
 



 



The roots of education are bitter,
but the fruit is sweet.
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Abstract (English)

The high demand for low-cost sequencing has brought to develop high-
throughput sequencing technologies, also known as next-generation sequenc-
ing, which process concurrently thousands or millions of sequences. After
sequencing, researchers have to deal with raw sequencing data, representing
short fragments of DNA or RNA, which have to be conveniently processed to
quickly turn samples into results. However, few other scientific instruments
generate as much data as next-generation sequencing ones and typical output
volumes make sequencing a big data problem. Bionformaticians play therefore
a lead role to unlock the full value of next-generation sequencing data sets and
there is an increasing need for such specialists.

Typically, in order to extract biological information from the huge amounts
of data produced, the basic steps in a bioinformatic workflow consist in trans-
lating raw data into short reads, mapping reads to a reference genome, per-
forming protocol specific analysis and reporting results. Current informatic
sources for next generation sequencing data are however extremely fragmented
and often not well documented since most of the time are open-source tools
made by researchers and rarely commercial. In order to define a valuable work-
flow, or pipeline, a bioinformatician has to choose between several tools that
perform similar task and then accurately merge them to automate the end-
to-end process. This can be done manually with a considerable amount of IT
customization or through several integrative platforms developed to facilitate
the pipeline assembly process, and furthermore, to record analysis metadata,
including the tools, versions and parameter settings in order to enable repro-
ducibility of experiments. As a rule of thumb, the whole pipeline of analysis
for a sequencing run will require around three times the size of the instrument
output but such a data deluge can adversely affect these platforms that may
not necessarily be the best choice.

As well as storage consuming, next generation sequencing projects can be
highly computational demanding and often sequencing laboratories aren’t con-
veniently equipped to face both problems. Moreover computational needs are
typically variable so the right sizing of high computing systems to allocate
for next generation sequencing projects is not trivial. For a while now cloud
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computing technologies have been used to overcome such limitations and are
becoming every day more popular within the bioinformatic community.

Within this frame, this thesis work aims at studying the effects of Chronic
Myelomonocytic Leukemia on a cohort of patients that have been character-
ized by high throughput sequencing on thirty-eight genes. In order to do that,
all the informatic criticalities related with next generation sequencing, which
have been previously introduced, will be addressed.
The first chapter starts with a general overview of such bioinformatic field and
highlight the challenges that therein lies. Moreover the concept of targeted
analysis is discussed and the sequencing experiment introduced.
Chapter 2 deepens the rational of the sequencing study by characterizing the
myeloid neoplasm under investigation and then specifies how the used sequenc-
ing technology works.
Chapter 3 gets into file formats and algorithms selected to define the pipeline of
analysis that has been used for the experiment. The pre-processing section de-
tails how reads are mapped against the human reference genome and processed
to minimize the number of mismatching bases across them. Then the variant
discovery section focuses on algorithms that scan samples for identifying re-
gions that are different from the reference genome and therefore interesting.
Finally functional annotation discusses how to enrich variants with important
additional features.
In Chapter 4 two genomic workflow management systems that have been used
to implement the pipeline are presented. The first one, GenePattern has been
installed on a system of high performance computing while the second one,
Cosmos, has been implemented on the cloud. A detailed comparison will re-
port advantages and disadvantage of both platforms and a cloud approach will
be compared with a classical one.
Chapter 5 and 6 will present two additional work developed during the PhD
program. In particular Chapter 5 describes an efficient and cheap genotyping
pipeline implemented in the cloud while Chapter 6 discusses an algorithm to
classify NGS short reads by their allele origin.
Finally Chapter 7 summarizes the procedure to select the most interesting vari-
ants above the whole set of variants identified on the patient set and highlights
the results while Chapter 8 draws the overall conclusion of this dissertation.
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Abstract (Italian)

L’esigenza crescente di tecniche di sequenziamento a basso costo ha portato
allo sviluppo di tecnologie definite high-throughput, o anche next-generation,
che elaborano simultaneamente migliaia o milioni di sequenze. Una volta ef-
fettuato il sequenziamento, i ricercatori devono gestire opportunamente i dati
grezzi in output, che rappresentano brevi frammenti di DNA o RNA, e proces-
sarli in accordo con gli obiettivi dello studio per trasformare i campioni analiz-
zati in risultati. Tuttavia, solamente pochi altri strumenti scientifici generano
quantita’ di dati paragonabili ai sequenziatori di nuova generazione e i volumi
tipici di produzione rendono il sequenziamento un problema di Big Data. In
questo contesto i bioinformatici svolgono un ruolo guida per l’interprestazione
dei dataset tipici del sequenziamento next-generation e vi e’ una crescente
necessita’ di questi specialisti.

In generale, al fine di estrarre informazioni biologiche dalle enormi quantita’
di dati prodotti, i passaggi fondamentali di un workflow di analisi bioinformat-
ica consistono nel tradurre i dati grezzi in stringhe definite reads, mappare
queste ultime ad un genoma di riferimento, eseguire analisi specifiche e pre-
sentare i risultati. Tuttavia gli strumenti informatici necessari per analizzare i
dati di sequenziamento di nuova generazione sono estremamente frammentati
e spesso non ben documentati, in quanto il piu’ delle volte sono strumenti open
source creati da ricercatori universitari e raramente prodotti commerciali. Per
definire un flusso di lavoro robusto e accurato, un bioinformatico deve quindi
scegliere tra diversi tool che svolgono funzioni analoghe e unirli in modo op-
portuno per formare una pipeline di analisi che automatizzi l’intero processo.
Questo puo’ essere fatto manualmente con un considerevole sforzo in termini
di customizzazioni IT oppure e’ possibile avvalersi di diverse piattaforme che
facilitano il processo di creazione di worflow di analisi, e, inoltre, durante
l’esecuzione registrano i metadati, come i tool utilizzati, le versioni specifiche e
i parametri inseriti, il tutto per consentire la riproducibilita’ degli esperimenti.
Come regola generale, l’intera pipeline di analisi per una corsa sequenziamento
richiede pero’ circa tre volte la dimensione dell’ouput dello strumento, e una
tale quantita’ di dati puo’ mettere in crisi le piattaforme sopracitate le quali
non risultano essere necessariamente la scelta migliore.
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Inoltre, oltre ad essere estremamente onerosi dal punto di vista dello stor-
age necessario, i progetti di sequenziamento next-generation possono essere
estremamente esigenti dal punto di vista computazionale e la maggior parte
dei laboratori che si occupa di sequenziamento non e’ attrezzata per affrontare
entrambi i problemi. Per di piu’ le esigenze di calcolo sono estremamente
variabili e il corretto dimensionamento della strumentazione informatica da
allocare per un progetto di sequenziamento non e’ facilmente stimabile. Da
un po’ di tempo a questa parte le tecnologie di cloud computing sono state
utilizzate per superare tali limiti e stanno diventando ogni giorno piu’ diffuse
nel campo della bioinformatica.

In questo contesto, il lavoro di tesi si propone di studiare gli effetti della
leucemia mielomonocitica cronica su una coorte di pazienti di cui sono stati
sequenziati tramite next-generation trentotto geni. Nel corso del lavoro ver-
ranno affrontate le criticita’ informatiche precedentemente introdotte connesse
a tale progetto.
Il Capitolo 1 fornisce una panoramica generale su questo campo della bioin-
formatica ed evidenzia le sfide tecnologiche ad esso correlate. Successivamente
viene introdotto il concetto di analisi targettata poiche’ su di essa si basa
l’intero progetto di sequenziamento.
Il Capitolo 2 approfondisce il razionale dello studio caratterizzando la neoplasia
della linea mieloide oggetto della ricerca e descrivendo il funzionamento della
tecnologia utilizzata.
Il Capitolo 3 entra nel dettaglio dei formati di file e degli algoritmi selezionati
per definire la pipeline di analisi utilizzata per processare i campioni. Nella
sezione pre-processing viene approfondito il concetto di mappatura contro il
genoma umano di riferimento e i passaggi necessari per ridurre il numero di
basi che non coincidono con tale riferimento. In seguito la sezione variant dis-
covery descrive gli algoritmi per la scansione dei campioni che si prefiggono di
identificare regioni diverse dal genoma di riferimento e quindi interessanti. In-
fine tramite l’annotazione funzionale le varianti individuate vengono arricchite
con importanti informazioni aggiuntive.
Nel Capitolo 4 sono presentati due sistemi di gestione del flusso di lavoro che
sono stati utilizzati per realizzare la pipeline di analisi. Il primo, GenePattern
e’ stato installato su un su un sistema di calcolo ad alte prestazioni, mentre il
secondo, Cosmos, e’ stato implementato sul cloud. Un confronto dettagliato
riporta quindi vantaggi e svantaggi di entrambe le piattaforme e confronta
l’approccio cloud con quello classico.
Nel Capitolo 5 e 6 vengono presentati due lavori supplementari sviluppati du-
rante il corso del dottorato. In particolare il Capitolo 5 descrive una pipeline
di genotipizzazione efficiente ed economica implementata sul cloud, mentre il
Capitolo 6 presenta un algoritmo per classificare le reads NGS sulla base della
loro origine allelica.
Infine il Capitolo 7 riassume la procedura per selezionare, a partire dall’intero
dataset di varianti individuate durante lo studio di sequenziamento, le varianti
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a carattere somatico piu’ interessanti ed evidenzia i risultati ottenuti mentre il
Capitolo 8 trae le conclusioni del lavoro di tesi qui presentato.
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Chapter 1
Introduction

Next-generation sequencing (NGS) is the latest technological milestone in
the biological sciences and is changing the direction in biomedical science in-
cluding cancer research. By definition it describes those recent technologies
that provide a much cheaper and higher-throughput alternative to sequencing
DNA than traditional Sanger sequencing.

Sanger sequencing, otherwise known as first generation sequencing, was the
most widely used sequencing method since the late 70’s [1] and through the Hu-
man Genome Project (HGP), which remains the world’s largest collaborative
biological project [2], led to determine the sequence of base pairs that define
human DNA. However, despite this tremendous achievement and a great ac-
curacy, Sanger sequencing has been replaced by second generation sequencing
(SGS) techniques since early 2000s. These new technologies can indeed mas-
sively parallel sequence millions of DNA templates and overcome issues about
tiny and costly throughput. On the horizon, other promising technologies de-
fined as third generation sequencing (TGS), promise even higher throughput,
faster turnaround time, longer read lengths, higher consensus accuracy, small
amounts of starting material, and lower cost [3]. Both SGS and TGS are used
synonymously to NGS and have been possible by innovations in sequencing
chemistries, image processing, microfabrication and information technology
[4].

These progresses have already changed the way we thought about DNA
introducing the idea of population sequencing, an initial discovery phase that
aims to uncover novel genes, pathways, and mutational processes implicated
in a disease. Since 2004, the US National Human Genome Research Institute
(NHGRI) has founded a series of project to reach the goal of sequencing a
human genome for $1000 or less. This target has been considered as a tech-
nological breakthrough to enable the huge sequencing studies that could lead
to major discoveries in personalized medicine and cancer research. During the
last decade the throughput of NGS sequencers has increased at a rate that
outpaces Moore’s law, more than doubling each year. Simultaneously the cost
for raw megabase of DNA sequence has dropped from 1000$ in 2004 to 0.1$ in
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1. Introduction

2014 [5] and the latest Illumina product (HiSeq X Ten) seems to be able to beat
the challenge previously defined. Nowadays, as a result, several genomes per
week can be sequenced simultaneously and targeted DNA enrichment methods
allow even higher genome throughput at a reduced cost per sample.

Scientists have therefore embraced NGS technology in order to better un-
derstand the malignant tumor genomes. Despite cancer initiation, promotion,
and progression mechanisms are not yet fully understood, the fact that cancer
is basically a genomic diseases is well established. As a consequence, several
collaborative projects, such as The Cancer Genome Atlas (TCGA) [6] and the
International Genome Consortium (ICGC) [7] aim to catalogue mutations in
different cancer types. NGS could be then used for genetic diagnostic screen-
ing to detect inherited and somatic mutations in cancer genes [8, 9] while new
biomarkers can accelerate the research process both identifying novel targets
for drug development [10] and guiding the therapy using existing drugs. In
order to detect somatic alterations such as nucleotide substitutions, insertions,
deletions, copy number variations, and chromosomal rearrangements, several
approaches can be adopted. While whole-genome sequencing (WGS) is likely to
be few years away because costs are still high, whole-exome sequencing (WES)
and transcriptome sequencing (RNA-Seq) as well as targeted sequencing of
multiple specific genomic regions are extremely attractive. Nevertheless to get
a significant statistical correlation between genomic variations and cancer phe-
notype, a relevant amount of samples is necessary. Targeted sequencing can be
therefore a good compromise to define new insights over a sample representa-
tive of a population: once regions of interest are defined, basing on literature
findings or other insights, it lowers costs and increases sensitivity compared
to the whole-genome or exome approaches. Finally, the high complexity ob-
served in cancer genomes suggests that the understanding of how cancer genes
knit together, how they condition the disease evolution and possibly the clin-
ical phenotype, can be only achieved through comprehensive analysis of large
cohorts of well-characterized patients.

1.1 NGS data challenges in bioinformatics

The explosive growth of sequencing data gave life to several sequence archives
that freely share sequencing data within the scientific community. An example
is the Short Read Archive (SRA) that archives raw sequencing data since 2007
and nowadays stores more than 100TB of data [11]. However, despite this
massive increase in available raw sequence data, there are several informatics
challenges that must be addressed [12] in order to fulfill the growing cancer
genomics promises.

Depending on the sequencing platform and instrument the output of an
experiment can be up to hundreds of GB of raw data. Consider that a small
project with 10 to 20 whole genome sequencing data can generate up to 4TB
of raw data, the management of the amounts of data can therefore be seen
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as a “big data problem” [13] where storing and moving data is not a trivial
task. Raw sequence data have then to be conveniently processed in order to
identify causative variations or other interesting findings so the demand of sta-
tistical methods and bioinformatic tools to analyze NGS data has incredibly
magnified. These tools span several categories including alignment of sequence
reads to a reference, de novo assembly, base-calling and/or structural variant
detection, annotation of detected variants, visualization of genomic data and
many others.

Due to the availability of a wide array of data formats, software and ana-
lytical tools, there is no general solution to apply but the adoption of already
defined pipeline should be strongly promoted. This would allow to better re-
produce already published experiments, which could be combined into larger
predictive studies. Unfortunately there are few current study that record ex-
act details of their computational experiments [14]. The building process of a
robust data analysis workflow to mine, analyze and interpret the NGS data,
requires therefore to select the right computational tools for each step and
technical informatics skills. Often, researchers of small biology labs have no
computational experiences and the analysis of these data could be really chal-
lenging.

Finally, in order to store and process NGS data, sufficient computing facil-
ities are needed. Despite a single lab usually owns some computing hardware,
the computational demand of several bioinformatic tools can’t always be sat-
isfied. As a consequence, high performance computing (HPC) resources, as
cluster or server solutions, should be addressed to NGS analysis; this usually
means additional expensive investments. Furthermore, their correct sizing can
be very problematic because it requires to meticulously determine what is the
expected sequencing throughput in order to define the storage capacity and
what are the requirements (in terms of RAM or CPU) of software that will be
run as a part of the analysis workflow.

Recently, cloud computing solutions have rapidly grown in number [15] to
overcome these issues. Several processing frameworks that use cloud compu-
tation capacity have made many pipeline of analysis more accessible to the
scientific community. Firstly, the possibility to “pay as you go” the required
computation resources has partially reduced costs: this paradigm doesn’t re-
quire big initial investment. Additionally, a scrupulous sizing of the compute
capacity is not anymore necessary because of the possibility to easily resize it
depending on own needs.

1.2 NGS-based multigene mutational analysis

In 2012, motivated by this vibrating context, the Department of Hematolog-
ical Oncology of Policlinico San Matteo (Pavia, Italia) has bought an Illumina
MiSeq desktop sequencer. This choice was motivated both by technical and
biological considerations. Illumina’s sequencing by synthesis (SBS) is indeed
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the state of art of sequencing technology because of its accuracy. This tech-
nology will be discussed in detail later but it is mainly based on fluorescently
labeled reversible terminator that enable the identification of single bases as
they are introduced into DNA strands. Furthermore, it guarantees excellent
results in terms of run time, sample preparation’s simplicity and high coverage
throughput for targeted and small genome sequencing.

Although whole-genome or whole-exome applications reach the higher pre-
dictive power, the MiSeq instrument does not guarantee such an high through-
put. Nevertheless an approach as targeted panels may offer further advance
in routine molecular diagnostics of cancer by expanding the already existing
diagnostic panels of several genes. Based on that, the first study conducted
on MiSeq evaluated targeted next-generation sequencing as a new approach
for testing a broad spectrum of mutations. Recently, recurrent somatic muta-
tions have been indeed identified in Chronic Myelomonocytic Leukemia. As a
consequence, a panel of genes implicated in myeloid malignancies was defined
and it was enhanced with additional genes that were supposed to be related
with this cancer type but not already well characterized. Hence, the aim of
this targeted analysis on a selected subset of genes was to provide additional
useful prognostic information and the results will be deeply discussed in the
dissertation.

The research activity described in this thesis will deal with the bioinfor-
matic aspects of this study. The first research direction is focused on the
definition and implementation of an efficient workflow of analysis for NGS
data. Usually referred as pipeline, it can be seen as a series of step that
aims to transform raw sequencing data into useful information. Its definition
has started off with different software comparison in order to select the most
reliable ones. Once the most appropriate have been selected, the assembly
was done through different workflow management systems: these implement-
ing solutions allow for formal description of a pipeline in order to automate
and serialize all the steps required to analyze these kind of genomic data. An
efficient solution required several optimizations of the technical aspects regard-
ing data transfer, management and elaboration. Subsequent efforts have then
converged to technical solutions that deal with the sporadic availability of the
data. MiSeq’s sequencing rate has not indeed been constant over time. On the
contrary, the amount of data to analyze has had critical peaks that stressed the
modest compute resources at our disposal and resulted in long time for data
processing. The potentialities of Cloud-based solutions have been therefore
investigated and implemented. A rich part of this dissertation will focus on
the result achieved by these computing infrastructures that overcome variable
requirements of computational needs.
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Chapter 2
Clinical and technological
background

This chapter aims to give a general picture about the disease that has
been investigated by the sequencing project and the technological aspects that
characterize the MiSeq instrument. After a background section in which the
myelodysplastic and myeloproliferative neoplasms will be introduced, details
about Illumina’s sequencing technology will be provided. A final section will
concentrate on the ad-hoc target panel that was defined for the study and will
examine the fully customizable, amplicon-based assay that was used to prepare
sequencing samples.

2.1 Myelodysplastic/Myeloproliferative

Neoplasms

According to the World Health Organization (WHO) classification of tu-
mors of hematopoietic and lymphoid tissues [16] there are 5 subgroups of
myeloid neoplasms: myeloproliferative neoplasms (MPNs); myeloid/lymphoid
neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or
FGFR1; myelodysplastic syndrome (MDS); myelodysplastic/myeloproliferative
neoplasms (MDS/MPNs); and acute myeloid leukemia (AML).

The NGS-based multigene mutational analysis that will be discussed fo-
cused on MDS/MPNs: this subtype was defined by Vardiman et al [17] as
“clonal myeloid neoplasms that at the time of initial presentation have some
clinical, laboratory or morphologic findings that support a diagnosis of myelodys-
plastic syndrome (MDS), and other findings more consistent with myelopro-
liferative neoplasm (MPN)”. In particular, this study was performed on 214
patients affected by chronic myelomonocytic leukemia (CMML), a particular
MDS/MPNs type characterized by a highly variable clinical course.

The interesting model shown in Fig. 2.1 summarizes the current concepts of
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2. Clinical and technological background

Figure 2.1: Schematic representation of the current understanding of
the pathophysiology of myelodysplasia Reproduced from [18]

myelodysplasia’s pathophysiology [18]. Some steps of this model are still work-
ing hypotheses, but a similar clonal architecture has been recently observed
also in patients with CMML [19]. A somatic driver mutations that occur in an
immature hematopoietic stem cell can provide growth and survival advantages
that lead to formation of a local clone (Fig. 2.1, step 1). The mutated stem
cells must have additional advantages to let this clone become fully dominant
in the whole body, however the mechanism by which hematopoietic stem cells
settle in other bone marrow district is still unclear [20]. Once the neoplas-
tic clone has become fully dominant in the bone marrow, the patient may or
may not develop the disease. The development of clinically apparent disease
is usually correlated with additional cooperating mutations.

An alternative representation that fit for CMML’s evolution is shown in
Fig. 2.2 [21]. During their lifetime, hematopoietic stem cells accumulate dif-
ferent age-dependant mutations represented by X. When initiating mutations
occur, the affected cell gains a competitive advantage and the subsequent clonal
expansion captures all of the preexisting mutations. Several progression events
give the expanding clone other additional advantages; each progression muta-
tion captures all the mutations that occurred between the initiating event and
the progression event and all of them are designated as Y. Cells with appro-
priate progression events result in CMML which is defined by the founding
clone, designated in red. Finally, subclones may acquire additional mutations
represented as Z.
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Figure 2.2: Model for the origin of driver and passenger mutations
during CMML evolution X: age-dependant passenger mutations; Y: passenger mutations

gained between initiating and cooperating mutations; Z: passenger mutations gained during progression to

subclones

CMML affects mainly old adults which median age at presentation is ≈ 70
years. Its incidence is lower than 1 case per 100.000 persons per year so it
can be considered a rare disorder [22]. There are several mutations involved
in the disease that are well characterized and recent studies are adding new
insight about the molecular basis of CMML. While NRAS or KRAS mutations
have been known as molecular abnormality in CMML for a long time, TET2,
CBL, ASXL1, RUNX1, EZH2 and SRSF2 mutations have been later identi-
fied in a significant number of CMML patients [23]. After all, despite some
unclear details, the molecular basis of the disease can be considered relatively
well-defined, involving primarily somatic mutations of TET2 and SRSF2: co-
mutation of these genes is almost invariably associated with CMML, whereas
the ASXL1 mutation involves poor outcome. These are indeed the most fre-
quently mutated genes and the proportion of patients that carry mutations
on these genes are respectively from 50 to 60% for TET2, from 40 to 50% for
SRSF2 and from 30 to 40% for ASXL1 [24]. Table 2.1 is based on published
studies [18] and reports a comprehensive list of several well known mutant
genes in patients with MDS or MDS/MPNs. Several mutations are shared
across the spectrum of subtypes so these genes have been added to the NGS
targeted panel designed to screen a large cohort of CMML patients and some
of the related controls.
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Figure 2.3: Illumina Library Preparation

2.2 Illumina Sequencing Technology

Sequencing of CMML patients was performed by Illumina MiSeq. This
desktop sequencer can produce 2 x 300 paired-end reads and generates ap-
proximately 9Gb or raw sequencing data on a single run. It is specifically
designed for small genome sequencing or targeted resequencing studies and
relies on Illumina sequencing technology.

