway the 

predictions could not be done with an appropriate level of granularity and 

precision. The use of more sophisticated statistical analysis seems not to help 

Method FP (%)  FN (%) 

Threshold 1.25 2 1.25 2 

Regression 31.03-

43.97A 

0-100 

37.5 

(33.03) 

12.35-

17.98B 

0-40 

15.17 

(14.35) 

12.51-19.82C 

0-50 

16.17 (18.66) 

22.04-39.07D 

0-100 

30.56 (39.09) 

Naïve Bayes 6.98-

48.02A 

0-100 

27.5 

(33.11) 

-1.15-8.48B 

  0-20 

3.67 (7.77) 

4.74-30.26C 

0-50 

17.5 (20.58) 

20.39-66.28D 

0-100 

43.33 (37.02) 

Method FP/(FP+TN) FN/(FN+TP) 

Threshold 1.25 2 1.25 2 

Regression 1/1 

Capecitabine 

1/3 

Rivaroxaban 

1/4 

Exemestane 

0/2 

/ 

Naïve Bayes 1/1 

Capecitabine 

0/3 

/ 

1/4  

Exemestane 

0/2 

/ 
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in providing more accurate predictions; in fact, there are compounds for 

which also the classifier is not providing accurate results.  In particular, it 

appears that the compounds for which renal excretion is low and protein 

binding is high, a small change in AUC (inhibited vs un-inhibited) is 

consistently predicted, whilst there are compounds, such as exemestane, in 

which a relatively large AUC change was observed, probably as a results of 

the uremic toxins inhibiting the metabolic pathway of this compound. There 

were recent reports [Yoshida et al., 2014] suggesting that CYP2D6 activity, 

but not CYP3A activity, decreased in subjects with CKD. The absence of a 

lack of effect of CKD on CYP2C0 and CYP3A4 activity was confirmed in 

another paper [Joy et al., 2014], where the potential inhibitory effect of 

uremic toxins was however indicated for transporters. It is interesting to 

notice that exemestane is metabolized via CYP3A and direct conjugation 

pathways, indicating that, still, there is not a full understanding of the 

determinants related to the involvement of uremic toxins in case of 

compounds that are eliminate in urine for a minor extent. Further in vivo and 

in vitro studies are therefore warranted to fully understand the physiological 

bases of the alterations of ADME characteristics in patients with renal 

impairment.  

Another aspect that should be carefully considered are the limitations 

related to the experimental studies and the available databases. Regarding 

the first aspect, it should be considered that, in the vast majority of cases, an 

intravenous assessment of oral drugs is lacking, which may help 

disentangling the effect of renal impairment on the various ADME 

characteristics. Concerning the availability of accurate databases, whilst this 

was a limitation in the past, tools are starting to become available to the 

scientists to test their approaches and hypotheses [Yeung et al., 2015].  

In conclusion, the predictive assessments of PK alterations in subjects 

with renal impairment are still limited by a variety of factors (incomplete 

characterization of the compound characteristics, constraints in the conduct 

of clinical studies, lack of a fully mechanistic understanding). In the absence 

of additional information that may contribute to fix these aspects, more 

sophisticated statistical analysis (especially those able to deal with missing 

data) may provide useful guidance for a better understanding of the problem, 

setting up meaningful hypotheses, and helping the design of the clinical 

studies for assessing these effects. 
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Table 5.9. Characteristics of the analysed compounds 

Compound CL/F F CL Ae ppb EH AUC ratio  Re 
AUC 
ratio 
mild 

AUC ratio 
moderate 

AUC 
ratio 
severe 

Abiraterone 
Acetate 

1550 5   0 99 0.94 1 1 1 [1] 

Alvimopan   6 24.12 35 80 0.16 1 1 1 [1] 
Anidulafungin     0.87 0 99 0.01 0.8 0.98 0.67 [2] 
Argatroban     21.7 16 54 0.18 1 1 1 [1] 
Aripiprazole 3.6 87   0 99 0.03 1.33 1.16 0.76 [3] 
Asenapine 
Maleate 