2.2.1 Library preparation

NGS library preparation starts with shearing genomic DNA into a ran-
dom library of fragments that are usually long from 100 to 300 base-pair.
After repairing ends and adding A overhang, platform-specific oligonucleotide
adapters, which are necessary for amplification and sequencing, are ligated to
both ends of the DNA fragments. These ligated fragments are then size se-
lected and purified to generate a sequencing-ready library. The overall process
is displayed in Fig. 2.3.

2.2.2 Cluster Generation

The major innovation of the Illumina technology is the amplification of
template fragments. This step, defined as cluster generation is performed on
a proprietary solid surface, defined flow cell. Once the library is created, it is
flowed across the flow cell and sequencing templates are immobilized by hy-
bridizing to oligos on its surface that are complementary to the ligated adap-
tors. Following this, a solid phase amplification (Fig. 2.4), also called bridge
amplification, creates approximately up to 1,000 identical copies of each single
template in close proximity. These copies result in several million dense clus-
ters of double-stranded DNA in each channel of the flow. Finally, the reverse
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Figure 2.4: Illumina Cluster Generation

strands are cleaved and washed away and the sequencing primer is hybridized
to the DNA-templates.

2.2.3 Sequencing

The sequencing reaction is conducted simultaneously on a very large num-
ber of different template molecules spread out on a solid surface. The sequenc-
ing cycle begins by adding four fluorescently-labeled reversible terminators,
primers, and DNA polymerase. Because of the terminators, only a single base
can be added by a polymerase enzyme to each growing DNA copy strand. Af-
ter laser excitation, the emitted fluorescence from each cluster is detected by
a camera (Fig. 2.5). The fluorescence label and the blocking group are then
removed and the sequencing cycles are repeated to determine the sequence of
bases one at a time.

2.2.4 Paired-end sequencing

The procedure that has just been described is referred as single-read se-
quencing and implicates sequencing DNA from only one end. This is the
simplest way to utilize Illumina sequencing but also the less powerful. A slight
modification to the standard single-read library preparation allows reading
both the forward and reverse template strands of each cluster. This alterna-
tive sequencing procedure, or paired-end, can be really helpful and all Illumina
NGS systems are capable of it.

Paired-end sequencing always improves the quality of the entire data set
and several bioinformatic tools make use of this additional knowledge to fulfill
different aims. The information about both ends of a sequence and the ex-
pected distance that exist between them can highly increase the specificity of
the alignment compared to single end sequencing. For example, DNA repeats
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Figure 2.5: Illumina Sequencing

in the genome could be really challenging to align against and the additional
information of pairing could resolve eventual un-univocal alignments. Addi-
tionally, paired-end distances that are different than expected could reflect
genomic rearrangements or other structural variants.

2.3 Targeted resequencing

In order to dissect relationships between genotype and disease phenotype
and to integrate somatic mutations into a clinical/molecular prognostic model,
a focused screen of 38 cancer genes in cohort of 214 CMML patients was per-
formed. Usually, gene discovery studies routinely screen matched tumor and
constitutional DNA while large-scale gene resequencing is applied to tumor
samples only. Despite this can be considered a large-scale resequencing study,
for 74 patients the constitutional DNA was sequenced as well. Later on, the
reason of this choice will be deeply discussed. In order to capture only 38
genes, a custom panel was designed through TruSeq Custom Amplicon, an
amplicon sequencing solution for interrogating custom regions of interest. An
online software (DesignStudio) allows researchers to design probes by entering
target regions of the genome. Probes are then automatically defined by an
algorithm that considers a range of factors like GC content or specificity and
the typical design success is 90% or better. Once a custom design has been
ordered, oligonucleotide probes are synthesized and pooled into a Custom Am-
plicon Tube (CAT).

The assay chemistry begins with hybridizing two custom-designed probes
upstream and downstream of the region of interest (Fig. 2.6). Then an extension-
ligation reaction extends across the region of interest and yield a library of new
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Figure 2.6: TruSeq Custom Amplicon Workflow Overview
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template molecules with common ends. Finally, sample-specific indices are
added to each library by PCR and the pooled libraries are ready to be loaded
into the MiSeq system for automated cluster generation and sequencing.

The customized TruSeq Amplicon panel that was defined for this study
resulted in 886 pairs of probes designed to bind flanking genomic areas of in-
terest. In particular, it allowed to capture all the exonic intervals for the 38
genes in Table 2.2. Library preparation and sequencing using MiSeq was fi-
nally performed according to the manufacturer’s instruction for all 214 tumor
samples and for 74 matched constitutional DNA.
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Biological pathways and genes Frequency %*
RNA SPLICING

SF3B1 15-30%
SRSF2 10-20%
ZRSF2 <10%
U2AF1 <10%

DNA METHYLATION
TET2 20-30%

DNMT3A ≈ 10%
IDH1/IDH2 ≈ 5%

CHROMATIN MODIFICATION
ASXL1 15-20%
EZH2 ≈ 5%

TRANSCRIPTION
RUNX1 ≈ 10%
BCOR <5%

DNA REPAIR CONTROL
TP53 ≈ 5%

COHESIN
STAG2 <10%

RAS PATHWAY
CBL <5%

NRAS/KRAS <5%
NF1 <5%

DNA REPLICATION
SETBP1 <5%

RECEPTORS
CSF3R <1%

Table 2.1: Somatic mutations of potential clinical relevance found in
CMML patients *Approximate proportion of patients with MDS carrying the mutant gene reported

in studies published so far

List of genes detected by NGS
ASXL1, BCOR, CBL, CEBPA, CSF3R, CUX1, DNMT3A, EP300,
ETNK1, ETV6, EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KRAS,
KMT2A, KMT2D, KMT2C, KMT2E, NF1, NPM1, NRAS, PHF6,
PTPN11, RIT1, RUNX1, SETBP1, SF3B1, SRSF2, STAG2, TET2,
TP53, U2AF1, KDM6A, WT1, ZRSR2

Table 2.2: Targeted genes
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Chapter 3
Variant analysis workflow

3.1 Data Pre-processing

Data pre-processing usually refers to a sequence of processes that converts
raw sequencing data (FASTQ files) to an analysis-ready format (BAM files).
A FASTQ file is indeed just a set of sequences that has to be processed in or-
der to perform a downstream analysis that aspires to extract valuable results.
Sequences have initially to be suitably merged to reconstruct the original ge-
nomic sequence from which they originated. Removing sequencing artifacts
will subsequently make data more reliable and ready for the next part of the
analysis. This section will therefore review data formats and analysis tools
that characterize such a workflow.

3.1.1 FASTQ Format

The result of the sequencing process is a collection of strings represent-
ing the decoded bases of the genomic fragments generated during the library
preparation step. The FASTQ file format has been established as a de facto
standard for sharing sequencing data and combines both the sequences and
the base quality scores [25]. Because of this ability to store a numeric quality
score associated with each nucleotide in a sequence it can be considered as a
simple extension of the FASTA format [26]. Each record of a FASTQ files is
defined by four line; an example is shown in Fig. 3.1.

The first one begins with a ‘@’ character and is followed by a record identi-
fier. There is no length limit and an arbitrary comment can be included. The
second line, as for FASTA format holds raw sequence letters. Again, there is no
length limit but only IUPAC single letter codes are accepted and upper case is
conventional. Third line begins with a ‘+’ and marks the end of the sequence.
Originally, the ‘+’ character was followed by the same sequence identifier on
the first line but not anymore. Finally, line 4 encodes the quality values for
the sequence and it allows a subset of the ASCII printable characters. This
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Figure 3.1: Example of a FASTQ file

quality string is required to be equal in length to the sequence string; the scor-
ing system used to assess quality is the so-called Phred [27] score. The quality
of a base is defined in terms of the estimated probability of error:

QPHRED = −10 log10 Pe (3.1)

where Pe is the estimated probability of a base being wrong. Quality scores
are then encoded as ASCII characters by adding 64 to the Phred values. Error
rates typical range from a few tenths of a per cent to several per cent; 1% error
rate corresponds for example to a phred score of 20. It is worthy to note that
such measures can highly affect the assembly or alignment, the variant calling
procedure and the downstream analyses.

3.1.2 FASTQ Quality Controls

Bioinformatics takes the lead role starting from here. Before any further
analysis on sequencing data it is necessary to perform a set of quality controls
on FASTQ data and give important feedbacks upstream to the wet-lab. This
task is sometimes underestimated but it should be considered as a part of the
data processing pipeline because it gives a first idea about any data problems
that can reflect experimental or sequencing inaccuracies. The overall sequenc-
ing process requests indeed several requirements to be satisfied and errors can
be introduced both during library and cluster generation or sequencing.

As a bioinformatic tool useful for this task we chose FastQC because of
its simplicity and efficacy [28]. Moreover it can either run as a standalone
interactive application or as a non-interactive application which can be inte-
grated into a larger pipeline. FastQC implements twelve modules of analysis
and generates graphs and tables to quickly assess sequencing data. Hereunder
we will not discuss all them but only few interesting ones.

A first basic control checks the number of reads generated. A low number
of sequences can be explained in terms of a little amount of DNA loaded during
the library preparation or problems with imaging process or adaptors. In par-
ticular, adaptors can often be inaccurate to capture specific targeted regions.
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Per base sequence qualities can then be checked. This check gives an
overview about the range of quality values across all bases at each position
in the FASTQ file. Usually a general degradation of quality over the length of
reads is expected but, if it is too severe, it can be necessary to perform quality
trimming based on average quality.

Further, it is fair to expect no difference between the proportion of different
bases on a sequence run. Per base sequence content should not show an over-
representation of any particular base. Strong imbalances at particular cycles
can be indicative of the presence of adaptors, while skewness across all cycles
may be indicative that a targeted region was not sequenced.

Finally it is important to check the level of duplicate sequences. An high
level of duplication may indicate some kind of enrichment bias and should be
avoided.

3.1.3 Alignment

The alignment or assembly of raw sequencing data is the most important
step of data pre-processing. While quality controls ensure no technical errors
during the sequencing process, the mapping or assembly procedure provides a
first feedback about the success of an experiment.

Briefly, assembly algorithms need to compare every read with every other in
order to align and merge them in a full-length sequence. This dissertation will
not further discuss about assembly because this process takes place when the
sequencing samples are derived from an organisms without a reference genome
as small viruses or bacteria. On the contrary, over the last decade several
version of a reference assembly have been generated for human and the latest
one (GRCh38) was released on December 2013. When a reference genome is
available, the alignment process expects to map raw sequences against it.

Mapping consists in determining the most likely source within the genome
sequence for an observed sequence. The choice of the alignment algorithm has
therefore a crucial role and strongly influences the variant detection process.
A good aligner has then to endure incorrect alignments that are mainly due
to sequencing errors or to real differences between the reference genome and
the sequenced one as point mutations or indels. Furthermore, because of the
size of the reference genome (approximately 3.2 GB) and the massive number
of sequence to align, it should be fast enough and should guarantee an high
accuracy.

The majority of the available methods relies on hash-based techniques or
on the Burrows-Wheeler transform (BWT) [29]. Both these methods build an
index for the human genome but the latter require half of the disk space to
store it. Moreover, at the same sensitivity level, BWT-based ones are usu-
ally tenfold faster if compared to their hash-based counterparts and require
less RAM memory. As a results of these considerations, the Burrows-Wheeler
Aligner (BWA) was selected for this task [30, 31]. This a widely adopted aligner
that was specifically designed for short read mapping and works for different
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sequencing platform. Nowadays BWA consists of three alignement algorithms:
all of them support gapped alignment but they are tuned slightly differently
in order to manage different type of sequencing data. The one implemented in
the workflow is BWA-SW.

The algorithm uses an FM index data structure [32] created from the BWT
of a genomic reference (the version used in the workflow was the GRCh37 ver-
sion of the human genome). This data structure require firstly to modify the
sequence order of the reference genome using the BWT (Fig. 3.2); in general,
the BWT of a string S is a reversible permutation of it that enables the search
for a pattern P in S to take linear time with respect to the length of P. Then
the final index is created and is used for rapidly positioning a read on the
genome.

Mapping qualities are then assigned by BWA to the aligned reads. These
qualities are necessary for the reliability of the variant call procedures and are
conditioned by several factors. The repeat structure of the reference genome
is usually taken into account and reads that fall in repetitive regions of the
reference are assigned low scores. Mapping qualities are then affected by read
base qualities: low base qualities mean the observed sequence is wrong and can
therefore lead to a wrong alignment. Sometimes, despite the algorithm per-
forms gapped alignment, reads are not uniquely mapped and they are placed
randomly with a mapping quality 0. These reported ambiguities, can be re-
duced by paired-end sequencing which additionally influence mapping quali-
ties. If run with paired-end data, BWA searches indeed for suboptimal hits of
pairs and reaches an higher alignment accuracy.

3.1.4 SAM/BAM Format

The result of the alignment step is a Sequence Alignment/Map (SAM) file
[33]. The SAM format was generated to overcome the fact that alignment
tools used to generate different output formats, complicating the downstream
analysis. Nowadays it is the standard for storing read alignments against ref-
erence sequences and was defined in 2009 as a result of a collaborative effort
involving scientists from many of the world’s leading research institutions as
the Broad Institute, the Wellcome Trust Institute and the Beijing Institute
of Genomics. Alignment data from the 1000 Genomes Project have been re-
leased in this format making it widely used since then. It mainly consist of
one header section and one alignment section that are distinguishable through
the first line character.

Header section starts with ‘@’ while alignment section do not. Each header
line has then a two-letter record type code that is tab-spaced by a TAG:VALUE
pair. All the TAGs can be grouped under 5 record types as defined in Table
3.1; this table then shows which tags are mandatory for each type. A detailed
description can be found at http://samtools.github.io/hts-specs/SAMv1.pdf.

The alignment section contains the information about the alignment of all
sequences against a reference genome. Each alignment line has 11 mandatory
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Figure 3.2: Burrows-Wheeler transform for a genomic sequence The

characters ˆ and $ mark the beginning and end of the sequence. To create a BWT of a 14-mer genomic

sequence, all rotations of the given sequence needs to be constructed by taking the first character of the

sequence and placing it at the end of the sequence. Then these sequences are sorted and the BWT is defined

by the final column of the matrix

fields and a variable number of optional fields. All the mandatory fields must
be present, but their values can be ‘0’ or ‘*’ if the corresponding information
are unavailable. Table 3.2 gives an overview of these mandatory fields.

An alternative way to represent a SAM file is its binary representation.
The Binary Alignment/Map (BAM) holds the same information but it is com-
pressed by the BGZF library. This format relies on block compression and
allows fast random access for indexed queries. However, in order to random
access a position-sorted BAM file, the corresponding index file should be cre-
ated; this process combines the UCSC binning scheme [34] and a simple linear
indexing.

3.1.5 Duplicate reads removal

Looking at the basic steps of library preparation and sequencing, it is worth
noting that between the adapter ligation step and the spread of DNA molecules
across the flowcell exists a polymerase chain reaction (PCR) amplification that
amplifies the fragments with ligated adapters. This step intentionally creates
multiple copies of each genomic molecule in order to have enough of them.
However once the library is flowed across the flow cell is impossible to get ex-
actly one copy of the same molecule to get bridge amplified. Fragments are
indeed randomly immobilized to folwcell’s surface.
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Tag Description
@HD The header line. The first line if present.

VN* Format version
@SQ Reference sequence dictionary.

SN* Reference sequence name.
LN* Reference sequence length.

@RG Read group.
ID* Read group identifier.

@PG Program.
ID* Program record identifier.

@CO One-line text comment.

Table 3.1: Header section in the SAM format For each type only the required tags

(defined by *) are reported

Col Field Type Brief description
1 QNAME String Query template NAME
2 FLAG Int bitwise FLAG
3 RNAME String Reference sequence NAME
4 POS Int 1-based leftmost mapping POSition
5 MAPQ Int MAPping Quality
6 CIGAR String CIGAR string
7 RNEXT String Ref. name of the mate/next read
8 PNEXT Int Position of the mate/next read
9 TLEN Int observed Template LENgth
10 SEQ String segment SEQuence
11 QUAL String ASCII of Phred-scaled base QUALity+33

Table 3.2: Mandatory fields in the SAM format

Duplicate reads occur when two copies of the same original molecule get on
different primer lawns in a flowcell. This will result in a bias introduced during
the sequencing procedure because two or more copies of the same fragment will
not be treated as one. On the contrary, certain sequences will be represented
in artificially high numbers. As a consequence, sequencing errors can be prop-
agated by duplicates and can be confused with point variations. Removing
duplicate reads is therefore a widely used practice to correct this bias when
analyzing NGS data, otherwise it can badly affect results. The percentage of
identical copies is usually around 5%. Higher rates of duplication arise when
there is too little starting material and a greater amplification of the library is
needed, or when there is a great a variance in fragment size. The polymerase
chain reaction introduces bias in reproducing reads of different lengths and
compositions [35], and smaller fragments, which are easier to amplify, can end
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up over-represented.
Duplicate reads removal step is implemented in the workflow of analysis by

the MarkDuplicates tool. It is part of Picard (http://picard.sourceforge.net),
a set of Java command line tools for manipulating high-throughput sequencing
data and it can both mark the duplicates or remove them. The TruSeq Custom
Amplicon kit generates indeed only duplicate reads because it aims to capture
specific genomic regions. If sequencing data are generated by an experiment
based on this kit, this step of analysis should be disabled because otherwise it
will remove the majority of aligned reads.

3.1.6 Indel-based Realignment

Several realignment methods have been proposed to deal both with align-
ment errors and reference bias. This section will focus on the local realignment
tool designed by the Genome Analysis Toolkit (GATK) [36] to minimize the
number of mismatching bases across all the reads. It’s the one implemented
in the pipeline because reaches good realignment results and it’s considered
the state of art although the overall procedure can be very time consuming if
compared with the initial alignment.

The majority of regions that require local realignment are usually near
an insertion in the individual’s genome with respect to the reference genome.
Indels in reads can cause problems to the aligner and usually results in mis-
alignment or mismatches. These mismatches can be considered artifacts and
can erroneously be mistaken as SNP by most of the variant callers increasing
the false positive rate. Since the alignment step is performed on each read
independently, it is not possible to minimize these mismatches across all the
reads unless by local realignment.

The step of the workflow here discussed aims therefore at realigning the re-
sults around indels to improve the accuracy of the downstream analysis. There
are mainly three types of realignment targets: indels known to be frequent on
the population, indels that are observed in the aligned reads and hidden in-
dels that are suggested by some evidence. The realignment process is done
by two step. Firstly, the RealignerTargetCreator tool determines small suspi-
cious intervals which are likely in need of realignment and subsequently the
IndelRealigner tool runs the realigner over those intervals. The RealignerTar-
getCreator takes the BAM file as input and possibly one or more lists of known
indels. In particular, the following recommended sets of known sites have been
used for the analysis:

� Mills and 1000G gold standard.indels.b37.sites.vcf

� 1000G phase1.indels.b37.vcf (currently from the 1000 Genomes Phase I
indel calls)

The same files should be used for the IndelRealigner step.
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3. Variant analysis workflow

In summary, the first step searches and identifies the most parsimonious
alignment along all reads at a problematic site: if it is sufficiently better than
the original it’s accepted and the realignment process is performed by the
second step. Several regions are finally transformed into clean reads containing
a consensus indel suitable for standard variant discovery approaches.

3.1.7 Base Quality Score Recalibration

The last step of data preprocessing’s pipeline modifies the base quality
scores of each read in order to make them closer to the actual probability
of mismatching the reference genome. Once again, a GATK’s tool is widely
considered the best solution to achieve this goal known as Base Quality Score
Recalibration (BQSR). The BQSR’s main function is therefore to reduce noise
of quality scores caused by machine read errors by looking at more than just
a single base at time, rather, every base in the BAM file.

Basically all reference mismatches are considered errors and indicative of
poor base quality unless present in dbSNP [37]. dbSNP contains millions of
known molecular variations and the used version (dbSNP 137) has more than
50 million variants. The fact that any mismatch not in dbSNP is an error is
a statistically assumption that aims to reduce the number of false positives at
the expense of an increased false negative rate. Because of the tool’s ability to
recalibrate also base insertion and base deletion, the following files have been
used in addition to dbSNP in order to filter reference mismatches considered
as errors:

� Mills and 1000G gold standard.indels.b37.sites.vcf

� 1000G phase1.indels.b37.vcf (currently from the 1000 Genomes Phase I
indel calls)

� 1000G omni2.5.b37.vcf

First pass of this process is performed by the tool BaseRecalibrator that
analyzes covariation among several features as:

� reported quality score

� position within the read (machine cycle)

� preceding and current nucleotide (sequencing chemistry effect)

Given the particular covariates seen at each site it is possible to calculate the
PHRED-scaled quality score as:

# of reference mismatches + 1

# of observed bases + 2
(3.2)

The output file is a table that reports several covariate values, the number of
observations and mismatches and the new empirical quality score. A second
run then applies these new quality scores on all reads in a BAM file.
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3.2. Variant discovery

3.2 Variant discovery

Next-generation sequencing mainly aims at discovering or confirming vari-
ations among populations of related samples. This task is commonly referred
to as variant discovery and takes place after data-preprocessing. The following
section will introduce the tools that have been implemented in the pipeline to
perform this task. The topic will be preceded by several considerations in order
to help its comprehension and to explain why these tools have been included
in the analysis workflow.

Given accurately mapped and calibrated reads, variant discovery searches
for differences between the sequenced genome and a reference. Human ge-
netic variation ranges from the single base pair to large chromosomal events.
Single Nucleotide Variants (SNVs) are variations of a single nucleotide with
respect to the reference genome. SNVs are referred as SNPs (single nucleotide
polymorphisms) if occur commonly (e.g. 1%) within or between populations.
While not as common as SNPs, which are the main source of genetic human
variation, indels are also widely spread across the genome. The term indel
defines small (usually < 1 kb) INsertions or DELetions of bases in the DNA
of an organism and the genetic variations caused by them is substantial.

It’s probably not too surprising but next-generation sequencing has revealed
that human genomes differ more as a consequence of structural variation than
of single nucleotide differences. Structural variations were originally defined as
insertions, deletions, inversions and translocations greater than 1 kb in size but
due to the lack of a standard, sometimes also small indels go under this defi-
nition. A particular subtype of structural variation are then the copy-number
variations (CNVs). These are variation in the number of copies of one or more
sections of the DNA and includes insertions, deletions and duplications.

Usually the variant analysis consists in determining the presence of these
variants in comparison to the human genome reference however, when this
analysis refers to a somatic sample, variants can be called in comparison with
a matched normal genome. Despite the latter approach has recently become a
standard in cancer research, normal matched samples are not always present
when a study is defined. Following these considerations different variant caller
have been implemented in the pipeline and will be discussed in the next sub-
sections. In particular, four variant caller will be reviewed: UnifiedGenotyper,
a GATK’s variant caller for point and indel germline variants; MuTect, a
somatic point mutations variant caller; ExomeCNV, a method to detect copy-
number variation and loss of heterozygosity from tumor-matched data; and
finally SVDetect that identify structural variations from paired-end data.

Until recently tumor and matched samples were genotyped independently
against the reference genome and the results were subtracted. Today this as-
sumption of independence has been replaced by refined comparative analysis
of tumor and normal samples that achieve higher performances with respect
to the previous approach. [38, 39].

Even with normal sequence data, somatic calling can be very challenging
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3. Variant analysis workflow

because of tumor heterogeneity and normal contamination that add additional
noise to the various sources of errors that have been introduced in the section
about data-preprocessing.

3.2.1 Unified Genotyper

UnifiedGenotyper is a GATK’s module that addresses SNP and genotype
calling procedures. SNP calling aims at determine in which positions the
aligned bases differ significantly from a reference sequence. Genotype call-
ing then determines the genotype for only that positions in which a SNP or a
variant has already been called.

Early methods for genotype and SNP calling rely only on counting the
number of times each allele is observed at each site and using simple cutoff
rules to perform SNP or genotype calls [40]. Cutoffs are empirically defined
and usually lead to underestimate heterozygous genotypes. UnifiedGenotyper
incorporates instead uncertainty by using a probabilistic framework that adds
additional information regarding allele frequencies. As a result is it possible to
provide measures of uncertainty about the genotype inference and scoring the
results accordingly. This approach is very fast and relies on the assumption
that bases are independent. SNP and indels are therefore called separately
and each variant locus is considered independently.

Considering that D represents all the read for a particular individual at a
particular site, is it possible to calculate the likelihood of the data Pr(D|G)
for a given genotype G. For each genotype, Pr(D|G) is:

Pr(D|G) =
∏
j

(
Pr(Dj|H1)

2
+

Pr(Dj|H2)

2

)
(3.3)

where G = H1H2 because of the diploid assumption. It follows then:

Pr(Dj|b) =

{
1− εj if Dj = b
εj otherwise

(3.4)

where b is a specific allele and εj is the larger error rate between sequencing and
alignment errors for the j-th base. If a prior probability is further supplied,
the Bayes’ formula can be used to calculate the likelihood of a genotype G:

Pr(G|D) =
Pr(G)Pr(D|G)∑
i Pr(Gi)Pr(D|Gi)

(3.5)

Priors are applied when this calculation is performed simultaneously on dif-
ferent sample but in this case the algorithm is usually used in single sample
mode and P(G) are set to 1.

SNP and genotype calling procedure can be summarized as follows:

� initially the algorithm computes the genotype likelihood for all the diploid
genotypes (AA, AC, AG, AT, CC, CG, CT, GG, GT, TT) using only
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the pileup of bases and associated quality scores. These likelihood are
however computed only on those bases satisfying minimum base quality,
mapping read quality and pair mapping quality.

� the allele frequency distribution is therefore computed to determine the
most likely allele count and a variant call is emitted if determined;

� if a variant will be emitted, the algorithm assigns a genotype: the geno-
type with the highest probability is generally chosen and a genotype
quality is defined. Once all the likelihood have been calculated the likeli-
hood of the best genotype is normalized to 1 and all the other likelihoods
according to that scale. Then these values are phred-scaled and the geno-
type quality is the calculated as the likelihood of the most likely genotype
minus the likelihood of the second most likely genotype.

Indel calling procedure relies on a different definition of genotype likelihood
but the overall process is similar.

Recently, a new GATK’s variant caller has been released. This tool, called
HaplotypeCaller, calls simultaneously SNPs, indels, and some SVs by perform-
ing a local de-novo assembly. Both HaplotypeCaller and UnifiedGenotyper
perform very well, but overall HaplotypeCaller provides more accurate calls,
in particular for regions that are traditionally difficult to call. However it is
currently computationally intensive, so UnifiedGenotyper is still very valuable
and it was chosen as the one to implement in the pipeline.

3.2.2 MuTect

The diploid assumption made by UnifiedGenotyper makes this tool specific
to detect germline variations in an individual’s genome. Germline mutations
may occur de novo or be inherited from parents’ germ cells. On the contrary,
somatic mutations accumulate in cells of the body during a person’s lifespan
and can lead to cancer. It is worth to remember that the implemented pipeline
focus on tumors so a variant caller that doesn’t treat somatic mutation is not
enough. Somatic mutations however are more difficult to identify. Firstly,
these mutations occur at lower frequency than germline mutations, usually
from 0.1 to 100 per megabase; Secondly, they are only present on a small frac-
tion of DNA molecules that are sequenced; tumor samples are nearly always
contaminated by normal cells and additionally a somatic mutation can origi-
nate by a subpopulation of tumor cells.

MuTect [41] was therefore implemented in the pipeline. This additional
variant caller reaches high sensitivity and specificity to detect somatic point
mutations, given a tumor sample and its patient-matched equivalent. Pre-
processed input sequences are scanned on each genomic locus independently
by performing the next four steps:

1. removing low-quality sequence data;
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2. performing variant detection through a Bayesian classifier;

3. filtering false positives;

4. designing the variants as somatic or germ-line through a second Bayesian
classifier.

Each aligned read passes the first filter if the mapping quality score is greater
than zero, if base quality scores are greater than or equal to five, if the sum
of the quality scores of the mismatches is less than or equal to one hundred
and if less than 30% of bases have been soft-clipped. Finally if there is an
overlapping read pair, and both reads agree, the read with the highest quality
score is retained, otherwise both are discarded.

In order to understand the variant detection process, we will review the
main steps of the algorithm. For each site the reference allele is denoted as
r ∈ {A,C,G, T} while bi and ei represent the called base of read i(i = 1...d)
that covers the site and the probability of error of that base call (each base has
an associated Phred-like quality score qi where ei = 10−

qi
10 ). The algorithms

exploit two models to call a variamt: (i) model M0 in which there is no variant
at the site and all nonreference bases are explained by sequencing noise, and
(ii) model Mm

f in which a variant allele m truly exists at the site with an allele
fraction f and, as in M0, reads are also subject to sequencing noise. M0 is
equivalent to Mm

f with f = 0. The likelihood of the model Mm
f is given by:

L(Mm
f ) = P ({bi}|{ei}, r,m, f) =

d∏
i=1

P (bi|ei, r,m, f) (3.6)

assuming the sequencing errors are independent across reads. If all substitution
errors are equally likely, that is, occur with probability ei/3, it follows:

P (bi|ei, r,m, f) =


f ei/3 + (1− f)(1− ei) if bi=r
f(1− ei) + (1− f)ei/3 if bi=r

ei/3 otherwise
(3.7)

Variant detection is performed by comparing the likelihood of both models
and if their ratio, that is, the LOD score, exceeds a decision threshold (log10δT )
we declare m as a candidate variant at the site. LODT is therefore calculated
as:

LODT (m, f) = log10

(
L(Mm

f )P (m, f)

L(M0)(1− P (m, f))

)
≥ log10δT (3.8)

and δT is set to 2 to ensure being at least twice as confident that the site is
variant as compared to noise. LODT cab be rewrited as:

LODT (m, f) = log10

(
L(Mm

f )

L(M0)

)
≥ log10δ − log10

(
P (m, f)

(1− P (m, f))

)
= θT

(3.9)
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To determine P (m, f), is assumed that P (m) and P (f) are statistically
independent and that P (f) is uniformly distributed (that is, P (f) = 1) and
P (m) is one-third of the expected mutation frequency for the studied tumor
type (representing equal prior for all substitutions). A typical mutation fre-
quency of 3 · 10−6, yields θT = 6.3.

Despite very useful as a threshold for detection, LOD score cannot be imme-
diately translated into the probability that a variant is a real mutation rather
than a sequencing error. Because the algorithm is based on the incorrect as-
sumption of independent sequencing errors and accurate read placement, it
usually underestimates the false positive rate. To eliminate these false pos-
itives MuTect applies six filters and possibly a panel of normal samples as
controls to clear both germ-line events and artifacts.

Each variant detected is then classified as somatic or germline. To perform
this task a second classifier similar to the one described is used. In this case,
f is conservatively set to 0.5 for a germ-line heterozygous variant. Thus it
follows:

LODN = log10

(
L(M0)P (m, f)

L(Mm
0.5)P (germline)

)
≥ log10δN (3.10)

which can be rewritten as:

LODN = log10

(
L(M0)P (m, f)

L(Mm
0.5)P (germline)

)
≥ log10δN − log10

(
P (m, f)

P (germline)

)
= θN

(3.11)
This second classifier makes therefore sure the normal does not carry the vari-
ant allele. Once the LOD score for the normal sample is calculated it is com-
pared with a cutoff determined by the log ratio of prior probabilities of the
considered events. In particular, to calculate P (germline) two cases were dis-
tinguished: (i) sites which are known to be variant in the population by dbSNP
and (ii) all other sites. The default value are set to θN |non−dbSNPsite = 2.2 and
θN |dbSNPsite = 5.5.

3.2.3 Variant Call Format

The output of the reviewed variant callers is a VCF file. VCF is the acronym
of Variant Call Format and specifies a format used in bioinformatics for storing
genome variations such as SNPs, insertions, deletions and structural variants,
together with rich annotations [42]. It was originally developed for the 1000
Genomes Project and nowadays it is a standard that has reached the 4.2 ver-
sion. It was designed to be scalable and because of this feature it can store
millions of sites with genotype data and annotations from thousands of sam-
ples. Every VCF file has three parts that are ordered as follow:

� Meta-information lines.

� One header line.
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3. Variant analysis workflow

� Data lines.

First VCF line specifies the version number and as all the other meta
information lines begins with“##”. Additional meta information lines provide
a standardized description of tags and annotations used in the data section.
In particular, these lines can be very useful to decode filters that have been
applied to the VCF or additional fields that are not usual. Moreover these
lines can store information about the software used to process the file and any
other information relevant to its history. Data lines are also called VCF records
and contain variants with the corresponding genotype data and annotations.
These lines report all the information defined in the header line; the latter
has eight mandatory columns that are defined in table 3.3. In addition, if

VCF mandatory fields
CHROM chromosome

POS 1-based position of the start of the variant
ID unique identifiers of the variant

REF the reference allele
ALT a comma separated list of alternate non-reference alleles

QUAL a phred-scaled quality score
FILTER site filtering information

INFO
and a semicolon separated list of additional,

user extensible annotation

Table 3.3: VCF mandatory fields

samples are present in the file, the mandatory header columns are followed by
a FORMAT column and an arbitrary number of sample IDs that define the
samples included in the VCF file.

An example of VCF file is reported in Fig. 3.3 where the FORMAT field
GT:GQ:DP indicates the genotype, genotype quality and read depth for each
sample, respectively. All data lines are TAB delimited and it is strongly recom-
mended that all annotation tags used are declared in the VCF header section.
Moreover, Fig. 3.3 reports how to represent different sequence variants; it is
strongly suggested to refer at http://samtools.github.io/hts-specs/VCFv4.2.pdffor
a detailed description of VCF 4.2 specification.

3.2.4 Structural Variant Calling

As already stated, despite SNPs have long been considered to be the most
common class of genetic variations, it is now recognized that CNVs embrace a
greater proportion of the genome. In particular, an estimated 1.2% of a single
genome differs from the reference human genome because of CNVs while only
0.1% because of SNPs [43].
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Figure 3.3: Example of valid VCF (a) Example of valid VCF. The header lines ##fileformat

and #CHROM are mandatory, the rest is optional but strongly recommended. Each line of the body

describes variants present in the sampled population at one genomic position or region. All alternate alleles

are listed in the ALT column and referenced from the genotype fields as 1-based indexes to this list; the

reference haplotype is designated as 0. For multiploid data, the separator indicates whether the data are

phased (|) or unphased (/). Thus, the two alleles C and G at the positions 2 and 5 in this figure occur on the

same chromosome in SAMPLE1. The first data line shows an example of a deletion (present in SAMPLE1)

and a replacement of two bases by another base (SAMPLE2); the second line shows a SNP and an insertion;

the third a SNP; the fourth a large structural variant described by the annotation in the INFO column,

the coordinate is that of the base before the variant. (b-f) Alignments and VCF representations of different

sequence variants: SNP, insertion, deletion, replacement, and a large deletion. The REF columns shows the

reference bases replaced by the haplotype in the ALT column. The coordinate refers to the first reference

base. (g) Users are advised to use simplest representation possible and lowest coordinate in cases where the

position is ambiguous. Reproduced from [42]
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Traditional methods as fluorescence in situ hybridization (FISH), SNP
arrays and array comparative hybridization (aCGH) have been commonly
used for detection of CNVs. However, these methods are usually affected
by low resolutions that make difficult to detect short CNVs, and can’t be used
for a discovery analysis as they mainly target known CNV. NGS technology
has recently brought several breakthroughs in SVs’ detection process. The
most promising methodologies that have been proposed to analyze NGS data
for structural variants, adopt “Paired-End Mapping” or “Depth of Coverage”
strategies.

Methods based on depth of coverage (DOC) usually partition the genome
into non-overlapping windows and the counts in these windows are taken as
a measure of DOC. This segmentation makes sure each window has the same
read depth within it and contrasts with the adjacent ones. Candidate SVs are
then determined by selecting the genomic windows in which the observed DOC
is substantially different from the expected: a window can therefore indicate
a gain, loss or no CNV event. In particular, it is assumed that the probability
of any given base in the genome being sequenced is equal to any other base
so the number of reads mapped to a region is assumed to follow a Poisson
distribution and is proportional to the number of copies. As a result, a du-
plicated sequence in a sample have a number of reads higher than expected
when mapping to a reference sequence. Similarly, a sequence that has been
deleted would results in a lower read depth because fewer reads mapp to the
reference. Although effective, DOC based methods cannot really detect where
a CNV have been inserted and rely on segmentation processes that sometimes
aren’t robust enough.

PEM methods can detect more structural variants than DOC methods,
including inversions and translocations by exploiting the mapping information
of paired reads. Paired-end sequencing is required because these algorithms
rely on the distribution of the insert sizes that occur between paired reads.
If the end of a fragment maps at a distance longer than expected it could
be indicative of a deletion while if the distance is shorter than expected, an
insertion could have happened. Moreover once the alignment is done, reads
can be investigated with respect to a set of possible configurations that imply
certain SVs. These “signatures” are illustrated and described in Fig. 3.4.

3.2.5 ExomeCNV

ExomeCNV is a statistical method to detect CNV and LOH from exome
sequencing data that relies on depth-of-coverage and B-allele frequencies from
mapped sequence reads. This tool mainly works with paired samples and
was integrated in the pipeline because, even if it was specifically designed for
exome-sequencing data, it reaches good performances with targeted data if
target regions are whole genes. The majority of depth-of-coverage techniques
works with a continuous region as the whole genome or a specific target. On
the contrary, by only taking into account the exons, the search space can
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Figure 3.4: Configurations of PEMs in various types of SVs (A) Deletion.

The paired-end read spans the breakpoint of a deletion. Thus, the mapped distance of the paired-end reads

is significantly larger than the insert size. (B) Insertion. The paired-end reads spans an insertion, and

the mapped distance significantly less than the insert size. (C) Inversion. The read pair encompasses one

breakpoint of an inversion and the right end is mapped with incorrect orientation. (D) Tandem duplication.

The read pair spans the middle breakpoint of a tandem duplication. The PEM will have correct orientation

but with reverse order. (E) Intra-chromosomal translocation. Two read pairs span the two breakpoints

of an intra-chromosomal translocation with one pair having a large mapped distance and the other having

correct orientation but their ordering reversed. (F) Inter-chromosomal translocation. The two ends of the

pair are mapped to different chromosomes. (G) One-end unmapped. The sequenced genome has a DNA

segment that does not exist in the reference genome. One end of the pair is mappable but the other is not.

Reproduced from [43]
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be considered discontinuous. Moreover exome sequencing can be challenging
because, due to a different efficiency of capture probes, the distribution of reads
cannot be considered uniform.

Here in the following we will summarize the procedure to call both CNVs
and LOHs [44]. Let consider an exon of length L, let X and Y denote the
numbers of reads, each of length w, mapped within the exon of interest in case
and control respectively. The depth-of-coverage is then Xw/L and Y w/L for
case and control, respectively. Although the method is discussed in terms of
depth-of-coverage, it is developed in terms of the count statistics X and Y .
Let NX and NY be the total numbers of aligned reads in case and control,
respectively. The read count ratio is defined as:

R =
X/NX

Y/NY

(3.12)

Raw counts X and Y are divided by the total number of reads NX and NY to
mitigate the effect of overall increase in local counts due to the increase in total
depth-of-coverage. The ratio is adjusted so that the exome-wide median is 1.
Without lost of generality, it is assumed that NX = NY and it results that
R = X/Y . Because X and Y follow Poisson distributions with parameters
λX and λY , respectively, with sufficient depth-of-coverage the Poisson distri-
butions converge to normals with equal means and variances: N(λX , λX) and
N(λY , λY ). Under the null hypothesis of no CNV, λX = λY , and under the
alternative hypothesis, λX = ρλY = ρλ. ρ indicates the copy-number ratio; for
example, ρ = 0.5 for deletion and ρ = 1.5 for duplication. By Geary-Hinkley
transformation, let:

t(ρ) =
µYR− µX√
σ2
YR

2 + σ2
X

=
λYR− λX√
λYR2 + λX

=
λR− ρλ√
λR2 + ρλ

=
(R− ρ)

√
λ√

R2 + ρ
(3.13)

and t(ρ) follows the standard normal distribution. Thus, the specificity and
sensitivity are 1− α and 1− β where

α =

{
φ(t(1)) if ρ < 1

1− φ(t(1)) if ρ ≥ 1
(3.14)

β =

{
1− φ(t(ρ)) if ρ < 1
φ(t(ρ)) if ρ ≥ 1

(3.15)

These formulas describe the achievable specificity and sensitivity of a given
cutoff ratio R. In calling CNV, is therefore necessary to identify a cutoff r(ρ) by
solving the above equations, which yields desired minimum specificity and/or
sensitivity for testing a particular copy-number ratio ρ at a particular exon
with some depth depth-of-coverage and length.

The CNV calling procedure can be summarized as follow:
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1. for each exon the algorithm initially calculates the log coverage ratio
between case and control;

2. given minimum values for specificity and sensitivity, the algorithm picks
the cutoff that optimizes for these values basing on read coverage, exon
length, and the estimated admixture rate;

3. a CNV call is made for each exon except for those without sufficient
coverage or that cannot achieve the desired power/specificity;

4. exon are then merged into segments using circular binary segmentation;

5. CNVs are therefore called on each segment as described above;

6. the procedure over segment is repeated until the most sensitive segmen-
tation is achieved.

Despite ExomeCNV was specifically used to detect CNV, it is also able to
call LOH and the steps in LOH calling procedure are similar to those in CNV
calling. In this case, the detection process starts by considering all polymorphic
positions in the exome of the control sample, and for each of the positions, the
B-allele count, B, is the number of reads with non-reference or B-allele at that
position. For a polymorphic position i, Ni is the total number of reads mapped
to that position; thus the B-allele count Bi follows a binomial distribution
Binomial (pi , Ni). A binomial that rejects the null hypothesis: pi = 0.5 can
be used to detect LOH at each polymorphic position. Then the algorithm will
then perform circular binary segmentation and call LOH on each incrementally
bigger segment.

3.2.6 SVDetect

SVDetect can be considered as a complementary tool to ExomeCNV in
order to perform a complete structural variant analysis. As ExomeCNV, it
can construct copy number profiles but it relies on paired end data and mainly
searches for genomic rearrangements as large insertions-deletions, inversions,
duplications and balanced or unbalanced inter-chromosomal translocations.
In particular it uses the a priori information from paired-ends such as order,
orientation and insert size as parameters to identify anomalously mapped pairs
which can indicate potential genomic variations from the reference. This tool
detects structural variations (SV’s) by using sliding windows and clustering
strategies, and also allows to visualize them at genome scale [45].

First step of SV’s calling procedure consists on mapping all anomalous
mapped paired-end reads onto a fragmented reference genome. Inputs are pair
of reads that either have an incorrect orientation and/or the distance that exists
between them is out of a typical range. The reference genome is partitioned into
small genomic overlapped regions that are usually big as twice the maximum
insert size between ends. SVDetect uses therefore a sliding-window strategy
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to identify all groups of pairs sharing a similar genomic location and assign
each anomalous pair to at least one possible pair of two chromosomal region.
The connections generated between two genomic regions are considered links
and each link is characterized by a set of features as chromosomal location,
number of pairs, orientation and order of the involved paired-ends. After
removing redundant links, the remaining ones are characterized in terms of
precise coordinates. Finally a sorting procedure occurs and close overlapping
links are merged.