146.2 35     95 0.59 1 1 1 [1] 

Atomoxetine 
Hcl 

26.04 63   3 98 0.20 1 1 1 [1] 

Axitinib 38 58   0 99 0.28 1 1 1 [1] 
Bortezomib     23   83 0.23 1 1 1 [1] 
Caspofungin 
Acetate 

    0.72 1.4 96 0.01 1 1 1 [1] 

Cefditoren   14 5 100 88 0.00   3.32 4.24 [1] 
Cinacalcet 273 27.7 75.6   95 0.76 1 1 1 [1] 
Ciprofloxacin 
Hcl 

55.5 70   30 30 0.25 1.01 1.78 1.73 [4] 

Conivaptan   44 15 1 99 0.15 1.12 1.8   [5] 
Didanosine   42 21 18 2.5 0.17 1.38 2.11 3.44 [1]  
Dronedarone   15 140 0 98 1.00 1 1 1 [1] 
Eletriptan 
Hydrobromide 

  50 28 10 85 0.25 1 1 1 [1] 

Entacapone 118.3 36 43.26 0.2 98 0.43 1 1 1 [1] 
Entecavir 28.2 100 28.2 100 13 0.00 1.84 2.49 5.22 [1] 
Epirubicin 
Hydrochloride 
Injection 

    65 6 77 0.61 1 1 1 [1] 

Eplerenone 
Tablets 

10 69   5 50 0.09     1.38 [1] 

Eribulin 
Mesylate 

    3.22 9 57 0.03   1.5 1.5 [1] 

Escitalopram 
Oxalate 

36 80   8 55 0.24 1 1   [1] 

Eszopiclone 15.5 77.5   10 55 0.12 1 1 1 [1] 
Ezogabine   60 35 36 80 0.22 1.3 2 2 [1] 
Famciclovir   77     10 0.23 1.07 3.18 8.66 [6] 
Fingolimod   93 6.3 0 99 0.06     1.43 [1] 
Fluvastatin 
Sodium 

  25 67.9 0 99 0.75   1.2 1.2 [1] 

Hydromorphon
e Hydrochloride 
Extended 
Release 

484 24   7 27 0.77   2 3 [1] 

Icatibant     17.5 5 44 0.17 1 1 1 [1] 
Lacosamide   100 2.80 40 15 0.02 1.25 1.25 1.6 [1] 
Lamivudine 30.3 85 20.79 75 36 0.05   2.75 5.12 [7] 
Lamotrigine 
Chewable 
Dispersible 
Tablets 

2.2 98   78 60 0.00     1.08 [8] 

Lansoprazole 16.8 85   0 97 0.14 2.07 1.24 1.04 [9] 
Letrozole 2.21 100   3.6 60 0.02 1 1 1 [1] 
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Meropenem     15.4 73.7
012
987 

2 0.04 2.49 4.33 10.91 [10] 
 

Miglitol   59 7.21 100 4 0.00     2 [1] 
Montelukast 
Sodium 

  64 2.73 0 99 0.03 1 1 1 [1] 

Moxifloxacin 
Hydrochloride 

14.9 89 13.261 22.8
489
555
8 

48 0.10 1 1.13 1.13 [1] 

Olmesartan 
Medoxomil 

  26 1.31 13 99.7 0.01   1.39 1.82 [1]  

Paliperidone 272 28 27 60 74 0.11 1.5 2.6 4.8 [1] 
Palonosetron 
Hydrochloride 

    11.2 40 62 0.07 1 1 1.28 [1] 

Pantoprazole 
Sodium 
Delayed 
Release Tablets 

  77 7 0 98 0.07 1 1 1 [1] 