The next step consists in filtering all the generated links accordingly to a set
of user-defined filtering parameters. Filtered links are considered as significant
paired-end mapping clusters and used to call structural variants (SVs). Filters
are mainly based on the number of pairs in each link, the consistency of the
strand orientation between pairs, the order of reads and the distance insert
size between intra-chromosomal ends. A threshold on the minimum number
of paired-ends is one of the most important filter parameters and improves the
confidence in the detection of SVs. Another option is filtering of pairs whose
ends are not oriented in the same way as the ends of the majority of pairs in
the two linked regions. These filtering procedure leads to structural variant
calling. For example, if one of the two ends of filtered pairs has an unexpected
strand orientation, the cluster is annotated as a potential inversion. Moreover,
the order of paired-ends is used to annotate inter-chromosomal clusters and
to point out if they are balanced or an unbalanced translocations. Insertions
or deletions are instead called by evaluating how many standard deviations
the insert size of links under analysis differs from the mean of the insert size
distribution of aligned reads. Usually values of 2 to 3 standard deviations from
the mean are considered enough to call deletions and insertions.

For each sliding windows along the genome, the log-ratio of depth-of-
coverage between a sample and a control dataset is finally calculated using
all pairs correctly mapped with the expected insert size. This ratio is then
used to define copy-number profiles and potential loss or gain events.

SVDetect offers different output formats as the BED format or the Circos
link format. In particular, the latter highly helps the subsequent analysis of
reported paired-end clusters and a representation can be found in Fig. 3.5.

3.2.7 Variant Quality Score Recalibration

The Variant Quality Score Recalibration (VQSR) step is the last step of
variant calling and aims at assigning accurate confidence scores to each SNP or
indel call. This procedure is part of GATK and allows to filter variants basing
on their accuracy in order to generate highly accurate call sets.

VQSR relies on the fact that mutation calling algorithms are usually very
permissive so the resulting call sets need to be filtered. In theory, variants
could be filtered by hand tuned filters that usually require a lot of expertise
and time to be defined. In practice, it would be better to learn how to filter
variants by the data itself. The idea is therefore to build a model of true genetic
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Figure 3.5: Graphical visualization of predicted SVs Genomic locations of inter-

and intra- chromosomal links are shown using the Circos software. Starting from outside of the circle,

the following features are displayed: chromosome ideograms, scatter plot of the copy-number profile and

color-coded spans of chromosomal links [45]

variation and rank variants basing on their likelihood of being real. Such an
approach should then enable analysts to trade off sensitivity and specificity
depending on project goals.

As partially stated when the VCF format has been introduced, each variant
has an associated set of statistics that are also called annotations. Variant
annotations are different from the annotations that will be introduced in the
next section. These annotations are reported in the INFO field of the VCF
and some example are stated as follow:

� DP: Depth of coverage;

� AF: Allele frequency;

� AC: No. chromosomes carrying alt allele;

� QD: QUAL score over depth;

� MQ0: No. of MAPQ 0 reads at locus.

The interesting thing is that real variants tend to cluster together via these
statistics and these clusters tend to be Gaussian distributed. As a result, the
idea is to build adaptively a Gaussian mixture model basing on a subset of
variants that overlap with training sites provided as input. A training on high-
confidence known sites leads then to determine the probability that other sites
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Figure 3.6: VQSR training and evaluation of variants

are true and new potential variants can therefore be evaluated against the
defined model to evaluate the probability that each call is real.

VQSR can be summarized in two steps performed by two different tools.
VariantRecalibrator is the first tools: it creates the Gaussian mixture model
using the specified annotation values over a high quality set of training and
attempts to group these variants into clusters. Then, it evaluates all input
variants and assigns a score to each one of them Fig. 3.6. This score, also
called VQSLOD, is the log odds ratio of being a true variant versus being false
under the trained Gaussian mixture model.

The ApplyRecalibration tool finally applies user defined filters and write
new annotated VCF. Usually these filters are expressed in terms of tranche
sensitivity threshold. The recalibrated variant quality score allow indeed to
partition the call sets into quality tranches that can be used to establish thresh-
olds within your data that correspond to certain levels of sensitivity relative to
the truth sets. Tranche sensitivity threshold are expressed as a percentage; if
a 99.9% threshold is fixed, the programs looks at what is the VQSLOD value
above which 99.9% of the variants in the training callset are included and uses
it as a threshold to filter your variants. Variants that are above the threshold
pass the filter, so theVCF’s FILTER field will contain PASS. Variants that are
below the threshold will be filtered out; they will be written to the output file,
but in the FILTER field they will have the name of the tranche they belonged
to.

It is worth noting that SNPs and Indels must be recalibrated separately.
The VQSR’s implementation considered the following databases as training
sites to create the model for SNSs:

� dbsnp 137.b37.vcf

� hapmap 3.3.b37.vcf
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� 1000G omni2.5.b37.vcf

while the following have been used for Indels:

� dbsnp 137.b37.vcf

� Mills and 1000G gold standard.indels.b37.vcf

3.3 Functional Annotation

The functional annotation of variants is the last step of the pipeline of anal-
ysis. This procedure is vital for the downstream analysis that looks for links
between sequence variants and phenotype changes. Variant annotation aims
indeed to assign functional information to DNA variants in order to predict
their impact. In this section, the annotation procedure implemented in the
pipeline will be discussed; moreover, the filtering and prioritizing procedures
to find potential disease-causing mutations will be described.

There are several types of information that can be associated with vari-
ants; despite most of the available tools focus on the annotation of SNPs,
there are few of them that are able to annotate indels and CNVs as well. In
particular, the variant annotator implemented in the pipeline is Annovar [46].
Annovar works with SNPs, Indels and CNVs. Furthermore it is a very efficient
command-line tool and can work with various genomes.

The first level of annotation implemented defines the relationship between
a variant and coding sequences in the genome. Coding sequences are usually
referred as genes or more specifically as transcripts and the majority of them
encode a protein. There are also non-coding transcripts that, despite do not
encoding proteins, can have important functions as the regulatory ones. In
order to annotate DNA variants, a set of transcripts is therefore required.
Ensembl [47], RefSeq [48] and UCSC [49] are the most popular databases of
transcripts that can be used for variant annotation: Annovar can interrogate all
of them and can annotate variants accordingly. However most of the time the
information retrieved are redundant or discordant so it was chosen to annotate
variants only against RefSeq.

A variant can often be shared by different transcripts that overlap in the
same genomic position. Annovar reports, for each transcript, if the variant
causes protein coding changes and possibly the amino acids that are affected.
In accordance to the genomic location, a variant can be classified as reported
in Table 3.4. The precedence defined in this table is used to decide what
function to print out when a variant fits multiple functional categories; the
user is allowed to change this default precedence rule.

The annotation against refSeq is defined as gene-based annotation and
generates two different files. The first one adds to the original input file only
two column representing the variant classification and the names of genes that
are hit by the variant, or are neighbour to it. The second output file contains
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Value
Default

precedence
Explanation

exonic 1 variant overlaps a coding exon
splicing 1 variant is within 2-bp of a splicing junction

ncRNA 2
variant overlaps a transcript without coding
annotation in the gene definition

UTR5 3 variant overlaps a 5’ untranslated region
UTR3 3 variant overlaps a 3’ untranslated region
intronic 4 variant overlaps an intron

upstream 5
variant overlaps 1-kb region upstream of
transcription start site

downstream 5
variant overlaps 1-kb region downtream of
transcription end site

intergenic 6 variant is in intergenic region

Table 3.4: The possible values of gene annotation

the amino acid changes as a result of the exonic variant and the possible values
are reported in Table 3.5. Once the gene-based annotation is performed, the
user can focus on a subset of variants depending on their classification. Most
of the time interesting variants are considered relevant if they hit an exon and
cause an amino acid change; in general, interestingness highly depends on the
aim of the study.

Another fundamental level of annotation is based on the comparison be-
tween variants under analysis and variant databases. This kind of annotation
aims at exacting from public databases variants with same start and end po-
sitions, and with same observed alleles to the processed ones. Two resources
that are usually used are dbSNP and 1000 Genomes Project databases. If a
variant is annotated as present in 1000 Genomes Project database, Annovar
usually outputs the frequency of that variant in the population. Such a fre-
quency can help to filter out variants that can be considered polymorphisms
in the population and that are therefore not related to the disease of interest.
The same process can be applied to variants that are reported in dbSNP with
a MAF bigger than 1%, so that these variants are usually filtered for further
analysis.

This kind of annotation is defined as filter-based and relies on different
databases. Despite databases of frequencies are really helpful, there are other
databases that are potentially more useful. In particulat, there are several
databases developed for functional prediction and annotation of potential non-
synonymous single-nucleotide variants (nsSNVs) in the human genome. An-
novar for example uses dbNSFP [50] that compiles prediction scores from sev-
eral prediction algorithms. In particular, the version we have used in our
pipeline includes SIFT scores, PolyPhen2 HDIV scores, PolyPhen2 HVAR
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scores, LRT scores, MutationTaster scores, MutationAssessor score, FATHMM
scores, GERP++ scores, PhyloP scores and SiPhy scores. These scores are
computed based on various different approaches, such as protein structure,
sequence homology, evolutionary conservation or statistical prediction based
on known mutations. Moreover they can be then translated in categorical
predictions as deleterious/tolerated or probably damaging/possibly damag-
ing/benign and can be used to filter variants that are considered as neutral.

Another interesting features of Annovar is that it allows users to supply a
custom-made annotation file. Annovar will then perform filter-based annota-
tion on this annotation file. An example of a custom made annotation file will
be provided in this thesis in the results section.
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Annotation
Default

precedence
Explanation

frameshift
insertion

1
an insertion of one or more nucleotides
that cause frameshift changes in
protein coding sequence

frameshift
deletion

2
a deletion of one or more nucleotides
that cause frameshift changes in
protein coding sequence

frameshift
block
substitution

3
a block substitution of one or more
nucleotides that cause frameshift
changes in protein coding sequence

stopgain 4

a nonsynonymous SNV, frameshift
insertion/deletion, nonframeshift,
insertion/deletion or block substitution
that lead to the immediate,creation of
stop codon at the variant site. For
frameshift mutations, the creation of
stop codon downstream of the variant
will not be counted as ”stopgain”!

stoploss 5

a nonsynonymous SNV, frameshift
insertion/deletion, nonframeshift,
insertion/deletion or block substitution
that lead to the immediate,elimination
of stop codon at the variant site

nonframeshift
insertion

6
an insertion of 3 or multiples of 3
nucleotides that do not cause frameshift
changes in protein coding sequence

nonframeshift
deletion

7
a deletion of 3 or mutliples of 3 nucleotides
that do not cause frameshift changes in
protein coding sequence

nonframeshift
block
substitution

8
a block substitution of one or more
nucleotides that do not cause frameshift
changes in protein coding sequence

nonsynonymous
SNV

9
a single nucleotide change that cause
an amino acid change

synonymous
SNV

10
a single nucleotide change that does
not cause an amino acid change

unknown 11
unknown function (due to various errors
in the gene structure definition in the
database file)

Table 3.5: The possible values of exonic annotation
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Chapter 4
Genomic workflow management
systems

Despite the development of next generation sequencing technologies has
opened new scientific possibilities in biology and medicine, the management
and analysis of such a flood of data has expanded the informatics needs for
research laboratories. The current bottleneck is not anymore the sequencing
itself but the storage and backup of the data as the computational infrastruc-
ture to perform the analysis. Most of the previously introduced algorithms can
be indeed highly demanding in terms of computational resources and difficult
to use because of several tuning parameters. Moreover a lot of programming
and informatic expertise are necessary to install these tools and to combine
them in a pipeline. As a consequence, in order to coordinate all the techno-
logical aspects related to NGS data a lot of IT skills, which span from backup
strategies to the management of computing demand and from pipeline imple-
mentation to results sharing are needed. This chapter will initially discuss how
an implemented solution allows scientists without programming experience to
run the previously defined NGS workflow and to easily include new compu-
tational tools in this pipeline. Then, it will deepen an implementation of the
analysis pipeline through a library for workflow management that can be run
both on a traditional computing resource as well as on a cloud-based one.

4.1 GenePattern

After pipeline’s definition, all the efforts were focused on making both the
whole workflow of analysis and all the single tools accessible to experimental
biologists and physicians. Although they possess the biological knowledge and
experience that can led to novel discovery, without an informatic support they
often cannot effectively use the huge amount of sequencing data because of the
informatic challenges they pose. Moreover the challenges are even more rele-
vant when multiple methods are combined in the analysis as for NGS pipeline.
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Simultaneously with the introduction of NGS technologies different plat-
forms of analysis where developed to address the biomedical research challenges
previously defined. These platforms provide simple interfaces to powerful tools
and usually support users at all levels of computational experience by providing
both web interfaces or downloadable package that can be deployed in individ-
ual laboratories. In particular GenePattern [51] and Galaxy [52] have become
the most popular choices for integrated analysis that range from gene expres-
sion to next generation sequencing. As stated on the GenePattern website
“it’s a powerful genomic analysis platform that provides access to hundreds of
tools for gene expression analysis, proteomics, SNP analysis, flow cytometry,
RNA-seq analysis, and common data processing tasks. A web-based interface
provides easy access to these tools and allows the creation of multi-step anal-
ysis pipelines that enable reproducible in silico research”. Galaxy instead is
defined as“an open, web-based platform for data intensive biomedical research.
Whether on the free public server or your own instance, you can perform, re-
produce, and share complete analyses”. Both have a web-based interface for
working with tools and provides a framework for adding new tools to the plat-
form. Moreover they automatically generate metadata when tools are run and
support repeatability. Currently, GenePattern and Galaxy are indeed the most
mature platforms that support reproducible computational research and are
often considered complementing each other. The concept of Reproducible Re-
search System (RRS) is nowadays considered crucial and refers to the idea that
the full computational environment used to produce scientific results such as
the code and the data should be easily accessible in order to reproduce results
and foster faster advances [53].

In the following we will detail the main concepts behind GenePattern, since
this system was chosen to define the analysis workflow defined in the previous
chapter.

4.1.1 Modules

Analysis modules are at the heart of GenePattern and implement compu-
tational methods and tools for analysis of genomic data. A module can be any
software for which a command line invocation can be constructed. As already
stated, the GenePattern public repository provides several modules of analysis
and each one includes its own documentation, which is supplied by the module
developer. However, this repository doesn’t include the majority of the analy-
sis tools used for NGS sequencing analysis described in the previous chapter.
The platform, however, allows users to define new modules or to manipulate
existing ones. In order to create a new module, GenePattern opens the Module
Integrator window.

In Fig. 4.1 it is reported an example of an ad-hoc module to perform the
first step of GATK base quality score recalibration. The Details section will
ask for the following parameters that allow to better characterize the module:
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Figure 4.1: Details of module integrator sections.
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� Name

� Description

� Documentation: it is strictly recommended to upload a pdf file that will
represent the documentation for the module.

� Author

� Organization

� License

� Version Comment

� Module Category

� Privacy: ”public” allows all users connected to this server to view and
run the module while ”private” means that only the creator or the ad-
ministrator can view and run the module.

� Quality Level

� CPU type

� Operating System

� Language: user can choose C, C++, Matlab, Perl, Python, Java, R or
any

� Output File Formats: a file format can be selected from the list of for-
mats.

By the Support Files section the user then uploads the documentation file
and all the files that are necessary to run a specific software. Fig. 4.1 module
requires the GATK package and a perl file that is used to invoke it.

The Command Line field usually requires a combination of fixed text and
variables defined by GenePattern. The command line defined in Fig. 4.1
uses several variables: <perl> represents the full path to the perl installation
used by GenePattern while <libdir> represents the full path to the directory
that contains the files for this module, including the program file. Then the
perl script GATK BaseRecalibrator.pl expects several parameters, as the <in-
put bam> file, the <input reference> file and other parameters that have to
be defined in the Parameters section. In this section all the parameters needed
are defined in term of name, description, flag, type of field to display and file
format.

All the workflow steps described in the previous chapter that weren’t avail-
able in the public repository, were therefore defined as new GenePattern mod-
ules.
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4.1.2 Pipelines

NGS data processing as many other type of genomic analysis are mul-
tistep sequences of computational tools that should be integrated in unique
workflows. In order to avoid writing programs that join these tools together,
GenePattern provides a pipeline builder that can define reusable template of
analysis. It is easy-to-use and allows to create a workflow from scratch by
adding all the necessary tools and conveniently connecting them.

Fig. 4.2 shows how it works: by a graphical user interface users can add and
connect modules to form a complete analysis. The pipeline designer comprises
three main parts. From left to right it includes the module selection panel, the
pipeline diagram and the editing panel. Initially the modules are browsed from
the module selection panel in order to add the right ones (all the installed ones
can be added to the workflow). Tools are then combined together by using
modules’ outputs as input for others and the pipeline builder verifies if these
links are compatible. Finally additional parameters of each tool can be edited
by using the editing panel. The result is a workflow that can be run repeatedly
on different data without any changes.

Once a pipeline has been defined it can be easily exported. This process will
generate a zip package that include the pipeline, all the modules that compose
it and the associated parameters. This would allow to share analysis methods
as single executable script, enabling in-silicio reproducible research.

NGS analysis modules were then assembled together to form a robust
GenePattern pipeline that requires FastQ files as input and generates anno-
tated files of variants.

4.1.3 Servers

GenePattern can run both on a publicly available server or on a local server.
The publicly available GenePattern server is hosted at
http://genepattern.broadinstitute.org/gp/ and can be used without installing
any software. This solution implies that users don’t have to maintain the server
but as a counterpart only the modules and pipelines hosted on this server can
be used for an analysis. Moreover this solution can be adversely affected by
time consuming data transfer from and to the server, in particular for NGS
data.

On the contrary a local installation of the GenePattern server has several
advantages. First of all, users can analyze their data without sending it over the
internet but most importantly, modules and pipelines that are installed on the
local server can be ad-hoc created and are not uniquely the ones hosted in the
GenePattern’s public repository (that can however be downloaded if needed).
Moreover a local installation can be performed both on a standalone machine
or on a networked machine. Finally, if there is a queuing system installed on
the local server as LSF or SGE, a local installation allows to prioritize jobs and
to assign the right amount of resources to each one of them. As a consequence,
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Figure 4.2: GenePattern Pipeline editor.
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the local GenePattern installation was preferred above the publicly available
server option.

4.1.4 Jobs

The execution of a module or a pipeline generates a specific job. In par-
ticular, the web browser sends a request to the GenePattern server to run the
analysis and a job is created. Job results are then summarized in the Job
Result Summary page and are usually stored on GenePattern server for a set
period of time before deletion. If the GenePattern server is running, jobs are
not interrupted even if the user exit the web browser. Otherwise, if the server
is shut down during jobs execution, all the jobs are interrupted and restarted
automatically when the server is restarted.

Finally it is worth noting that the GenePattern server can be configured to
use an installed queuing system. In particular it includes support for Sun Grid
Engine (SGE) and LSF. These queuing system strongly improves the execu-
tion performances. In order to configure the server with SGE or LSF, the user
has only to properly edit the configuration file and restart the server. How-
ever GenePattern’s interaction with the queuing system can be also configured
either programmatically or with a command line prefix.

4.1.5 CABGen Server Install

A local GenePattern server was installed on a system of high performance
computing implemented at the Center for Bioinformatic Analysis for Genomics
(CABGen). This center was born in 2010 at the Institute of Molecular Genet-
ics, Pavia, IT (an institute that belongs to the network of research institutes of
the Italian National Research Council) and its computational hardware is con-
stituted of a cluster IBM with six nodes, each of which characterized by two
processors IntelXeon 4-core, 42 Gigabyte of memory capacity and equipped
with two solid-state drives of 50 gigabytes.

This cluster is managed by a front-end IBM X3650 M3 with two CPUs
IntelXeon from 4 cores, 36 gigabytes of memory, two 250 Gigabyte hard and
communicates with the cluster through two switches with 10 Gigabit connec-
tions. Moreover it is equipped with 8 disks in RAID 5 of one terabyte each;
such a storage is seen via NFS from the front-end to all nodes in the cluster
and a backup unit guarantees against loss of data. The cluster is managed
with the Linux oriented operating system CentOS vers. 5.5 that has been
configured and optimized to use parallel computing, in particular MPI. Jobs
are submitted to the system through the PBS software that allows the user to
choose how many cores allocate to the job.

After an agreement between the CABGen staff and the Department of
Hematology Oncology, the GenePattern server was installed on the front end
node. However due to several ongoing project on this computational resource, 1
TB of storage was allocated for NGS analysis and it was allowed to submit jobs
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Figure 4.3: VPN tunneling to IGM’s network.

only to a specific node so GenePattern was configured accordingly. Finally a
VPN was enabled to allow a workstation inside the Department of Hematology
Oncology to reach the network of the Institute of Molecular Genetics where
the computing system has been integrated (Fig. 4.3).

All the NGS modules and pipelines imported in this GenePattern server
were previously developed on a personal computer where GenePattern was con-
figured to submit job through SGE. However in this case, given that GenePat-
tern doesn’t support PBS job scheduling software and as the agreement set a
limit on the amount of the available resources for NGS analysis, the interaction
between GenePattern and the queuing system was configured with a command
line prefix. Such a configuration was a good compromise to make biologists
and physicians able to run the implemented pipeline, visualize the results and
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share analysis. Once connected to the server through the VPN, scientists can
indeed upload their own datasets into the workspaces and use pipeline and
workflow already defined. Moreover, as GenePattern automatically captures
the history of any computational work being done, in order to facilitate pub-
lishing reproducible results the Microsoft Word add-in for the GenePattern
was used to embed pipelines in Word documents.

Although this configuration has satisfied researcher needs, an integration
with the queuing system by command line has significant drawbacks. In par-
ticular it is neither suitable for high volume of jobs nor for long running jobs.
Command line prefix is indeed only appended to the specific command line
defined in a module. Once started, each new job requires a dedicated server
process that waits for the job to complete. However, if the user terminates a
job, only the server process is terminated while the process launched on the
queuing system is not terminated. This happens also when the server shuts
down: once restarted the jobs are not restarted and any unfinished job must
restart from the beginning. User jobs may be therefore only terminated but
not restarted.

4.2 Cosmos

Software package as GenePattern have become popular within the scientific
community because they allow the creation and execution of complex work-
flows. However NGS analysis, in particular exome or genome analysis, can po-
tentially need hundreds of computing hours per sample and can be performed
only by powerful computing clusters or cloud infrastructure. Despite power-
ful, GenePattern can be adversely affected by big amount of input data and,
although it can be configured to interact with queuing system as LSF or Sun
Grid Engine, it cannot easily deploy workflows onto these distributed resource
management systems (DRMs) when clusters include thousands of computing
cores. Therefore, in the following we will discuss COSMOS, a Python library
that address these and other needs. COSMOS is a library for workflow man-
agement that allows formal description of pipelines and partitioning of jobs;
workflows can be created both on traditional computing clusters or cloud-based
services.

Thanks to a powerful syntax it allows to create complex pipelines and even
programmer with limited experience can easily learn how to write workflows.
The latter can be monitored during a run because of COSMOS ability to keep
track of job information and resource utilization by a SQL database. Via a
web interface is it possible to monitor all the step by looking at the information
stored in the database and, thanks to such a fine-grained control over the whole
process, it is possible to quickly debug new or existing workflows.
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Figure 4.4: Cosmos tool definition. Tools are defined by specifying input and output

types, not files, and a cmd() function returns a string to be executed in a shell.

4.2.1 Tools

A Tool is a class which instance represents a command that is executed. A
main feature of COSMOS is its ability to separate the definition of tools from
the definition of the dependencies between them. Most of the workflow man-
agement software generally controls I/O by requiring specifically named input
files and produce similarly specific output files. On the contrary, COSMOS
controls tool I/O by specifying file types. Therefore I/O tools may expect
a specific extension-typed input and generate a specific extension-typed out-
put where both aren’t related to file names or locations. For example, a tool
in Fig. 4.4 expects a SAM-typed input and produces a BAM-typed output.
Besides the expected input and output types, a tool also contains properties
which define the resources that are required. Fig. 4.4 shows for example that
4096 MB are required as ram memory to run this tool.

4.2.2 Workflows

A COSMOS workflow then formalizes tools’ dependencies by using Python
functions that support the map-reduce paradigm [54] (Fig. 4.5(a)). The se-
quence and apply primitive are respectively provided to execute tools in series
or in parallel. In order to implement the map-reduce paradigm in large and
branching workflows, COSMOS implements also a tagging system that asso-
ciates a set of key-value tags to each task in the stage. This feature enables
to formalize reduction over existing tag sets or to split by creating new combi-
nation of tags. When a workflow is executed, COSMOS generates a directed
acyclic graph (DAG) that models the tools dependencies and links the inputs
and outputs between them by recognizing file extension and types (Fig. 4.5(b)).
In order to design a workflow and represent all the jobs and their dependencies
in a DAG, five additional operators to sequence and apply can be used:

� The add operator is always the first operator and simply adds a list of
tool instances to the DAG, without adding any dependencies.
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Figure 4.5: (a) Cosmos Workflows definition. (b) Directed acyclic
graph of jobs generated by the workflow.

� The map operator creates a one to one relationships for each tool in the
stage last added to the DAG.

� The split operator creates a one to many relationships for each tool in
the stage last added to the DAG.

� The reduce operator creates new tools with a many to one relationships
to parent tools.

� The reduce split operator creates new tools by first reducing then split-
ting.
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Figure 4.6: COSMOS web application.

4.2.3 Additional features

COSMOS supports for DRMS such as SGE, LSF, PBS/Torque, and Condor
by utilizing the DRMAA library to manage job submission, status checking and
error handling. All COSMOS internal data as job queuing end execution data
or workflows data are stored in a database through the Django framework:
MySQL, PosgreSQL, Oracle and SQLite are supported. This information is
then accessible by a web application in order to visualize the advancement of a
workflow and debug it in case of failure. COSMOS Web (Fig. 4.6) can indeed
show the whole workflow or it can focus on specific stage by interrogating the
persistent database. The latter is also fundamental to restart failed pipelines
and because of it a workflow can restart from the last successful stage. The
web interface finally allows to draw the DAG as the one in Fig. 4.5(b).

4.2.4 Cloud Install

The GenePattern server installed on CABGen hardware was aimed at bi-
ologists and physicians without programming expertise and it has solved the
majority of the problems related to the creation or execution of workflows as
well as results management, thanks to its graphical user interface. However,
despite this platform was very useful for researchers that weren’t bioinformati-
cians, it has several power limitation. First of all, in order to parallelize an
analysis step into several chunks, as COSMOS does, all the input stages must
be manually created for each chunk the user want to implement. It means that
chunks must be fixed a priori while COSMOS resolves this problem by creating
the DAG at runtime. If this limitation can be moderate for small experiments,
it becomes critical for big experiments that can drastically reduce runtime by
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using parallelization. As a result, the GenePattern server was good enough to
analyze few samples but it was definitely too slow with an increasing number
of samples. This is a consequence both of platform features and the limited
computing resources available on CABGen server.

To overcome such computational restriction and scale the level of paral-
lelization, the pipeline defined in the previous chapter was therefore imple-
mented on top of COSMOS and the whole system was deployed on the cloud.
Recently all the major tech giants have entered into the cloud computing mar-
ket. Among different cloud platforms, Amazon Web Services (AWS) is def-
initely the most reliable because it has been the first one built and benefits
from the experience gained during the years. Moreover throughout the year,
AWS evaluates academic research support proposals from active faculty at ac-
credited universities and grants are in the form of credits applicable to AWS
services. In 2013, the university laboratory where this thesis was carried on,
the Laboratory for Biomedical Informatics “Mario Stefanelli”, was granted by
AWS and part of the credits have been used to perform NGS analysis on the
cloud. In order to understand the configuration that will be explained later it
is necessary to introduce some concept related to AWS.

Amazon EC2

The Amazon Elastic Compute Cloud (Amazon EC2) is the AWS web ser-
vice that provides resizable compute capacity in the cloud. It is a virtual
environment and allows to launch instances with different operating system,
load instances with custom environment, control the network’s access permis-
sion and scale the number of desired system. It gives user the complete control
of the computing resources which are paid hourly.

Instances

Instances are the core of Amazon EC2 that provides a wide selection of
them. Users can choose between different instance options that differ on CPU,
memory, storage and networking capacity. In particular, instances are grouped
in several instance types, each one optimized for different use cases as memory-
intensive applications or highly computational demanding ones. Instance types
then includes different instance sizes.

Finally, it is worth noting that instances come with templated Amazon
Machine Image (AMI) to get up and running immediately. Users can also
define their own AMI containing personal applications, libraries, data, and
associated configuration settings.

Pricing

Besides the possibility to choose the number and the size of computing in-
stances, users can choose different purchasing options. ”On-Demand” instances
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have a fixed hourly rate and users pay as long as they use them; ”Reserved”
instances are paid upfront with a significant discount and are reserved for the
whole time interval that was paid. Finally one of the most interesting solutions
are ”Spot” instances that enable users to bid on the price they want to pay
for the instance capacity; users can reach higher saving but if the Spot Price,
that fluctuates based on supply and demand for instances, moves higher than
a customer’s maximum price, the customer’s instance will be shut down by
Amazon EC2.

Cluster Setup

In order to have an high level of parallelization, it is necessary to setup a
cluster computing environment; here in the following we will show the main
steps that are necessary to configure an AWS cluster that support COSMOS
features and then we will describe the solution used to run the whole NGS
project .

Firstly, in order to create a cluster, it is necessary to launch the required
instances by using the AWS EC2 platform. All AWS instances come with
private IP addresses that are used to let the instances in the same network
communicate: once cluster instances are created, the hosts file of each in-
stance should therefore be edited in order to map other instances hostnames
to their IP addresses and let the cluster nodes able to communicate. Next, a
queuing system should be installed to queue jobs that are generated during a
workflow execution. The cluster should then be configured for folder and disk
sharing. COSMOS requires indeed to be installed only on a cluster node but
the install folder should be shared with the remaining nodes. Accordingly to
that, COSMOS can be installed on the master node home directory which has
then to be NFS shared with the other nodes in the cluster and mounted on
the same path as in the master node. Finally, another folder has to be shared;
this folder can be accessed by COSMOS to read inputs and write outputs and
has to be accessible from all the nodes in the cluster.

The previous steps are necessary to create a cluster upon which to install
COSMOS. In order to facilitate the cluster building process, an open source
software called StarCluster can be used to automate the whole process. It
simplifies the process of building, configuring, and managing clusters of virtual
machines on Amazon’s EC2 cloud: user has to define a configuration file and
a cluster will be created accordingly. In particular StarCluster launches the
defined number of instances and names all the node in the cluster with a
simple convention as master, node001, node002, etc. By default a non-root
user account is created and the cluster is configured so that a secure ”ssh”
connection may be used from any node in the cluster to connect to any other
node in the cluster without using a password. Furthermore the /home directory
on the master node is NFS-shared across the cluster and the Sun Grid Engine
queueing system is configured for distributing tasks, or jobs, across the cluster.

Because of these features, which are strictly required by COSMOS, Star-
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Figure 4.7: Aws solution.

Cluster has been used to build the cluster that was used to run the whole
NGS project: Fig. 4.8 shows the overall solution implemented on AWS. From
a local computer StarCluster launches a cluster on AWS. Being the majority
of workflow’s software highly computational demanding, cc2.8xlarge instances
were chosen in order to define the cluster. Such instance type is optimized for
computing purposes and has 60 GB of memory, 32 virtual CPUs and 3.3 TB of
ephemeral disk. Between all the possible operating systems available for this
type of instance, the Ubuntu 12.04LTS os was chosen. A good compromise
between timing and costs was set in a 5 cc2.8xlarge node cluster and Fig. 4.8
refers to this configuration. StarCluster is then responsible to NFS-share the
/home directory on the master node and install the Sun Grid Engine queueing
system. However as stated before, COSMOS requires an “input/output” folder
that should be shared as well. Because such a folder requires high I/O perfor-
mances, GlusterFS was preferred above other NAS because it is a file system
designed to provide network storage that can be made redundant, fault-tolerant
and scalable. Moreover it’s particularly well suited to applications that require
high-performance access to large files. So, once the cluster is up and running
all the master node ephemeral drives are used as the bricks necessary to create
the Gluster volume that will be the COSMOS input/output storage.

COSMOS, which in Fig. 4.7 is the workflow management system, is in-
stalled on the master node and the pipeline defined in the previous chapter
can be finally executed. Fig. 4.8 shows how the pipeline steps are highly par-
allelized. When possible, the workflow split the input files both on read-group
and chromosome. The upper part of Fig. 4.8 is indeed a zoom on a section
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of the overall dag which is then summirezed by the COSMOS web service in
lower part of Fig. 4.8.

Finally, it is worth noting that this configuration can easily increase the
number of computing instances if needed. StarCluster supports indeed a resiz-
ing procedures that allow for manually shrinking and expanding the size of the
cluster. If the initial cluster sizing is incorrect, users can add or remove nodes
to scale it accordingly to their needs. However despite the adding procedure
will include new nodes in the cluster queuing system and the /home directory
on the master node will be NFS-shared across them, user must mount the Glus-
ter file system on new cluster nodes in order to share COSMOS input/output
storage.

Although it is a manual procedure, the scaling feature makes the cloud
configuration even more interesting. The suggested AWS solution allows indeed
to set and use an HPC system according to real needs also because of the
possibility to easily resize it. In conclusion, for this particular NGS project, the
“pay as you go” scheme resulted in an overall cost reduction. An investment
on a high performance computing solution like the one implemented on the
cloud would have been much more expensive because except for some peaks of
computation, it would have been underused.
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Figure 4.8: Workflow’s parallelization.
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Chapter 5
GenomeKey: Scalable and
cost-effective NGS genotyping
in the cloud1

While next-generation sequencing (NGS) costs have plummeted in recent
years, cost and computation time are still substantial barriers preventing the
use of NGS in a clinical setting. For this technology to be adopted by clini-
cians, the turnaround time of genomic sequencing data analysis must be within
hours and the cost of rendering to clinically actionable information must be
conducted in the $10’s of dollars. To that end, this chapter will show how
COSMOS was used to develop GenomeKey, an NGS pipeline. COSMOS en-
ables the implementation of complex NGS pipelines by taking advantage of
parallelization and the resources of a high-performance compute cluster, either
locally or in the cloud. Here following it is shown that the combination of COS-
MOS and GenomeKey on Amazon Web Services (AWS) results in timely and
cost-effective processing of both known public benchmarking NGS datasets as
well as large-scale heterogenous clinical NGS datasets in clinical timeframes (<
1 d). The defined systematic benchmarking also reveals some useful guidelines
for pipeline management, such as optimum batching of samples and efficient
cluster configurations.

5.1 Introduction

Next-generation sequencing (NGS) costs have plummeted in recent years,
rapidly outpacing the traditional benchmark for the decreasing cost of tech-
nology known as Moore’s law. Routine clinical whole genome sequencing and
analysis are now falling within the range of costs of medical testing. Mod-

1The content of this chapter is in proceeding to be submitted as GenomeKey: Scalable
and cost-effective NGS genotyping in the cloud, Y. Souilmi, A. K. Lancaster, J. B. Hawkins,
JY. Jung, R. Powles, E. Rizzo, P. J. Tonellato, D, P. Wall
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ern sequencing platforms are now capable of sequencing approximately 5,000
megabases a day [55] at the cost of pennies per megabase. Sequencing centers
such as the Broad Institute and the Beijing Genomics Institute are now capa-
ble of generating petabytes of sequencing data on a routine basis [56]. As a
result of the increased efficiency and diminished cost of sequence generation,
the adoption of NGS is increasing and generating large scale amount of data
making the data analysis and interpretation of the sequenced genome quickly
and within a reimbursable cost point the new technological barrier and price-
limiting step of clinical genome usage [57, 58]. Furthermore, recent estimates
suggest that the turnaround time for the clinical use of a sequenced genome
should be on a scale of hours and cost in the $10’s of dollars [58].

With the recent US Food and Drug Administration clearance of Sanger
sequencing as a clinical diagnosis tool in January 2013, and its subsequent au-
thorization of Illumina deep sequencing technology for similar purposes [59],
cost efficient whole genome sequencing tools in the clinical space have become
an absolute necessity. As a result of these recent regulatory developments,
delivering a software solution that allows a whole genome to be sequenced
within a day and rendered within hours at a cost of under $100 will be a
breakthrough in clinical bioinformatics of great value to biomedical science,
translational medicine, and healthcare as a whole. In a major step towards
achieving this goal, we have developed a scalable, parallelizable workflow man-
ager, COSMOS, capable of running on the cloud (e.g., Amazon Web Services
- AWS) [60]. COSMOS is able to lower the cost of analyzing genomic data
two ways: 1) implementing a highly parallelizable workflow that can be run
quickly and efficiently on a large compute cluster, and 2) taking advantage of
transient cloud-based instances that can be invoked and dismissed on-the-fly,
enabling considerable reductions on per hour cost.

Since typical NGS pipeline involves the successive implementation of many
computational tools into complex workflows, many analysis platforms [61, 62,
63] tend to focus on generating user-friendly, reproducible pipelines for biomed-
ical researchers that may have very little computational background. More
recently, efforts have also been made to leverage the power and speed of highly
parallel computing in NGS workflows [64]. Unfortunately, few of these software
packages have been demonstrated to have the speed and throughput efficiency
necessary in larger clinical genomics projects, which typically involve the cost-
effective processing of hundreds of genomes or exomes in a single study.

To leverage the power of cloud computing for NGS [65], we have developed
a variant-calling workflow, GenomeKey, running on top of COSMOS. Our
pipeline performs a thorough sequence analysis, including alignment, quality
score recalibration, variant calling and optionally annotation, and can be run
on both the cloud and local high-performance computing clusters. Our focus
in choosing workflow tools is to take advantage of the runtime performance,
cost and scalability of the GATK best practices standards established by the
Broad Institute [66]. By using the COSMOS framework to process and ana-
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Figure 5.1: GenomeKey workflow GenomeKey workflow implements the GATK 3 best

practices for genomic variant calling

lyze successively larger sets of genomic data, we have aggressively optimized
the software for speed and cost performance. Here we perform a comprehen-
sive benchmarking study of GenomeKey in the cloud using a heterogeneous
combination of public and clinical NGS data to explore speed-cost tradeoffs.
We show that we can reduce cost of the analysis of whole exome and whole
genome data over 10-fold, from ≈ $1000 [58] to under $100.

5.2 Methods

The study design consists of four main components:

1. the GenomeKey workflow to identify genomic variants built upon the
COSMOS engine Fig. 5.1;

2. the deployment of this workflow upon the Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) platform Fig. 5.2;

3. the collection of short-read sequencing data for both exomes and genomes;

4. the validation of this pipeline variant calls against previous variant calls.

Below, we describe each of them in turn.

5.2.1 Workflow

We created GenomeKey, a Python-based NGS-analysis pipeline that im-
plements the Genome Analysis Toolkit’s [67] version 3 of the best practice
protocol [36, 66] including alignment, base quality scoring recalibration and
joint variant calling to take advantage of the increased statistical power [40]
and calibration. GenomeKey is built upon COSMOS, a Python library for
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Figure 5.2: Overall benchmarking study design Deployment of the workflow upon

the Amazon Web Services Elastic Compute Cloud (EC2) infrastructure using the COSMOS workflow man-

agement engine
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workflow management that allows formal description of pipelines and parti-
tioning of jobs [60]. GenomeKey uses COSMOS’s workflow language to define
the overall pipeline, and COSMOS, in turn, manages the overall computational
workflow. After loading in genomic data, GenomeKey instructs COSMOS to
break up each stage of the workflow into multiple tasks using COSMOS’ tag-
ging system, which are managed by COSMOS to be efficiently run in parallel.
Note that although the focus in this article is on deployment on Amazon Web
Services cloud, the COSMOS/GenomeKey combination runs equally well on
local traditional HPC computing clusters.

The pipeline for variant detection proceeds in seven main stages, together
with an optional eighth:

1. Re-alignment and mapping (BAM to BWA). To parallelize the realign-
ment: previously aligned BAMs proceeds by first, splitting each BAM
file into separate chromosomes, and optionally by read group (RG). This
enables fuller use of cluster resources.

2. Indel realignment (IndelRealign)

3. Marking of read duplicates (MarkDuplicates)

4. Base quality score recalibration (BQSR)

5. Generate genomic VCFs (HaplotypeCaller): variants are called per sam-
ple and chromosome, generating “gVCF” files

6. Genotype samples (GenotypeGVCFs): this stage uses the previously gen-
erated gVCFs to call variants jointly across all samples in the original
input

7. Variant quality score recalibration (VQSR)

8. Annotation (ANNOVAR): optional annotation stage with extended AN-
NOVAR databases

5.2.2 Deployment on AWS platform

Cluster configurations

All the runs were performed on a 21 cc2.8xlarge (60 GB of memory, 32
virtual CPUs and 3.3 TB of ephemeral disk) node cluster to be able to compare
performance and scalability on the same cluster size. All clusters consisted of
a master node and 20 worker nodes. The master node has installations of
COSMOS and GenomeKey, all tools required by the workflow and all input
files. Worker nodes can either be “spot-instances”, subject to being eliminated
due to price increases, or fixed price “on-demand” nodes (that is not subject to
price increases during the runs). We placed initial bids at $0.5/hr (≈ $0.27/hr)
in the AWS us-east region. The primary master nodes are on-demand so
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that all data is preserved in case a node is eliminated by the spot bid. For
initial runs, we used one master node, and 20 workers, for runs involving larger
datasets (e.g., 20+ exomes) we converted some of the spot worker nodes to also
be on-demand worker nodes, allowing us to incorporate their hard drive space
into a common pool using GlusterFS, as described above (see Table 5.1 for the
different configurations).

Total size * (TB) Number of GlusterFS bricks
Configuration 1 3.3 1
Configuration 2 6.5 2
Configuration 3 13 4

Table 5.1: Different GlusterFS configurations used to increase the
shared drive size

Cluster management system

The cluster launching and management was performed using the open
source software StarCluster (specifically tagged with v 0.95.4 on the github
repository). Instances were launched with starcluster using the Ubuntu 12.04
LTS based AMI (Amazon Machine Image) ami-5bd1c832 that greatly re-
duces the setup time because by default includes all the required software,
COSMOS, GenomeKey as well as the tools needed by GenomeKey.

Job management and shared file system

The jobs created by COSMOS are submitted and managed across nodes in
the cluster using version 6.2u5-4 of Sun Grid Engine. The compute nodes of
the cluster share a common scratch space provided by one or more node(s).
This shared filesystem is created and managed by version 3.4 of GlusterFS, a
cluster shared file system.

Computing AWS cost

We used the AWS cli tools (available from http://aws.amazon.com/cli/) to
compute the cost of “spot” instances using the start and stop timestamps of
the workflow recorded by GenomeKey and our study driver automation script,
specifically using the following commands:

aws ec2 describe-spot-price-history --start-time [start timestamp]

--end-time [end timestamp] --instance-types cc2.8xlarge

--availability-zone

The command returns the history of the spot price during the specified period
and we use the mean of the returned values to compute the spot instances
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cost. In addition, the on-demand ($2 per hour per instance) price is fixed by
AWS (listed here https://aws.amazon.com/ec2/pricing/). The total cost of the
cluster for a given run was then computed by adding the costs of on-demand
and spot nodes together.

5.2.3 Benchmarking data

To enable us to benchmark the effect of overall throughput and cost on an
increasing number of samples on a fixed cluster, we created a range of groups
(or “runs”) of exomes and genomes of size, n, to be run simultaneously. For
exomes, n ranged from n = 1, 3, 5, 10 ,25, 50. For genomes n = 1, 5, 10, 25.