Paricalcitol   0.79 2.7 5.7 99.8 0.03 1 1 1 [1] 
Perindopril 
Erbumine 

  0.80 31.4 9.24 60 0.29 2 2   [1] 

Quetiapine 
Fumarate 

  9 79.8 20 83 0.64 1 1 1.33 [1] 

Ribavirin   51.8 25.04 27.7 0 0.18 1 2 3 [1] 
Riluzole   64 47.64 0 96 0.48         
Risperidone   66 43 1.2 90 0.42 1.53 2.8 2.07 [11] 
Rivaroxaban 10 90   30 94 0.06 1.44 1.52 1.64 [12] 
Roflumilast 9.6 80   0 95 0.09     0.79 [1] 
Romidepsin     15.30   93 0.15 1 1 1 [1] 
Rosuvastatin 
Calcium 

  20 44.1   88 0.44 1 1 3 [1] 

Saxagliptin 73.08 67   24 0 0.32 1.16 1.41 2.01 [13] 
Sildenafil 
Citrate  

  41   2 96 0.60 1 1 2 [1] 

Solifenacin 
Succinate 

  88 10 6.7 98 0.09     2.1 [1] 

Tapentadol   32 91.86 3 20 0.70 1 1 1 [1] 
Telavancin     0.917 68.4 90 0.01 1.13 1.29 2.18 [1] 
Telbivudine 20.8   18.1 42 3 0.10 1.14 1.26 1.14 [1] 
Telithromycin 64 57 58.80 7.41

0 
65 0.54 1 1 1.9 [1] 

Temozolomide   100 11.76   15 0.12 1 1   [1] 
Teriflunomide   100 0.0304 0 99 0.00 1 1 1 [1] 
Tolcapone   65 7 0 99.9 0.15 1 1   [1] 
Triptorelin 
Pamoate 

    12.6 40 0 0.08   1.94 2.44 [1] 

Trovafloxacin   88 5.978 10 76 0.05 1 1 1 [1] 
Valproic Acid    100 0.462 3 90 0.00 1 1 1 [1] 
Valsartan   25 2.00 30 95 0.01 1 1   [1] 
Vardenafil   15 56 4 95 0.54 1 1.2 1.3 [1] 
Vilazodone 
Hydrochloride 

34 72   1 98 0.25 1 1 1 [1] 

Voriconazole   96 15.96 2 58 0.16 1 1 1 [1] 
Zaleplon 266 30 70 0 60 0.70 1 1 1 [1] 
Zolmitriptan 141.2

4294 
40   8 25 0.54 1 1 1.33 [1] 

Zolpidem 
Tartrate 

  70 18.2 0 92 0.18 1 1 1 [1] 
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Chapter 6 

6 Modelling DDI Combining Top-
down/Bottom-up Approaches5  

As indicated in the previous sections, the predictions of DDIs is one of 

the most striking successes of the PBPK modeling approaches. In this 

Chapter it is shown how, including a minimal physiological interpretation of 

the PK parameters obtained from an empirical compartmental model, good 

predictions can be obtained, even in absence of a full PBPK modeling 

approach.  

6.1. Abstract 

Physiology-based pharmacokinetic (PBPK) models are nowadays popular 

modeling approaches to provide verbiage in the label related to potential 

dose modifications to be adopted when drugs are given with other 

medications based on simulations, in absence of actual clinical studies. 

PBPK can predict the systemic exposure in subjects receiving the drug with 

the concomitant medications compared to that typically observed in the 

patient population in the absence of comedications, thereby providing 

suggestions of the dose level that, in these conditions, normalize the effect 

of drug-drug interactions (DDI). A drug can be victim of DDI if a 

coadministered medication is inhibiting or inducing the elimination of the 

first drug. Inhibition will cause an increased exposure of the drug, which can 

                                                        
5 This chapter is essentially based on the poster communication: Rossenu 

S, Del Bene F, Vermeulen A, Poggesi I. Modelling potential drug-drug 

interaction risks with a combined top-down/bottom-up approach. PAGE 24 

(2015) Abstr 3560 [www.page-meeting.org/?abstract=3560]. 
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lead to safety issues. Vice versa, induction will cause a decreased exposure 

to the drug, which can lead to lack of efficacy. 