Exomes

For control data, we used high coverage (≈150x) whole exome set of the
CEU trio (NA12878, NA12891 and NA12892) from the Coriell CEPH/UTAH
1463 pedigree, sequenced at the Broad Institute. This set is recommended for
reviewing or benchmarking purposes by the GATK team [http://gatkforums.
broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-
or-benchmarking-purposes.], because of the high coverage and availability of
other genotype data sets from the same trio, including WGS data we will use
in genome test runs. We included this trio data in each exome run, in order
to compare and cross-check the quality of output variants (of the same input
data) over different runs.

To round out our full exome runs dataset, we included biomedically disease
relevant exomes originally generated by Christopher Walsh’s group [68]. These
data were chosen because: (i) the data are curated by National Database for
Autism Research (NDAR); ii) mean read depth for proband data (≈158x)
matches up with that of CEU trio; iii) extended family data are available
including affected siblings; iv) VCF files are provided for a subset of probands;
and v) phenotype information is available via NDAR or AGRE. The BAM files
are renamed to group by families. This data set was also sequenced at Broad
Institute, so we used the exome target regions (Agilent Sure-Select Human All
Exon v2.0, 44Mb baited target) provided in the GATK bundle, with 100 bp
padded at both ends, to extract targets for both control/case exome data.

Genomes

BGI Genomes: We selected 31 unique autism-associated genomes with cov-
erage ranging from 31.5x to 42x with a mean coverage of 37x per run. These
were originally sequenced by BGI on the Illumina platform. The genomes were
selected to have trios in each batch to take advantage of the joint variants call-
ing feature of GenomeKey.

Platinum Genomes: We selected a single high coverage genome ( 50x),
sample NA12878 (corresponding to the same exome individual). The Platinum
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genomes also have “gold standard” variant calls in VCF format with variants
called using different software and technology. Those VCFs enable quality
control, as well as reference timings from Blue Collar Bioinformatics group
bcbio-nextgen. (http://www.illumina.com/platinumgenomes/).

5.2.4 Variant validation

To validate GenomeKey, we downloaded the previously generated BAM
files available for the trio of exomes from Phase I of the 1000 Genomes Project.
For the 1000 Genomes trio, we were then able to compare our BAMs with these
downloaded BAMs. The quality control consisted of the following steps:

� Compared the percentage of unmapped reads between our original mapped
BAM and our re-mapped BAM. Although the number of mapped reads
may be different to the Phase I output because we are using recent ver-
sions of BWA and the reference genome, we expect the number to be
very close.

� Compared the distribution of phred base quality scores for each two BAM
files using FastQC.

We then compared the results of our pipeline in terms of variant calls against
available benchmark data [36]. The analysis was performed on the NA12878
sample which corresponding whole exome BAM file was originally aligned with
MAQ on hg18. In order to compare variant calls we ran the same method
(GATK v3 HaplotypeCaller) over the benchmark’s BAM and our re-mapped
BAM. The procedure was set with identical parameters except for the reference
genome. An additional analysis was performed on sequencing data publicly
available at www.platinumgenomes.org. This project provides whole genome
sequence and variant call data for 17 members of the Coriell CEPH/UTAH,
including NA12878 sample, in order to create a “platinum” standard compre-
hensive set of variant calls. We extracted raw sequencing data from NA12878’s
BAM files and re-mapped them against hg19 with GenomeKey. Once we had
a genome vcf we evaluated the Genotype concordance against a benchmark
whole-genome genotype calls dataset from Genome in a Bottle Consortium
[69].

5.3 Results

Using a 21 node AWS cluster (each using 20“worker”cc2.8xlarge nodes), we
used the GenomeKey and COSMOS framework to process successively larger
sets of genomic data. Using pre-aligned exomes and genomes to split and
parallelize the input by chromosome, we measured both overall wall time for
processing of all samples, as well as the overall cost for the entire workflow for
each group of datasets.
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Robust handling of heterogeneous datasets

We deliberately chose a mixture of datasets, including previously sequenced
public datasets from the 1000 Genomes Project, as well biomedically-relevant
autism disease datasets, with varying levels of coverage. This enabled assess-
ment of the pipeline when confronted with relatively heterogenous data, as
may be more common biomedical and clinical scenarios. We were able to
smoothly process many different samples despite these differences: across the
entire set we only observed two failed tasks (in the 25 genomes run) that led to
a workflow stop. These failures resulted from the loss of a single AWS worker
node and, a resume of the workflow enabled the entire workflow to complete
successfully without the need to reprocess the successful tasks.

Accuracy

To evaluate the accuracy of GenomeKey in terms of alignment, we down-
loaded a trio of exomes from Phase I of the 1000 Genomes Project (The 1000
Genomes Project Consortium, 2010), remapped them all with GenomeKey and
evaluated the difference of mapped reads. Although the number of mapped
reads could have been different because of recent versions of BWA and the ref-
erence genome we observed only ≈0.25% increase in total mapped reads over
the original BAMs. FastQC was then used to compare the phred base quality
scores over the reads. Although the original BAMs were re-calibrated with
GATK as well, the overall quality over the total sequence length is higher for
the BAM files generated by GenomeKey.

To evaluate the accuracy of GenomeKey in terms of variant calls we com-
pared the results of our pipeline against available benchmark data [36]. The
analysis was performed on the NA12878 sample and compared a number of
metrics of the called variants. Mapping differences between the aligners used,
different reference builds and improvements in GATK methods account for
missing calls on the benchmark BAM file. Overall, despite an increase on the
total number of high quality SNPs, the consistency of the GenomeKey variant
calls as compared with the previous SNP calls was high, in particular the geno-
type concordance as reported by the GATK Genotype Concordance module
was 0.97.

We also evaluated the genotype concordance against a benchmark whole-
genome genotype calls dataset from Genome in a Bottle Consortium
(www.genomeinabottle.org). This reference dataset minimizes bias toward
any method by integrating and arbitrating between 14 data sets from five
sequencing technologies, seven read mappers and three variant callers [69].
GenomeKey reached a complete overall genotype concordance and a 0.997
sensitivity, confirming an high accuracy against benchmark dataset.
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Fast processing of single exomes and genomes

GenomeKey processes single high-coverage genomic data extremely rapidly.
The workflow processed a high-coverage (≈150x) exome from alignment to
variant calling in 2 hr 16 min for a total cost of ≈$23 on AWS (download
from and backup to Amazon’s S3 storage adds an additional cost of $5). Four
replicate runs for the 1, 3, 5 and 10 exome cases, established that the variability
in these cost and run-times was small (the standard error was 2 min 21 s for
the 1 exome run) (Fig. S4). A single high-coverage (≈42x) genome took 13
hr 52 mins for a total cost of ≈$109 (additional cost $16). The cost compares
favorably with other tools. The use of spot instances, in particular, saves in
overall AWS cost as compared with on-demand nodes (on-demand cost: $126
for 1 exome run and $588 for the 1 genome run) .

Parallelization reduces overall cost of multiple samples

This sample cost is significantly reduced as more samples are “batched” to-
gether, taking advantage of the parallelization, especially of the early alignment
stages for both exomes (Fig. 2) and genomes (Fig. 3). As expected, cluster
efficiency also improves with increasing sample size, as runs with more samples
result in the cluster operating closer to its maximum capacity throughout the
run (Fig. 4). However, increasing the number of samples, has an upper limit,
as loading many samples can overtax the nodes for a given cluster size, leading
to poorer overall performance (see 50 exomes). Batching multiple samples in
this way does also result in a longer time-to-completion for any given sample,
as all samples will be completed and ready at the total wall time of the entire
workflow. However, a modest ≈12 hr processing time for 25 exomes (compared
with ≈2 hrs for a single exome) has dramatic savings: reduces the cost per
exome four-fold (from $25.37 to $5.81) (Fig. 2).

Grouping storage across multiple nodes speeds runtime

We explored the the role of grouping the storage required for output of each
GenomeKey stage, across multiple nodes. In principle, this would speed run-
times because the network bandwidth costs are spread across multiple nodes,
enabling parallel write operations and reduce latency. Using the GlusterFS
file-system (see Methods) to pool hard-drive storage across multiple nodes
dramatically improved overall runtime.

For example on the same input data, doubling the number of nodes par-
ticipating in the GlusterFS from 2 to 4, almost halved the runtime in the 25
exome case (from ≈20 h to ≈11.5 h) (Fig. 2A). We also measured the gain
per stage and found that the data transfer for the alignment stage (BWA)
was 2.5 times faster using the 4 node GlusterFS configuration compared with
the 2 node configuration. The tradeoff is that the nodes participating in the
GlusterFS configuration, need to be persistent on-demand AWS instances and
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Figure 5.3: GenomeKey workflow scales efficiently with increasing
number of exomes compared on different gluster configurations The

blue curve represents the 1, 3, 5 and 10 exomes runs performed on a cluster with one GlusterFS brick; the

yellow curve represents the scalability on a cluster with four GlusterFS bricks. Wall time (top) cost (bottom)

as a function of exome and size for as compared to a linear extrapolation of a single exome
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Figure 5.4: GenomeKey workflow scales efficiently with increasing
number of genomes Wall time (top) cost (bottom)
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thus are more expensive than transient spot instances, however this was more
than offset by the increase in processing speed (Fig. S4).

Exploring upper limits to parallelization

We examined the effect of increasing the amount of parallelization even
further by using GenomeKey to split input BAM files for the alignment stage
(“BAM to BWA”) on both read-group (corresponding to an individual “lane”
for Illumina data) as well as chromosome. We found only a modest reduction
in runtime using this approach, as compared to chromosome-only splits for a
single exome, and for larger run sizes, the sheer number of tasks could over-
whelm the queuing system (25 exomes and higher). Obviously, this result is
dependent on the nature of the input data (in the case of the autism exomes,
there were upwards of 10 read-groups per sample), but it clearly illustrates
that there is an upper limit to parallelization of the alignment stage. We
thus provide a command-line option to the GenomeKey workflow to split by
chromosome only instead of the default chromosome and read-group.

5.4 Discussion

We have demonstrated that the combination of GenomeKey running on
COSMOS presents a scalable, efficient solution to the increasing demand for
effective genomic variant calling. Our pipeline allows for efficient paralleliza-
tion of the early stages of the pipeline such as alignment. Where necessary later
stages (i.e. variant calling) are run in serial to merge by chromosome. Our
benchmarking has verified the overall robustness and scalability of GenomeKey
in processing large data sets, established rapid runtimes and low per-exome
and genome costs using cloud-based computing instances and provided some
qualitative comparisons with existing methods. Our systematic approach to
the study design also allows us provide some guidance for researchers us-
ing GenomeKey (or potentially other GATK-based workflows) by quantifying
workflow configuration choices in two key areas: speed-cost tradeoffs in the
number of samples processed and in the choice of cluster filesystem configura-
tion. We discuss each of them below.

5.4.1 Run-time and cost comparisons with other cloud-
based variant workflows

While streamlined, user-friendly variant-calling workflows has already seen
a great deal of recent progress, GenomeKey and COSMOS provide an impor-
tant service in efficient, low-cost variant calling. Community standards for
performance benchmarking of full genomics workflows are relatively unestab-
lished, so very few software packages include direct comparisons of speed or
efficiency between competitors, opting instead for feature charts as seen in
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SIMPLEX [70], or general qualitative comparisons, as seen in Mercury [71].
While the publishers of each piece of software do tend to report runtime statis-
tics of their own system, these come from a variety of different data sets, and
often differ in hardware specifications (Table 1).

In comparison, GenomeKey offers a fast, cost-efficient, accurate solution for
alignment, cleaning, and variant-calling of both genomes and exomes compared
to other software. STORMseq [62], for example, using BWA for alignment and
GATK lite for quality control and variant calling, reports the processing of an
exome in 10 hours and a genome in 176 hours, as compared to GenomeKey
which can finish an exome run and a genome run in 2 hours and 14 hours,
respectively. Most other software packages have been found to perform at
similar levels to STORMseq, with exomes tending to take around 12 - 24 hours
to be fully aligned, cleaned, and analyzed for variants (see Table 2 for more
details). However, these are not direct comparisons - as mentioned previously,
different data sets are used for benchmarking, and different computational
resources are given for the published benchmarking of each software package.
Additionally, many of these systems are designed for ease of use and small
scale experiments [63]. The only large-scale benchmarking effort published so
far is that of the cloud-based, genomics workflow Rainbow {zhao2013rainbow.
Rainbow has been reported to have successfully processed 44 genomes in two
weeks for $5,800, amounting to ≈$120 per genome - though this is still a
higher price point and slower processing time than GenomeKey’s $50 genome
capabilities. Although GenomeKey has not been used on the same size of
dataset, it has been demonstrated to run efficiently at a similar multi-genome
scale.

5.4.2 Building a road-map for NGS analyses

Beyond documenting the speed and robustness of GenomeKey, our system-
atic benchmarking has allowed us to build and investigate an initial“complexity
roadmap” of NGS variant pipelines in the cloud in general. In particular, our
results can provide guidance for workers building NGS pipelines in two keys
areas: (1) choosing the optimum batch size of samples to run in parallel and
(2) choosing cluster and shared storage configurations that speed runtimes.

Choosing batch size and cluster configuration

In a clinical context, an investigator or a hospital may have a fixed price
point for genomic analysis of samples. Using our metrics of cost per exome,
combined with overall wall time, we can provide some batch size estimates to
achieve a time-to-sample analysis completion of under a day. In our particular
case, we found a good balance to be between 10 to 15 exomes per batch, but
sequencing centers will have different kinds of data and estimates will likely
vary widely, so this is at best only a rough heuristic.
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Choosing shared storage configurations

Even though our pipeline does as much processing as it can on each of the
local nodes to avoid network latency, the output for each stage needs to be
copied back to the shared storage to allow the dependent tasks to proceed to
the next stage, and our benchmarking reveals that this can take a non-trivial
amount of time. Our benchmarking clearly points towards the effectiveness of
selecting multiple nodes to act as part of shared storage configuration. This
becomes particularly important when there are many jobs performing intensive
reads and writes, but needs to be weighed against the extra cost of having fixed
nodes that are not low-cost transient “spot” instances.
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Chapter 6
A kinetic model-based
algorithm to classify NGS short
reads by their allele origin1

Genotyping Next Generation Sequencing (NGS) data of a diploid genome
aims to assign the zygosity of identified variants through comparison with a
reference genome. Current methods typically employ probabilistic models that
rely on the pileup of bases at eachlocus and on a-priori knowledge. Hereunder
will be discussed a new algorithm, called Kimimila (KInetic Modeling based on
InforMation theory to Infer Labels of Alleles), which is able to assign reads to
alleles by using a distance geometry approach and to infer the variant genotypes
accurately, without any kind of assumption.

The performance of the model has been assessed on simulated and real
data of the 1000 Genomes Project and the results have been compared with
several commonly used genotyping methods, i.e., GATK, Samtools, VarScan,
FreeBayes and Atlas2. Despite the algorithm does not make use of a priori
knowledge, the percentage of correctly genotyped variants is comparable to
these algorithms. Furthermore, the method allows the user to split the reads
pool depending on the inferred allele origin.

6.1 Introduction

Since the first release of the human genome consensus sequence, the impact
of next generation sequencing (NGS) technologies is getting every day stronger
and it is rewriting the rules of genomic research.

Current high-throughput DNA sequencing technologies can generate bil-
lions of short sequences (reads) whose length range from 50 to 400 bases. Once

1The contents of this chapter is published as Marinoni, Andrea, Ettore Rizzo, Ivan
Limongelli, Paolo Gamba, and Riccardo Bellazzi. “A kinetic model-based algorithm to clas-
sify NGS short reads by their allele origin.” Journal of biomedical informatics (2014).
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available, these reads are mapped onto their corresponding reference genome to
extract useful genomic information as known and/or novel variants. However,
while the human genome sequence assembly for a chromosome is an arbitrary
mix of the two haploid chromosomes, the DNA fragment library is usually de-
rived from a diploid genome. This requires determining the zygosity of each
variant detected by the variant calling process: genotype calling is aimed at
classifying these variants as heterozygous or homozygous. Several genotyping
methods have been proposed both for human and non-human genomes [72, 73].
Early methods rely on counting the number of times each allele of a single ge-
nomic locus(pileup) is observed. For example, VarScan [74] is based on an
heuristic method that uses the number of aligned reads supporting each allele.

The most recent methods are often based on a probabilistic framework.
Tools such as GATK UnifiedGenotyper (UG) [36] or Samtools [75] compute a
genotype likelihood p(D|G) for each genotype G, where D represents all the
read data for an individual at a particular site. These genotype likelihoods
incorporate errors that may have been introduced in base calling, alignment
and assembly and are coupled with prior information, such as allele frequencies
in a reference population (e.g. The 1000 Genome Project [76]) or databases
of polymorphisms (e.g dbSNP [37]). The genotype with the highest posterior
probability is chosen and it is associated with a measure of uncertainty.

Another recent method, Atlas2 [77] is based on a logistic regression model
trained on validated whole-exome capture sequencing and uses features such
as the ratio of the variant base to the reference sequence and the quality scores
of the base calls in order to discriminate between true variants and sequencing,
mapping, or alignment errors. These strategies rely on the single base pileup
information derived from the aligned reads and are based on the assumption
of variant locus and reads independence.

Haplotype-based methods are based on a different genotyping strategy.
They make use of short haplotypes directly inferred from sequencing reads
mapped to the reference. FreeBayes [78] is an algorithm that uses haplotype
informative reads (i.e. reads spanning two or more variants) in combination
with a Bayesian statistical method [79] to improve genotyping accuracy. Due
to the promise of third generation sequencing technologies to increase reads
length up to thousands of sequenced bases [80], we can expect haplotype-
based methods to increase their accuracy and importance as well.

In this scenario was developed a new algorithm, called Kimimila (KInetic
Modeling based on InforMation theory to Infer Labels of Alleles), that ex-
ploits a kinetic model approach relying on distance geometry. Kimimila, start-
ing from a set of variant loci, infers the allele origin of each overlapping read
by looking at reads similarity in terms of a non-euclidean distance and, as
a consequence, can infer the zygosity of a variant through reads rather than
through the single base pileup. Notably, the approach has been conceived to
be fully data-driven. Therefore, it doesn’t make use of a priori information
and it does not rely on a statistical model. Furthermore, this algorithm pro-
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vides a novel methodological contribution able to perform clustering with a
non-euclidean metric. Kimimila was run on simulated data to evaluate the
accuracy in classifying (or labeling) reads by the origin allele and on a sample
of the 1000 Genomes Project in order to evaluate the genotyping and reads la-
beling accuracy as well, by using the relative genotype-chip data as validation
set. Then, it was compared with several genotyping algorithms, namely GATK
UG, VarScan, Samtools, Atlas2 and FreeBayes, and the percentage of correctly
genotyped variants was comparable to the aforementioned tools. Furthermore,
the method allowed the user to split the reads pool depending on the inferred
allele origin. Such results can be further used for other interesting applica-
tions, such as haplotype reconstruction and to detect subclonal heterogeneity
in tumor samples.

6.2 Methods

Labelling reads in NGS can be easily seen as a clustering problem. Standard
clustering methods are typically based on some sort of Euclidean distance
among the reads. Since mutation calling and base estimation are affected
by noise and uncertain sequencing, the distance computation must take into
account the reliability and the quality of the processed signals. Below will be
described a new definition of the similarity metric able to cope with all these
issues and to reach the desired clustering performance. It is worth noting that,
in order to leverage the stress on the computational complexity, the bases that
are considered are provided by the variant calling algorithm. The availability of
a reliable variant calling algorithm is therefore assumed. The next subsection
reports the notations and definitions that are used throughout the paper.

6.2.1 Definitions

Reliability can be identified as the likelihood of the given base over the
whole dataset in a given locus. Therefore, let M(i) be the set of the reads that
map on the i-th base of the dataset and |M(i)| the number of such reads. Let
α(ti) = αi be the nucleotide base that read α exhibits at the i-th position of
the dataset, being α ∈M(i). For sake of simplicity, let us assume that each nu-
cleotide base is univocally mapped onto a natural integer in the set {1, 2, 3, 4}.
Then, the aforesaid likelihood associated with the base at the i-th position for
read α, mα(ti) = mαi is defined as the fraction of reads in M(i) that show the

same base αi in the same position, i.e., mαi =
∑
α′∈M(i) χ(α′

i=αi)

|M(i)| where χ(·) is

the indicator function. In other terms, mαi measures the reliability (i.e., the
probability of “noiseless” calls) of a given base for each read.

Furthermore, let ϕbα(ti) = ϕbαi be the quality of the base b over read α in
the i-th position as provided by the base caller. Then, ϕbαi can be written as a
function of the probability of a base calling error for b(Pwrong(αi, b)) set by the
base caller, i.e. ϕbαi = −10log10[Pwrong(αi, b)], that is the quality score value
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given by the base caller in Phred scale [27].
Then, let us set vbα(ti) = vbαi = 1 − Pwrong(αi, b). The quantity vbαi is a

function of the quality of the given DNA base in the given read and it mea-
sures the likelihood (i.e., the probability of a correct call) of a given base for
each read. By computing vbαi for each b, it is possible to arrange a vector
vα(ti) = [vbαi ]b={1,..,4}.

Indeed, inferring allele labels over reads can be strongly affected by mis-
alignment and error in base estimation algorithms, i.e., by the reliability and
the quality of the information provided by the considered dataset. Hence, ac-
cording to the aforementioned definitions, we can derive a properly designed
distance geometry-based approach to improve the labeling method. The next
subsection introduces the distance geometry-based approach.

6.2.2 A distance geometry approach

A reasonable metric to jointly consider the reliability and the quality of the
given read over the given position is represented by the product of mαi and
vbαi . Therefore, in order to compute the distance dαβ between two reads α and
β in the set M(i), we propose to use the following formula:∑

t′∈∆αβ

||lα(t′)− lβ(t′)|| (6.1)

where ∆αβ is the overlap interval between the compared reads and lτ (ti) =
mτ (ti)vτ (ti). It is important to note that the aforementioned definition of dαβ
highlights the difference in variant calls among the reads, weighted according
to their reliability degree.

A physics-based interpretation of such quantities is to assume them as the
result of a kinetic process in the four dimensional space determined by the
nucleotides bases. Specifically, each read can be seen as a time record of the
movements of a particle over a given period. Each particle is characterized at
each sampling time (ti) by its mass (mαi) as well as by its velocity (vbαi) in
each direction [81]. Furthermore, each particle at each time sample changes its
mass and velocity as a result of an unknown collision. Thus, the global linear
momentum of this hypothetical particle over a time interval ∆η is:∑

j∈∆η

lη(tj) =
∑
j∈∆η

mη(tj)vη(tj) (6.2)

This quantity depends on the reliability and the quality of the information
provided by the dataset that has been taken into account. Hence, the distance
dαβ between two reads α and β is defined as the difference of their linear mo-
menta over the “time interval” (i.e. the genome region) in which they overlap.

The basic idea of our method is to label the i-th base of the data set with
a strategy that relies on the distances dαβ computed between all the reads
of the set M(i). The quantity dαβ can be actually considered as a distance
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Figure 6.1: Example of computation of distances: non Euclidean case

since dαβ ≥ 0 and dαβ = dβα. However, since the couples of reads typically
have distinct supports (i.e., overlap on different intervals which can be affected
by dissimilar kind of noise and mutations), the triangle inequality might not
hold. Therefore, from our definition, the distance among the read set is non-
Euclidean [82].

Given the provided definition of distance, Fig. 6.1 shows a little set of reads
for which the triangle inequality does not hold. Reads are drawn as bricks.
Mutations are expressed as colored letters in the brick. If the brick is grey, the
given base in the read under analysis is homologous to the reference genome
(which is reported in the string above the reads). Fig. 6.1 reports three reads
α, β and γ mapping onto a genomic segment that shows two mutations (in
positions 1 and 2). According to the definitions that have been previously
introduced, is it possible to write mγ1 = 1/3, mβ1 = mα1 = 2/3, mγ2 = 1/2,
mβ2 = 1/2. Furthermore, let assume that each base has been full quality se-
quenced, i.e., the velocity term is set to 1 for each base that is considered.
Thus, the distance set is as follows:

dβγ =
√(

1
3

)2
+
(

2
3

)2
+
√(

1
2

)2
+
(

1
2

)2

dαγ =
√(

1
3

)2
+
(

2
3

)2

dαβ = 0

Hence, it is easy to verify that the triangle inequality does not hold since
dβγ ≮ dαγ + dαβ. Therefore, from the definition, the distance among the read
set in the NGS system is non-Euclidean.

Let us now consider the reads α and β that are the points at maximum
distance (i.e., dαβ = dmax), such as the ones in Fig. 6.2. In this case we can
cluster the other reads on the basis of their similarity with either α and β.
Comparisons using Euclidean distances basically rely on the paradigm that
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Figure 6.2: Triangle inequality (a) Example of Euclidean distances in non-coordinate system

where the triangle inequality holds, i.e. dαβ < dαγ + dβγ . (b) Example of non-Euclidean distances in

non-coordinate system where the triangle inequality does not hold. Vertex representing γ is split in two to

stick with the constraint induced by the distances

states that the probability of a given point γ of the set to belong to the cluster
identified by β is a function of the ratio dγβ/dmax. Unfortunately, when the
distance metric is non-Euclidean, this ratio can lead to inaccurate clustering
performance, which may lead to wrong assignments. Therefore, it is necessary
to set up a scheme that allows overcoming this issue.

Then, let us take another look to Fig. 6.2. Introducing a point (O) outside
the space spanned by α, β and γ we can collect more information to get to a
stable and reliable clustering metric. The use of point O allows considering tri-
angles instead of distances and in general correspond to the use of the so-called
“distance geometry” [83], which works on non-coordinate systems, delivering
excellent performance in clustering and classification.

Specifically, it is possible to think that the similarity metric is a function
of the areas induced by the triangles composed by O, γ and one between α
and β (i.e., VαγO and VβγO in Fig. 6.2, which are the green and orange areas,

respectively). In other terms, the angles βÔγ and αÔγ may replace the dis-
tances dβγ and dγβ and play a key-role in the definition of the similarity score.

The identification of the similarity metric as a function of the aforesaid ar-
eas implicitly relies on the simplicial decomposition paradigm, for which each
point in a given simplex can be seen as a combination of its vertices [84]. In
our case the simplex is a triangle (3-simplex), so that any point (i.e. read) γ
lying within the triangle αOβ can be written as a linear combination of the
three vertices as long as such triangle contains them all, i.e. each read γ can
be written as:

γ = ζαα + ζββ + ζOO (6.3)

where ζα + ζβ + ζO = 1.
The weights (or abundances in the distance geometry literature) identify a

reliable set of similarity metrics, so that if ζα > ζβ the read γ can be clustered
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to α and viceversa. For this reason, O must be defined as the point that
together with α and β spans the largest simplex. Specifically, the distances
dαO and dβO have to been set in order to fulfill this condition. Supplementary
Section 3 provides the motivations and the actual setting for the aforesaid
distances. Moreover, the next subsection introduces the proposed distance
geometry-based labeling scheme.

6.2.3 Labeling using non-Euclidean metrics

As previously mentioned, the angles in the triangle αOβ can play a key-role
in read labeling. Specifically, the angle αÔβ = Γ can be used to discriminate
the maximum distance reads. According to Carnot’s theorem, it is possible
to draw an upper bound and a lower bound for Γ. Supplementary Section 3
provide a detailed description of their derivation. Briefly, we set the maximum
value of Γ to Γmax = 60◦, whilst its minimum value Γmin can be derived by
the following equation:

cosΓmin = 1− 1

2|∆αβ|2
(6.4)

Thus, if Γ < Γmin, there is no reliable separation between the maximum
distance reads, so that all the reads under analysis can be labeled uniformly.
This implies that the two alleles are homologous or that only one allele has been
processed. Thus, let two reads α and β be the points at maximum distance,
as in Fig. 6.2. Then, the likelihood L(γ ∼ α) that a given read γ belongs to
the allele represented by read α is:

L(γ ∼ α) = 1−
V 2
αγO

V 2
αγO + V 2

βγO

(6.5)

where V 2
ABC identifies the squared area of the triangle defined by vertices A,

B, and C. Computing this area requires to first compute the matrix of the
distances

DABC =

 0 dAB dAC
dAB 0 dBC
dAC dBC 0


Then V 2

ABC = −16det(CMABC)

where CMABC =

[
0 1

1T D2
ABC

]
(see additional material for details). It is important to note that the com-

puted likelihoods must be normalized to the sum V 2
αγO +V 2

βγO in order to fulfill
the sum-to-one constraint, i.e., to make L(γ ∼ α) + L(γ ∼ β) = 1. L(γ ∼ α)
and L(γ ∼ β) are proportional to the weights ζα, ζβ (see eq. 6.3) and can be
then used to cluster γ with β or α.
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6.2.4 Labeling-based genotyping

Taking into account the process that has been introduced in the previous
subsections, it is possible to efficiently perform genotyping of NGS reads by
properly managing the outcomes of the distance geometry approach, summa-
rized by the flowchart of Fig. 6.3. The first step of the algorithm involves
applying eq. 6.4. The i-th mutation is called as homozygous if the following
property holds:

αÔβ < Γmin = arccos[1− 1

2|∆2
αβ|

] (6.6)

Otherwise, genotyping is performed taking into account the labeling pro-
cess. Specifically, labeling splits M(i) into two disjoint sets, L1(i) and L2(i).
L1(i)(L2(i)) is defined as the set of the reads that are most likely belonging
to the allele represented by read α(β). Then, we define B1(i)(B2(i)) as the
base in the i-th position given by the reads in L1(i)(L2(i)). A majority rule is
employed if the reads in L1(i)(L2(i)) show different bases on the i-th position.

The coverage of each variant plays a key-role in the genotyping procedure.
Indeed, let us define Θ as the threshold value for the number of reads that map
onto each variant. Thus, when genotyping the i-th variant, we check |M(i)|
w.r.t. Θ. Thus, if |M(i)| < Θ, the i-th mutation is called as heterozygous as
B1(i) 6= B2(i): otherwise, a homozygosity is declared.

On the other hand, if |M(i)| ≥ 0, further investigations on L1(i) and L2(i)
have to be performed. Specifically, we consider the most represented base
between B1(i) and B2(i) over L1(i) and L2(i), respectively. Then, we check
whether the number of reads which show the most represented base over the
i-th variant is less than a fraction ψ of the total reads mapping onto variant
i. In case this condition is fulfilled and B1(i) 6= B2(i), a heterozygosity is de-
clared. Otherwise, a homozygosity is called. Supplementary Section 5 reports
a detailed description of the aforesaid procedure.

Taking a look back to the genotyping process, we can say that the param-
eter Θ can be seen as the limit of the informativity associated with the reads
in B̂. In other terms, each read in M(i) can provide useful information as it
represents at least 1/Θ of the global information delivered by M(i). If this con-
dition is not fulfilled, its informativity will not be discarded as |B̂| < ψ · |M(i)|.
Throughout this paper we assume Θ = 20 and ψ = 0.8 in order to achieve con-
fident genotypes at moderate or high coverage (>20), as shown by literature
[40].

Finally, the computational complexity of the proposed scheme is strongly
dependent on the labeling process computational cost and on the steps needed
to compute and compare weights (eq. 3).Thus, it is possible to draw an upper
bound of the computational cost required by Kimimila for each variant as a
function of the operations required by labeling and variant coverage: the up-

per bound can be written as |M(i)| ·N ·
(
|M(i)

2

)
, where N is the maximum
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Figure 6.3: The flowchart of the proposed algorithm
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number of variants two reads in M(i) overlap on.

6.3 Datasets and Experimental Methods

The proposed method has been tested over in-silico and real dataset to
exploit its performance in terms of read labeling and genotyping accuracy.
The aforementioned datasets are introduced in the following Sections.

6.3.1 In-silico dataset

Simulated dataset consisted of a pool of sequence reads along with their
base qualities and the mapping position on the genomic reference (GRCh37).
The allele origin of each read was known. The dataset was built according to
the following procedure:

1. Two copies of the human genomic reference GRCh37 corresponding to
the same genomic region were taken to simulate the two possible alleles;

2. The two alleles sequences were modified according to a phased variation
set on the above genomic region;

3. In order to simulate the allelic reads unbalance, the genomic region
of interest was split in five intervals weighted in accordance to a pre-
established allele frequency.

4. Sequence reads were generated by randomly choosing sequence snippets
from the modified allele sequences. Snippets were generated from one of
the two alleles according to the allele frequency of the interval.

5. For each read, base qualities were assigned following a linear function
Q = ((m−M + 2r)/L)x+ (M − r) where x is the current base, m and
M are the minimum and maximum quality scores (respectively set to 20
and 41 in Phred scale), L is the read sequence length and r is an integer
random variable between 0 and 5.

To simulate next generation sequencing reads and alignment artifacts, we in-
troduced noise by randomly choosing for each variant locus a set of overlapping
reads (S) for which the corresponding base at the variant site within its quality
Phred scores (Q) had to be changed. We distinguished between three combi-
nations of S and Q to build the resulting datasets corresponding to:

1. Low noise dataset (S=[0,2], Q=[1,10])

2. Medium noise dataset (S=[0,3], Q=[1,20])

3. High noise dataset (S=[0,3], Q=[20,41])

84



6.4. Results

A total of 960 reads were generated. Each read was 101 bases in length and
mapped to one of the five genomic intervals taken under consideration and
spanning 11 variations. The number of generated reads allowed an average
coverage of about 30-fold.

6.3.2 Real dataset

A dataset was downloaded from the 1000 Genome Project public resource.
In particular, the test of the algorithm was performed on Illumina alignment
sequencing data (BAM files) of the HG00096 exome-sequenced sample belong-
ing to the 2nd phase release. HG00096 SNPs array data obtained from the
Illumina Omni 2.5M Chip, phased by SHAPEIT software [85] were used as
validation set. By the intersection of above two data sources we obtained the
set of reliable variants within their overlapping reads. Therefore, for each read
we were able to infer the allele origin basing on the presence or absence of
a reliable variant on it, except for those reads covering only one homozygous
variant.

6.4 Results

The algorithm was tested on the simulated dataset in order to evaluate the
performances of the algorithm in labeling reads according to their allele origin
and on the real dataset to evaluate reads labeling and variant genotyping. In
both cases Kimimila showed accurate results.

We finally compared Kimimila genotyping performances on the real dataset
to GATK UG, VarScan, Samtools, Atlas2 and FreeBayes tools.

6.4.1 Results on simulated dataset

For the simulated dataset, the proposed method shows a reads labeling ac-
curacy greater than 85% over 91% of the variants in case of low noise condition,
83% of the variants in case of medium noise condition and 81% of the variants
in case of high noise condition (see Fig. 6.4). It is worth noting that the la-
beling accuracy is computed as the fraction of reads that have been correctly
clustered w.r.t. their allele origin.

6.4.2 Results on simulated dataset - Reads labeling

As the real dataset is concerned, we tested the algorithm on a subset of 1094
reads overlapping 76 variants randomly chosen. The labeling accuracy results
are shown in Fig. 6.5. We compared Kimimila against the performance of a
standard clustering method such as the K-means algorithm. In order to get a
fair comparison, the K-means algorithm has been fed with the distances that
have been computed for each variant over the interval for which the maximum
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Figure 6.4: Labeling performance over synthetic datasets character-
ized by different noise injection The plot shows over the y-axis the percentage of variants

for which the labeling has been performed with the corresponding accuracy that is reported over the x-axis
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Figure 6.5: Labeling performance over a real dataset having 76 vari-
ants The plot shows over the y-axis the percentage of variants for which the labeling has been performed

with the corresponding accuracy, reported over the x-axis. The performance of K-means and Kimimila are

shown as a red solid line and a blue solid line, respectively

distance reads overlap. The performance of K-means and Kimimila are shown
in Fig. 6.5 as a red solid line and a blue solid line, respectively. As previously
mentioned, the labeling accuracy is computed as the fraction of reads that have
been correctly clustered w.r.t. their allele origin. The labeling performance of
K-means algorithm stands in the interval between 52% and 70%. On the other
hand, Kimimila performs optimal labeling (i.e., is able to perfectly identify the
allele origin) over 92% of the variants. Moreover, the proposed method shows
a labeling accuracy greater than 85% over 97% of the variants.

6.4.3 Results on simulated dataset - Genotyping and
comparison to the other algorithms

Genotyping accuracy was tested on all 69834 Omni Chip variants of HG00096
sample on all autosomes for which overlapping reads occurred. Results on geno-
typing were compared to those achieved by GATK UG, VarScan, Samtools,
Atlas2 and FreeBayes. Table 6.1 shows the genotyping results over each chro-
mosome for every level of coverage. Specifically, in Table 6.1 the percentages of
variants that have been correctly genotyped by Kimimila and the other tools
are provided. VarScan is not included here because it does not genotype vari-
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ants with few supporting reads, therefore a comparison on the whole data set
regardless of the coverage threshold would not have been fair. As a result Table
6.1 shows that the five considered methods provide approximately the same
accuracy in genotyping throughout the chromosomes. The computational time
required by Kimimila to perform genotyping can be estimated in an average
of 6.7ms/variant over a 8GB RAM Intel i5 processor.

Chr GatkUG Samtools FreeBayes Atlas2 Kimimila
1 90.7 90.8 89.3 91.5 90.64
2 89.3 89.4 88 90.1 89.19
3 90 89.9 88.6 90.6 89.98
4 89.3 89.3 88.1 89.8 89.41
5 90.2 90.2 88.8 90.6 90.14
6 91.3 91.4 90.2 92.2 91.33
7 89.7 89.7 88.3 90.4 89.75
8 86.7 86.8 85.3 88 86.84
9 89.6 89.6 88.6 90.7 89.51
10 89.9 90 88.4 90.7 90
11 91.1 91 89.3 91.8 91.05
12 91.2 91.2 89.9 92.1 91.15
13 88.4 88.3 87.2 89.1 88.29
14 89.9 89.9 88.4 90.6 89.48
15 90.9 90.9 89.6 91.6 90.68
16 88.6 88.6 87 89.8 88.56
17 92.2 92.3 90.8 92.9 92.1
18 85.8 85.8 84.1 86.6 85.51
19 94.3 94.4 92.5 95 94.28
20 89.6 89.8 87.9 91 89.76
21 87.3 87.3 86 88 87.49
22 91.5 91.5 88.9 93 91.41

Average 89.88 89.91 88.42 90.73 89.84

Table 6.1: Results on genotyping of the proposed methods The table reports

the percentage of variants (covered at least by 10 reads) over each chromosome that have been correctly

genotyped by Kimimila, GATK, Samtools, FreeBayes and Atlas2 algorithms

Moreover, it is worth to note that a fraction of variants have been incor-
rectly genotyped because of insufficient coverage from one of the two alleles.
As shown in Table 6.2, we stratified genotyping accuracy by reads coverage
and we found that below a threshold of 10, the accuracy on heterozygous calls
decrease to 50% or less for each tool, reflecting their tendency to easily call
for homozygous variants in case of a low allele ratio. Indeed we observed a
high accuracy (above 99%) on homozygous calls independently from the cov-
erage. These results are compliant with previous literature findings in this field
[86, 87] and to the recommendations that for diagnostic purposes an average
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coverage above 50-fold with at least 10 reads covering more than 90% of the
genomic region of interest should be assured for quality assessment.

Tool
Coverage

(C)
Accuracy

TP rate
(Hom)

TN rate
(Het)

FP
rate

FN
rate

GATK C>50 .999 .999 .999 .0005 .0007
C>10 .999 .998 .999 .0008 .0011

10≤C≤50 .998 .998 .998 .001 .0017
C<10 .808 .998 .500 .500 .0015

Samtools C>50 .999 .999 .999 .0005 .0007
C>10 .999 .999 .999 .0007 .0008

10≤C≤50 .999 .999 .998 .001 .0007
C<10 .807 .996 .501 .498 .0034

FreeBayes C>50 .999 .999 .999 .0005 .0008
C>10 .998 .999 .998 .0017 .0008

10≤C≤50 .997 .999 .996 .0036 .0005
C<10 .778 .999 .418 .582 .582

Atlas2 C>50 .999 .999 .999 .0005 .0008
C>10 .998 .999 .998 .001 .001

10≤C≤50 .998 .999 .997 .002 .0007
C<10 .814 .998 .519 .480 .0014

VarScan C>50 .999 .999 .998 .001 .0007
C>10 .993 .999 .998 .009 .0006

10≤C≤50 .987 .999 .998 .02 .0006
C<10 - - - - -

Kimimila C>50 .999 .999 .998 .0015 .0005
C>10 .997 .995 .998 .001 .004

10≤C≤50 .995 .992 .998 .002 .008
C<10 .809 .996 .506 .493 .003

Table 6.2: Comparison of genotyping accuracy between GATK Uni-
fied Genotyper, VarScan, Samtools, FreeBayes, Atlas2 and Kimimila
Here, homozygous and heterozygous variants are represented as positive and negative class respectively. True

positive/negative rate and false positive/negative rate are reported as well. Results are stratified according

to coverage (above 0, below 10, between 10 and 50 and above 50)

6.5 Discussion

Given the performance that have been previously reported, the algorithm
is based on a different approach w.r.t. the other methods that have been con-
sidered. Indeed, it is able to assign and report the allelic origin for each read
overlapping a variant locus. The increasing in length of reads produced by
third generation sequencers will increase the number of haplotype informative
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reads as well, leading this approach to more accurate reads labeling and geno-
typing. Finally, it is important to note that Kimimila reached high accuracy
in genotyping without making use of a priori knowledge, suggesting that the
method can be suitable for those cases where lack of knowledge is present (i.e.
genomes of other species).

Variant genotyping is only one of the possible applications of this method:
further potential research directions are presented in the following. Haplotyp-
ing, which aims to link together (phase) two or more variants belonging to the
same alleles, is one possible application. The majority of haplotype phasing
algorithms are based on the correlation between alleles at specific SNPs in a
population (so called linkage disequilibrium) [85, 88, 89, 36]. However,these
approaches are usually less accurate if compared to other methods that make
use of heterozygous variants on mapped reads for haplotype phasing [90, 91].

Although this method was aimed at defining the zygosity of a variant, the
approach used to classify sample fragments could be easily reused to recon-
struct the haplotype as well. If the overlapping rate between fragments is
adequate and these fragments are long enough to encompass multiple variant
sites (as expected by sequence technology improvement), a future develop-
ment that aims to assemble these fragments to reconstruct long and reliable
haplotype-blocks will be possible. Another potential research directionis re-
lated to polyploid domains as in the case with somatic samples. In order to
fulfill this goal, the distance geometry approach would need to be adapted to a
generic N-dimensional space, where N is the number of alleles of the sequenced
sample. After this adaptation it will be possible to a) infer the number of
sub-population genomes in the sample and b) genotype and phase variants
belonging to each genome within the mixture.

6.6 Conclusion

This chapter presented a novel algorithm, Kimimila, able to classify reads
that are mapped to a reference genome by their allele origin; as a consequence
the algorithm can be used to assign the genotype of the genomic variant loci
overlapped by the reads. A graphical abstract is showed in Fig. 6.6.

The algorithm is based on an original clustering technique based on a dis-
tance geometry approach for reads comparison; it makes use of both the nu-
cleotide frequency for a single variant locus across the overlapping reads and
the sequenced base qualities assigned by the base caller. Two sources of in-
formation were integrated into a single model that, dealing with reads rather
than only single base pileup, is able to combine more variant loci when present
on the same read.

The algorithm was tested on a simulated dataset in order to evaluate both
the reads classification and variant genotyping. Kimimila is able to reach high
performances despite high levels of noise. Finally Kimimila was compared to
several algorithms for variant genotyping: GATK UG, Samtools, Atlas2, Free-

90



6.6. Conclusion

Figure 6.6: A graphical abstract of Kimimila
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Bayes and VarScan. These methods are comparable in terms of performances
and suffer from the same limitations for shallow genome coverage.
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Chapter 7
Variant analysis

This chapter will present the results achieved by the sequencing project1.
In this study, we performed a comprehensive mutation analysis of genes impli-
cated in myeloid malignancies in a large and clinically well characterized cohort
of CMML patients with the aim to dissect relationships between genotype and
disease phenotype and to integrate somatic mutations into a clinical/molecular
prognostic model.