This report implements an approach, that, mixing physiological concepts 

(bottom-up) with data-driven population pharmacokinetic modeling (top-

down) can be used to predict the extent of the DDI caused by the effect of 

known cytochrome P450 inhibitors or inducers on the pharmacokinetics of a 

new molecular entity. The physiology-based inhibition concept, is 

essentially based on the knowledge of the fraction of the dose eliminated via 

a particular metabolic pathway (that can be established via in vitro 

assessments or based on a clinical study) and on the inhibitory/inducing 

(time-averaged) potency of a known DDI perpetrator, that is reported in the 

literature. This approach is applied here to the interaction between 

bedaquiline, a drug with very long half-life that is eliminated via Cytochrome 

P450 3A (CYP3A) metabolism, and a variety of CYP3A inhibitors and 

inducers.  

The combination of the physiology-based approach with the population 

model available to describe the PK of bedaquiline allows to simulate the full 

extent of DDI, even in this case, in which the PK characteristics of the 

substrate make difficult or impossible to assess it experimentally in a clinical 

trial. 

6.2. Introduction 

It is often logistically difficult to design an appropriate DDI study to 

define a clinically meaningful extent of pharmacokinetic interaction. In these 

instances, we can resort to modeling [Nucci et al., 2008]. Bottom-up 

approaches such as physiologically-based pharmacokinetic models (PBPK) 

is currently used, in many cases, to provide verbiage in the labels of new 

drugs for describing the effects of DDI perpetrators on new molecular 

entities and suggesting modifications of the dose levels to be adopted in case 

they are associated with known metabolism inhibitors or inducers (see for 

instance the ibrutinib label https://www.janssenmd.com/pdf/imbruvica/PI-

Imbruvica.pdf, accessed August 1, 2016).  

In this respect, a number of approaches, based on the in vitro inhibition 

constants of DDI perpetrators have been proposed [Brown et al., 2006, Fahmi 

et al, 2009, Houston and Galetin, 2008]. The method recently proposed by a 

Japanese group [Ohno et al., 2007; Ohno et al., 2008] was instead based on 

the CYP3A inhibitory and induction potency that DDI perpetrators 

demonstrated in in vivo studies. Based on some basic physiologically-based 

pharmacokinetic considerations involving metabolic clearance, it is possible 

to derive that the ratio of the inhibited to uninhibited area under the plasma 

concentration-time curve of a CYP3A substrate can be derived using two 

parameters: the fractional CYP3A metabolic clearance (fCYP3A) and the in 

vivo potency of the inhibitor (IRCYP3A), integrated over time for the given 

dose of inhibitor.  Ohno and coworkers examined the outcome of numerous 

DDI studies involving different substrates and inhibitors of different 

https://www.janssenmd.com/pdf/imbruvica/PI-Imbruvica.pdf
https://www.janssenmd.com/pdf/imbruvica/PI-Imbruvica.pdf
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potency, so that they were able to build up Tables for standard CYP3A 

substrates and inhibitors. Therefore, the method can be extended to new 

substrates (for which a fCYP3A can be measured or assumed), so that the 

extent of DDI can be predicted for all the inhibitors for which IRCYP3A is 

available. Viceversa, based on the outcome of a first DDI study for a 

compound behaving as CYP3A inhibitor, the effect of the same inhibitor can 

be predicted for all relevant substrates. The method demonstrated very good 

accuracy in the prediction of DDI for CYP3A substrates given both orally 

and intravenously with CYP3A inhibitors. An analogous approach was 

proposed in case of CYP3A inducers [Ohno et al., 2008]. 