7.1 Patients

All investigations were approved by the Ethics Committee of the Fon-
dazione IRCCS Policlinico San Matteo, Pavia, Italy, and other local Insti-
tutional Review Boards. The procedures followed were in accordance with the
Helsinki Declaration of 1975, as revised in 2000, and samples were obtained
after subjects provided informed consent.

Two-hundred-fourteen patients (pts) with CMML according to WHO clas-
sification (2008) were included in the study. Clinical and hematological fea-
tures of patients at the time of mutational analysis are reported in Table 7.1.
Myelodysplastic and myeloproliferative subtypes (CMML-MD and CMML-
MP, respectively) were defined according to FAB criteria. CPSS was calculated
according to [92].

7.2 Mutation analysis

Genomic DNA was obtained from bone marrow mononuclear cells or pe-
ripheral blood granulocytes by following standard protocols for human tis-
sue. Bar-coded sequencing libraries were prepared and target enrichment for

1The content of this chapter has been partially reported for poster presentation at
56th ASH Annual Meeting and Exposition as Somatic Mutations of ASXL1, RUNX1
and SETBP1 Improve Prognostic Stratification of Patients with Chronic Myelomonocytic
Leukemia, C. Elena, A. Galĺı, E. Such, U. Germing, E. Rizzo et al.
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the selected coding genes was performed before samples were pooled and an-
alyzed by high throughput sequencing using Illumina MiSeq (Ilumina, San
Diego, CA). The following genes were studied: ASXL1, BCOR, CBL, CEBPA,
CSF3R, CUX1, DNMT3A, EP300, ETNK1, ETV6, EZH2, FLT3, IDH1, IDH2,
JAK2, KIT, KRAS, MLL, MLL2, MLL3, MLL5, NF1, NPM1, NRAS, PHF6,
PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, STAG2, TET2, TP53, U2AF1,
UTX, WT1, ZRSR2. Sequencing output data have been processed with the
pipeline presented in Chapter 3 through a cloud cluster introduced in Chapter
4. Despite the defined pipeline is able to search for structural variants, the
following results refer to point mutation, short insertions or deletions because
target resequencing data have limited power in identifying structural variants
when compared to the robustness of results in term of point or small mutations.

7.2.1 EmatoDB

An important goal to achieve was related to the selection of a well defined
database of known genomic structural variations related to MDS/MPNs neo-
plasms that could help in identify and prioritize variants found in patients
sequenced at the Department of Hematology Oncology of Policlinico San Mat-
teo.

In order to populate such database, called EmatoDB, about 100 scien-
tific publications from 2009 to 2014 have been included in the analysis. All
the selected studies refer to mutational analysis of patients with MDS/MPNs
syndromes characterized by NGS and report hundreds of indentified variants.
However, despite all the resulting variants were referred to hg19, they had dif-
ferent formats, often not well documented, because there is not yet a standard
nomenclature for variants. Discussions regarding the uniform and unequivocal
description of sequence variants in DNA and protein sequences were initiated
more than 10 years ago but although the Human Genome Variant Society
(HGVS) nomenclature recommendations [93] are becoming largely accepted, a
lot of researchers still use different description of variants.

HGVS has set standards for describing variants at DNA level and protein
level but it recommends to describe all variants at the most basic level, the
DNA level. Descriptions should always be in relation to a reference sequence,
either a genomic or a coding DNA reference sequence. Despite a genomic
reference sequence seems best, in practice coding DNA reference sequences are
preferred. Accordingly to HGVS variants are reported at DNA level as shown
in the following example:

� c.85A>T

where c. is a coding DNA sequence, 85 is the base affected and A>T the
sequence change. The example encodes a substitution but there are recom-
mendations for deletions, duplications, insertions, inversions, translocations
and repeated sequences.
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7.2. Annotation

Sequence changes at the protein level are described like those at the DNA
but should only be given in addition to a description at DNA level. In this
case a “p.” preceding the change is used to indicate a description at the protein
level.

The database creation process has therefore combined both manually and
automated variant importing. Variants respecting HGVS recommendations
were imported automatically while not standardized variants were revised man-
ually, converted to HGVS and finally imported on EmatoDB. Table 7.2 shows
the five mandatory field stored in EmatoDB for each variant and it is worthy
to note that variants are stored in terms of genomic positions with respect to
a reference genome.

The majority of variants reported in the investigated publications were how-
ever annotated in relation to coding DNA reference sequences, so even if they
were in HGVS format an additional conversion step from coding coordinates
to genomic coordinates was required before the upload.

Furthermore, several publications reported variants only in terms of protein
changes. Such format often can’t be univocally associated to a coding DNA
change but, on the contrary, can reflect a variable number of coding sequence
changes. As a result, the protein changes that can be generated by a limited
number of coding sequence changes have been translated in genomic changes
and uploaded on EmatoDB while not solvable protein changes were discarded.

While the majority of publications only reported lists of variants uncon-
firmed by other sequencing techniques, few articles Sanger-sequenced the iden-
tified variants. As a result, variants that were confirmed by Sanger should have
been considered somatic and therefore highly weighted with respect to other
variants. Such additional information have been therefore stored in EmatoDB
by adding to table 7.2 an additional field with value tumor variant. Variants in
EmatoDB can be classified indeed as tumor variant or polymorphism if there
are supporting evidences or none of two, otherwise. Tumor variants can be
then detailed as oncogenic, possibly oncogenic or sanger.

The initial importing procedure on EmatoDB has only tagged as tumor
variant - sanger variants that have been confirmed by Sanger while the others
were uploaded without a tag.

7.2.2 Annotation

As discussed before, variants that have been found on processed data need
to be annotated in order to make sense of them. In particular, annotation en-
riches variants with additional features that can be used to define what is the
impact on the protein functions besides the classification of such changes as
somatic or not. As already stated, the custom annotation process is performed
by Annovar that firstly use RefSeq to enrich variants with information relating
genomic positions to intron-exon boundaries, gene names and protein prod-
ucts. Then variants are matched and annotated accordingly with the following
databases:
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� snp138

� snp138NonFlagged

� cosmic68

� 1000g2012apr all

� ljb23 all

� esp6500 all

� EmatoDB

The snp138 annotation adds the corresponding dbSNP identifier to variants
that are reported in dbSNP version 138.
The snp138NonFlagged database is a reduced version of dbSNP 138 that in-
cludes variants with minor allele frequency > 1%. It results in annotating only
variants that can be considered frequent in population.
Cosmic68 database is a Catalogue Of Somatic Mutations In Cancer (COS-
MIC) and the corresponding annotation reports the identifier of variants that
are present in such database.
The 1000g2012apr all annotation adds the information about the frequency of
a specific variant above the 1000 Genomes Project population, if present.
By annotating against ljb23 all variants are enriched with information derived
by dbNSFP. The latter is a database developed for functional prediction and
annotation of all potential non-synonymous single-nucleotide variants in the
human genome. Single nucleotide variants are therefore enriched with several
scores that reflect their effect on the protein. In particular such annotation in-
cludes score calculated with different prediction software as SIFT, PolyPhen2,
LRT, MutationTaster, FATHMM, GERP++, PhyloP and SiPhy, but we in-
cluded in the analysis the first four only.
ESP is an exome sequencing project aiming at identify genetic variants in ex-
onic regions from over 6000 individuals so the esp6500 all annotations reports
the frequency of a variant above this population, if present.
EmatoDB annotation finally adds the identifier and the journal reference if a
variants is present in the database defined in the previous section.

Once variants have been annotated using Annovar, an additional enrich-
ment step was focused on pathways and conserved domains. In order to find
the pathways in which targeted genes are involved, the KEGG database [94]
was consulted and each variant has been enriched by adding pathway’s iden-
tifiers that include the corresponding gene as a component. To enrich vari-
ants accordingly to conserved domains the Conserved Domain Database [95]
was consulted: conserved intervals within targeted coding nucleotide sequences
were retrieved and variants that fall inside such intervals were enriched with
the corresponding conserved domain identifier.
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Finally, variants have been enriched with PROVEAN [96] annotation as
well. As the others in silico predictors, this tool predicts whether an amino
acid substitution or indel has an impact on the biological function of a protein.

7.2.3 Tumor/Normal analysis

As previously stated, 214 tumor samples were sequenced during the study.
74 matched normal samples have been sequenced as well. Once processed
and annotated through the pipeline, these data have been manually revised
by physicians in order to refine the filtering and tagging procedure of variants
that will be detailed later. For each variant identified in a tumor sample this
process evaluated the following parameter:

� presence in the corresponding normal sample;

� allelic fraction of reads supporting the variant;

� frequence across patients;

� presence in dbSNP, 1000 Genome Project, Cosmic and EmatoDB;

� effect on the protein according to in-silico predictors.

Variants supported by strong evidence have then been tagged as tumor variant
or polymorphism and imported in EmatoDB. For variants already present in
EmatoDB the classification tags were updated accordingly to this analysis.

7.2.4 Filtering procedure

Because the study aimed to confirm and discover new variants typical of
patients affected by CMML cancer, a filtering procedure was required to remove
variants that could have been considered as germline events. If samples have
a normal counterpart, such filtering procedure can be easily done through the
somatic variant caller implemented in the pipeline or by subtracting variants
that have been called against the reference genome from tumor and normal
samples. However this procedure didn’t work for the majority of patients that
have been considered in this study since a normal matched sample wasn’t
available and as a result of the variant calling procedure the final variant set
included hundreds of variant for each patients. By applying the filters that will
be discussed here following, 97% of the variants have been filtered out and the
amount of variants per patient that can be considered somatic is comparable
with somatic variants identified in tumor normal matched samples.

Variants were initially filtered according to their allelic fraction. The allelic
fraction was calculated for each variant of all patients that support it and a
filtering flag was assigned to each patient according to the following rule:

� 45% < allelic fraction < 55% or allelic fraction > 90%
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because such frequencies are typical of germline variants, in particular when
tumor cell purity is not 100%; we have applied the filtering when studied
samples show levels of contamination around 10% at least. If the variant was
flagged to be filtered for more than 50% of patients and it wasn’t annotated
as present in Cosmic or EmatoDB, it was filtered out for all patients.

Mean, standard deviation and coefficient of variation of allelic fraction were
then calculated for each variant among patients. A statistical analysis on tumor
normal matched samples showed that a cutoff of 0.12 on the coefficient of
variation was a good compromise between sensitivity and specificity to separate
germline and somatic variant. As a result a variant was filtered if its coefficient
of variation was greater than 0.12 and was found in at least five patients.
Variants that were annotated as tumor variant in EmatoDB were however
rescued.

Finally the following self-explaining filters were applied to the remaining
variants:

� variants that fall outside coding regions were filtered;

� variants with allele frequency greater than 1% in dbSNP were filtered
unless present in Cosmic or EmatoDB;

� variants with allele frequency greater than 0.14% in 1000 Genome Project
were filtered unless present in Cosmic or EmatoDB;

� variants with coverage lower than 30x and less than 10 supporting reads
were filtered;

� variants with allelic fraction lower than 0.02 were filtered.

7.2.5 Variant tagging

The last step of variant analysis and interpretation has consisted in a tag-
ging procedure for unfilterd variants in order to highlight oncogenic ones. In
particular variants were tagged as oncogenic if:

� annotated in EmatoDB as tumor variant - sanger ;

� annotated in Cosmic as haematopoietic and lymphoid tissue;

� more than 75% of in silico predictors were concordant about the damag-
ing effect of the variant;

� more than 60% of in silico predictors were concordant about the damag-
ing effect of the variant and it was inside a conserved domain;

while as polymorphism if annotated in EmatoDB as polymorphism and as
possible oncogenic if annotated in EmatoDB as tumor variant.
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Once this initial tagging procedure was performed, variants that have been
tagged as oncogenic were imported in EmatoDB with the tag tumor variant -
oncogenic. If a variant was already present in EmatoDB its tag was updated.

The final stage of tagging procedure had scan all the untagged variants with
respect to EmatoDB’s variants that were tagged as tumor variant - oncogenic.
In particular, each variant have been classified as oncogenic if:

� at least two patients support the variant that is no more than three amino
acids far from an oncogenic EmatoDB one

and as possibly oncogenic if:

� one patient supports the variant that is no more than three amino acids
far from an oncogenic EmatoDB variant

7.3 Statistical analysis

Survival analyses were performed with the Kaplan-Meier method. The cu-
mulative incidence of acute myeloid leukemia (AML) evolution was estimated
with a competing risk approach, considering death for any cause as a com-
peting event. Multivariate survival analyses were performed by means of Cox
proportional hazards regression. The effect of quantitative covariates on cu-
mulative incidence of leukemic evolution was carried out using the Fine-Gray
regression model. All analyses accounted for left censoring of the observations
at the time of mutation assessment. The comparison of models with differ-
ent types of covariates was carried out using Akaike’s information criterion.
Statistical analyses were performed using Stata 12.1 (StataCorp LP) software.

7.4 Results

7.4.1 Mutation spectrum and correlations between geno-
type and phenotype in CMML

Ninety-three percent of patients showed at least 1 oncogenic mutation (me-
dian number per patient: 2, range 0-7).The most frequently mutated genes are
reported in Table 7.3 . Mutations in JAK2, NRAS and SETBP1 were sig-
nificantly associated with CMML-MP (P values ranging from .03 to <.001),
whereas TET2 and SF3B1 mutations were associated with CMML-MD (P=.007
and P=.024, respectively).
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Figure 7.1: Distribution of mutations per patient and prognostic im-
pact on survival

7.4.2 Prognostic value of genetic alterations in CMML
and development of a clinical/molecular prognos-
tic scoring system (CPSS-Mol)

The number of mutations per patient inversely correlated with overall sur-
vival (OS) (HR=1.23, P=.001) (Fig. 7.1). In univariate analysis, mutations
in ASXL1 (HR=1.67, P=.032), EZH2 (HR=2.17, P=.021), NRAS (HR=2.04,
P=.002), RUNX1 (HR=3.04, P<.001) and SETBP1 (HR=2.59, P=.002) sig-
nificantly affected OS.

In order to investigate the additive value of somatic mutations to current
prognostic assessment, we first performed multivariate Cox regression includ-
ing CPSS cytogenetic risk categories and somatic mutations. The variables
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Figure 7.2: Variables and scores of CMML-Genetic Prognostic Scoring
System (CMML-GPS)

that retained independent prognostic value were CPSS cytogenetic risk groups
(HR=1.48, P=.026), and mutations in RUNX1 (HR=2.36, P=.018), NRAS
(HR=2.17, P=.016), SETBP1 (HR=2.03, P=.05),and ASXL1 (HR=1.82, P=.022).

Based on regression coefficients, we defined a CMML-specific Genetic Prog-
nostic Scoring System (CMML-GPS) that was able to identify 4 different
groups with significantly different OS (HR=1.8, P<.001) and cumulative in-
cidence of AML evolution (HR=2.62, P<.001). Fig. 7.2 summarizes variables
and scores of CMML-GPS while Fig. 7.3 shows the survival and cumulative
incidence of AML evolution according to CMML-GPS risk categories.

The Akaike information criterion showed that genetic risk score performed
better than the original CPSS cytogenetic risk classification (AIC 664 vs. 684,
respectively). According to the genetic risk score, 40.5% of patients had a shift
toward a higher risk category compared with the cytogenetic classification.

Then, we performed multivariable regression analyses including new genetic
risk categories, clinical and hematological variables. The following variables
had a independent prognostic value: genetic risk groups (HR=1.5, P=.005),
RBC transfusion-dependency (HR=2.74, P<.001), FAB subtype (HR=2.47,
P<.001), WHO subtype (HR=2.12, P=.015). Based on regression coefficients,
we defined a CPSS-Mol, which was able to identify 4 risk groups with differ-
ent OS (HR=2.11, P<.001) and cumulative incidence of leukemic evolution
(HR=2.58, P<.001). Fig. 7.4 summarizes variables and scores of CPSS-Mol
while Fig. 7.3 shows the survival and cumulative incidence of AML evolu-
tion according to CPSS-Mol risk categories. The Akaike information criterion
showed that the CPSS-Mol performed better than the original CPSS (AIC 590
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Figure 7.3: Survival and cumulative incidence of AML evolution ac-
cording to CMML-GPS risk categories
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Figure 7.4: Variables and scores of CPSS-Mol

vs. 609, respectively).
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Figure 7.5: Survival and cumulative incidence of AML evolution ac-
cording to CPSS-Mol risk categories
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Patients, n. 214
Follow-up in months, median (range) 22 (0.4-212.6)
Age in years, median (range) 72 (28-99)
Males, n. (%) 151 (71)
FAB subtype, n. (%)

CMML-MD 129 (60)
CMML-MP 85 (40)

WHO subtype, n. (%)
CMML-1 176 (82)
CMML-2 38 (18)

WBC, x10ˆ9 /L, median (range) 9.8 (1.2-126)
ANC, x10ˆ9 /L, median (range) 5.1 (0.1-109.6)
AMC, x10ˆ9 /L, median (range) 2.1 (0.9-34)
Hgb, g/dL, median (range) 11.6 (6-16.6)
RBC transfusion dependency, n. (%) 54 (26)
PLT, x10ˆ9 /L, median (range) 124 (4-943)
PB blasts %, median (range) 0 (0-17)
BM blasts %, median (range) 3 (1-18)
BM ring sideroblasts, %, median (range) 0 (0-80)
Chromosomal abnormalities, n. (%) 44 (23)
CPSS cytogenetic risk group

Low 150 (79)
Intermediate 21(11)

High 19 (10)
CPSS risk group

Low 85 (46)
Intermediate-1 49 (27)
Intermediate-2 46 (25)

High 4 (2)

Table 7.1: Clinical and haematological features of 214 patients with
CMML at the time of mutational analysis

VCF mandatory fields
CHROM chromosome

POS 1-based position of the start of the variant
REF the reference allele
ALT a comma separated list of alternate non-reference alleles

JOURNAL reference to the scientific publication

Table 7.2: EmatoDB fields
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Gene Mutation CMML (%) CMML-MD (%) CMML-MP (%) P value
TET2 44.4 51.6 32.1 .007
SRSF2 38.8 38.0 39.3 ns
ASXL1 29.0 25.0 34.5 ns
NRAS 11.7 4.7 22.6 <.001

SETBP1 9.4 3.9 16.7 .002
KRAS 8.9 9.4 7.1 ns

RUNX1 8.0 5.5 10.7 ns
CBL 8.4 7.8 8.3 ns
JAK2 7.0 3.9 11.9 .03
EZH2 7.0 5.5 8.3 ns
SF3B1 5.6 8.6 1.2 .03
U2AF1 4.2 4.7 3.6 ns
ZRSR2 4.2 5.5 2.4 ns

Table 7.3: Relative frequency of gene mutations in the cohort of 214
CMML pts, considered as a whole, and subdivided according to FAB
classification.
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Chapter 8
Overall conclusions

This dissertation was a comprehensive overview about the bioinformatics
tasks that need to be addressed in order to perform an efficient next generation
sequencing project. In this particular case, the overall procedure was referred
to a targeted resequencing analysis of genes implicated in chronic myelomono-
cytic leukemia (CMML) in a large and well characterized cohort of patients
but it can be easily scaled to exome or genome analysis. CMML is a myelodys-
plastic/myeloproliferative neoplasm characterized by a highly variable clinical
course; since recurrent somatic mutations have been identified in such disease,
the selected mutated genes were sequenced in order to provide useful prognostic
information.

The defined pipeline of analysis was the result of a scrupulous comparison
of different solutions that has brought to a robust combination of several state
of the art tools to process next generation sequencing data. Such workflow im-
plements the analyses usually referred as secondary and tertiary, while primary
analysis is provided by the platform provider as part of the machine’s function.
Secondary analysis maps sequencing data to a reference genome and process
them in order to be more reliable for the tertiary analysis, which mainly aims
on identify all the differences between aligned reads and the reference genome.
The pipeline’s output is a combination of single nucleotide polymorphism, in-
del and structural variants that are then enriched with additional information
in order to evaluate their impact and therefore their importance.

The amount of data produced by the sequencing project was however enor-
mous and the processing procedures highly computational demanding. Such
challenges were initially addressed by implementing the workflow through the
GenePattern platform on a local server that was made available for the project.
Despite powerful, this genomic analysis platform wasn’t good enough to im-
plement an high level of parallelization and deal with big amount of data. As
a consequence, the pipeline was re-implemented with COSMOS, a library for
workflow management that allows formal description of pipelines and partition-
ing of jobs. In addition to a remarkable time reduction to process sequencing
data because of an increase of pipeline performances, that implementation re-
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sulted as a perfect solution to explore cloud-based services. In particular, a
cloud-based cluster was defined and all the sequenced samples were analyzed
accordingly to this solution.

The variant analysis summarized then the filtering and tagging procedure
to identify new somatic mutations and confirm known ones. In conclusion,
this study showed that mutations in CMML significantly correlate with dis-
ease phenotype and an additional important result relies on the definition of
a database of mutation related to myelodysplastic/myeloproliferative. Such
database will indeed play a central role in any future analyses conducted at
the Department of Hematology Oncology of Policlinico San Matteo (Pavia,
Italia). Moreover, it was shown that the integration of somatic mutations in
current scoring systems significantly improves prognostic stratification of pa-
tients and a new clinical/molecular CMML-specific Prognostic Scoring System
(CPSS-Mol), that is able to identify 4 risk groups with significantly different
survival and risk of leukemic evolution, was defined.

Finally this thesis has presented two related works that were developed
during the PhD program. The first one refers to an infrastructure for scalable
and cost-effective NGS genotyping in the cloud aimed at reduce the turnaround
time of data analysis and costs. The promising results shows that this tech-
nology, both in term of sequencing and bioinformatics analysis, is very close
to be adopted by clinicians. The second one discusses a kinetic model-based
algorithm to classify NGS short reads by their allele origin. Such approach has
reached high accuracy in genotyping without making use of a priori knowledge,
in contrast to the majority of genotyping software, and can be easily reused to
reconstruct the haplotype as well.
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