Bedaquiline (TMC207) is a diarylquinoline antimycobacterial drug 

indicated as part of combination therapy against multi-drug resistant 

tuberculosis [Mahajan, 2013; see also the package insert: 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/204384s000lbl.

pdf, accessed Aug 1, 2016]. The compound, substrate of CYP3A, is 

characterized by a very long terminal half-life (6-9 months) [Lehay, 2013], 

which makes it very difficult to test the long-term extent of DDI. 

The aim of this work is to predict the expected changes of exposure of 

bedaquiline when it is coadministered with inhbitors or inducers of different 

potency as long term therapy. 

6.3. Materials and Methods 

To anticipate the magnitude of DDI that can be observed on bedaquiline 

PK following long term co-administration with DDI perpetrators, 

simulations were performed based on the available NONMEM model 

developed for bedaquiline [Lehay, 2013]. The approaches and the parameters 

for CYP3A DDI perpetrators published in the papers of Ohno et al. [Ohno et 

al., 2007; Ohno et al., 2008] were used. 

Using this approach, the inhibited oral clearance of bedaquiline is 

expressed as:  

C𝐿𝑖𝑛ℎ=𝐶𝐿∙(1−𝑓𝐶𝑌𝑃3𝐴∙𝐼𝑅𝐶𝑌𝑃3), 

where CL is the bedaquiline oral clearance in absence of the DDI perpetrator 

(2.78 L/h [Lehay, 2013]), fCYP3A is the fractional clearance of bedaquiline 

due to CYP3A4 involvement and IRCYP3A is the in vivo inhibition ratio 

reported by Ohno [Ohno et al., 2007] for the investigated inhibitors. Values 

of fCYP3A4 of 0.75, 0.90, 0.95 were considered for bedaquiline, compatible 

with CYP3A4 being responsible for most of its clearance [Liu et al., 2014]. 

An analogous approach was used for inducers [Ohno et al., 2008]. 

𝐶𝐿𝑖𝑛𝑑=𝐶𝐿∙(1+𝑓𝐶𝑌𝑃3𝐴∙𝐼𝐶𝐶𝑌𝑃3𝐴), 

where CLind is is the induced oral clearance of bedaquiline, ICCYP3A is 

the in vivo induction potency of the investigated inducers [Ohno et al., 2008] 

and the other parameters are as previously defined. 

Similar relationships can be used for calculating the AUC of bedaquiline 

in the normal (without comedications) and in the altered status due to the 

coadministration of inhibitors and inducers of CYP3A metabolism 
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6.4. Results 

6.4.1. Qualification of the approach 

The conditions used in already available short-term clinical DDI studies 

(Table 6.1.) were initially simulated to validate the approach 

Table 6.1. Observed levels of AUC ratio (inhibited to uninhibited) in the 

available DDI studies and predictions based on the proposed approach. 

 
* Observations based on Dooley et al., 2012; Svensson et al., 2013  

 

The predictions appeared in good agreement with the observation, so that 

the hypothesized fCYP3A appear well suited to start a simulation campaign 

to establish the extent of DDI in untested conditions; in particular, the 

method can be used for extrapolating the results to longer term bedaquiline 

treatments. 

 

* 

* 

*
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6.4.2. Simulations of the full DDI extent 

In the Table 6.2 the predictions of the weekly AUC ratio (with/without 

consistent coadministration of DDI perpetrators) are reported at the end of a 

two weeks 400 mg qd + 22 weeks 200 mg thrice weekly bedaquiline regimen. 

Table 6.2. Predicted levels of AUC ratio (inhibited to uninhibited) at the end 

of a two weeks 400 mg qd + 22 weeks 200 mg thrice weekly bedaquiline 

regimen. 

 
 

Plasma concentration-time profiles of bedaquiline are shown in Fig. 6.1-6.3 

for some simulated scenarios, with or without DDI; the simulations were 

obtained from the available population PK model, to provide a representation 

of the effect of inter-subject variability. In this particular plots, the 5th and 95th 

percentile of the non-inhibited bedaquiline profile are reported, together with 

the medians.   
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Figure 6.1. Predicted effect of ketoconazole (IRCYP3A4 =1 for 200-400 mg 

daily2) on bedaquiline PK (therapeutic regimen); in all plots, the legends 

report the fCYP3A4 scenarios used in the simulations. 

 
Figure 6.2. Predicted effect of erythromycin (IRCYP3A4 =0.82 for 1000-

2000 mg daily2) on bedaquiline PK (therapeutic regimen). 
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Figure 6.3. Predicted effect of rifampicin (ICCYP3A4 =7.7 for 400-600 mg 

daily3) on bedaquiline PK (therapeutic regimen) 

6.5. Conclusions 

Simulations based on the described approach indicated that the exposure 

of bedaquiline after long term co-administration of a strong CYP3A4 

inhibitor provided an AUC increase of 1.80-2.21 fold. In contrast, DDI of 

moderate inhibitors was of minimal clinical relevance, considering the inter-

subject variability. The extent of predicted DDI for efavirenz was similar to 

that predicted at steady state using a top-down NONMEM approach 

[Svensson et al., 2013].  

The combination of top-down and bottom-up approaches provides useful 

information regarding the appropriate use of drugs when actual clinical data 

cannot be generated. 
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Chapter 7  

7 Conclusions 

The aim of this thesis was to demonstrate that numerous physiology-based 

approaches are available to facilitate the characterization and the utilization (and, in 

broad sense, the development) of new drugs.  

These approaches can be based on full whole-body physiology based 

pharmacokinetic models, as the one described in Chapter 3 for the prediction of the 

pharmacokinetics in the “first in animal” and “first in human” studies. Alternatively, 

the adoption of simpler physiology-based elements can be adopted in these 

approaches. For instance, physiology-based description of principal pharmacokinetic 

parameters such as CL can be used for driving the predictions of AUC or AUC ratios 

in different conditions – e.g., in subjects with hepatic or renal impairment (Chapter 4 

and 5), or following the coadministration of comedication known to alter the 

metabolism of drugs (Chapter 6). 

Another interesting observation from this thesis is that these physiology-based 

methodologies can be used in applications that spans the full range of the development 

of new drugs: from the pre-clinical lead identification/optimization to the late 

development/post-marketing phases. 

This thesis also illustrates the point that PBPK approaches can be efficiently 

combined with other modeling approaches. For instance, PCA and sensitivity analysis 

was applied in Chapter 3 to provide a better understanding of the conditions in which 

the predictive approaches are likely to fail. PCA and continuous regression analysis 

(NIPALS) were used in the same way in Chapter 4 and 5. In addition, in Chapter 5, 

other categorical approaches were used to provide a pragmatic identification of the 

cases in which a clinically relevant change of drug exposure, potentially leading to 

dosage change recommendations, may be expected in subjects with renal impairment . 

In Chapter 6, a physiology-based treatment is used in combination with the typical 

“top-down” approach of compartmental models implemented in the non-linear mixed-

effects model setting.  

The examples reported here show how these combined “Quantitative Sciences” 

approaches can provide a more efficient handle to problems, increasing the 
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understanding on how new drugs can be used and allowing to provide answers to a 

wide range of practical problems encountered during the drug research and 

development of new drugs. The use of this combination of diverse modeling 

approaches together with PBPK can also provide additional stimuli for a more detailed 

mechanistic understanding at the basis of the translational aspects (discovery-

preclinical-clinical interface; normal population-population with organ impairment-

population with comedications) of the pharmacokinetics of new drugs. 

Finally, all the chapters of this thesis also shows that a wider knowledge-base, 

better experiments – controlling as possible all the potentially involved experimental 

variables – and a more profound scientific understanding are still needed to improve 

the predictive assessments of PK in these translational settings. 


