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Abstract (Italiano) 

 
La diffusione delle tecnologie di nuova generazione per il 

sequenziamento del DNA ha rivoluzionato il mondo della ricerca 
biomedica. 

La crescente capacità di throughput, in termini di basi sequenziate 
nell’unità di tempo, insieme ai costi sempre più ridotti per base è stato il 
trend degli ultimi dieci anni ed ha portato al sequenziamento di migliaia di 
esseri viventi. 

A oggi, siamo in grado di leggere l’intero genoma di una persona base 
per base, identificare quelle varianti genomiche che possono, ad esempio, 
spiegare una singola patologia genetica o che aumentano in maniera 
significativa il rischio di sviluppare un tumore. Possiamo suggerire quali 
farmaci potrebbero rivelarsi più efficaci dato il profilo genomico del 
paziente e quali terapie anti tumorali potrebbero fallire a causa di una 
particolare combinazione di mutazioni, espressione ed evoluzione di geni 
sequenziati a partire da particolari tessuti. 

La “medicina personalizzata” o “medicina di precisione”, che consiste 
nella pratica medica ottimizzata per i dati clinici e molecolari del paziente, 
ha tutte le carte in regola per essere applicata in ambito diagnostico, 
prognostico e terapeutico, al patto che essa venga supportata da 
un’adeguata tecnologiadi Bioinformatica. 

Questa tesi vuole essere un contributo in questa direzione affrontando 
due importante sfide che ciascun laboratorio, facente uso di queste 
tecnologie a scopo di ricerca o clinico, deve affrontare: la gestione e 
l’ interpretazione dei dati di sequenziamento, con particolare focus sulle 
varianti genomiche.   

 
Nel Capitolo 1 sono discusse brevemente le motivazioni dell’attività di 

ricerca di questa tesi e sono riassunte le soluzioni sviluppate. 
 
Nel Capitolo 2 è presentato lo stato dell’arte della tecnologia di 

sequenziamento, le sue applicazioni ed il conseguente impatto sulla 
comunità scientifica negli ultimi anni. Sono quindi introdotte le tematiche 
della gestione e dell’interpretazione dei dati genomici, e infine spiegati nel 
dettaglio alcuni dei principali database per i dati genomici ed algoritmi 
adibiti all’annotazione e all’interpretazione di varianti genomiche.  
 

Nel Capitolo 3 è discussa l’architettura del sistema sviluppato per gestire 
i campioni sequenziati e le relative varianti genomiche. Vengono presentate 
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le principali tecnologie e le risorse utilizzate. Viene poi descritta 
l’interfaccia web sviluppata. Dopo aver discusso delle limitazioni di questo 
sistema, si introduce e si descrive una nuova architettura per la 
memorizzazione di varianti genomiche e le relative componenti 
tecnologiche. Sono infine discussi i risultati di test effettuati con tale 
piattaforma.   

 
Nel Capitolo 4 viene presentato l’algoritmo realizzato per classificare le 

varianti genomiche descrivendo componenti e risorse utilizzate. Vengono 
discussi i risultati ottenuti in termini di confronto con altri algoritmi di 
predizione e casi particolari dove l’algoritmo mostra il suo valore aggiunto. 

 
Nel Capitolo 5 sono presentate le applicazioni cliniche del primo sistema 

di gestione delle varianti genomiche. Per ciascun caso, sono riportati il 
background clinico, i metodi ed i risultati. 

 
Nel Capitolo 6 sono presentate le conclusioni e possibili sviluppi futuri. 

 
L’attività illustrata nel Capitolo 3, è frutto della collaborazione con Angelo 
Nuzzo per il primo sistema di gestione delle varianti genomiche e della 
collaborazione con  Matteo Gabetta, Daniele Segagni, Ettore Rizzo e Riccardo 
Bellazzi per il secondo sistema basato su NoSQL e i2b2. 
La parte metodologica dell’algoritmo per la predizione delle varianti 
genomiche presentato nel Capitolo 4 è stata implementata in collaborazione 
con Simone Marini.  
Gli studi sperimentali presentati nel Capitolo 5 sono stati effettuati dal 
Dipartimento di Genetica Medica dell’Università di Pavia con la tecnologia di 
sequenziamento (Illumina Genome Analyzer IIx) dell’IRCCS Istituto 
Nazionale Neurologico C.Mondino di Pavia.  
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Abstract (English) 

The advent of new generation sequencing technologies has 
revolutionized the scenario of omics-research. 

Increasing throughput in terms of sequenced bases and reducing costs 
per base have been the trends in the latest ten years and allowed the 
sequencing of thousands of living beings. 

We are now able to read the whole genome of a person at single-base 
resolution in a day, looking for the genomic variants that can explain his 
particular disease or that can increase significantly his risk of cancer. We 
can suggest which drugs would be more efficient on the basis on the patient 
genomic profile and which cancer therapies may be fail due to his 
particular expressions and mutations of the genes in particular tissues. 
“Personalized medicine” or “precision medicine”, which is the medical 
practice tailored on clinical and molecular patient data, has now all the 
potential to be applied into diagnostic, prognostic and therapeutic patient 
clinical course, in particular if supported by a solid Bioinformatics 
technology.  

This thesis aims to be a contribution to this achievement by dealing with 
two important technological challenges that each research or diagnostic 
molecular laboratory making use of new sequencing technologies has to 
face: the management and the interpretation of sequencing data, focusing 
on genomic variants.   

 
In Chapter 1 the motivations of the research activity of this thesis are 

briefly discussed along with the adopted solutions and their practical 
applications. 

 
In Chapter 2 the state of the art of the technology dealing with 

sequencing and its impact on the scientific community through several 
applications are described. Data management and interpretation issues are 
introduced. The most important genomic databases, variant annotation and 
prediction algorithm technologies are discussed as well. 

 
In Chapter 3 the overall architecture of the system developed to manage 

sequenced samples and genomic variants is described. The main 
technologies and resources adopted are discussed and the web interface is 
presented. Drawbacks of this system are highlighted, the paradigm of a new 
developed system is introduced and its underlying technologies are 
described in details. Test results on this system are finally discussed. 
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In Chapter 4 the algorithm developed to classify genomic coding 
variants is described by providing details about its components and used 
data resources. Results in terms of comparison to other existing algorithms 
and the cases in which our algorithm best performs are discussed.    

 
In Chapter 5 the applications of the variants management system 

developed in the thesis are presented. For each application theclinical 
background, methods and results are reported. 

 
In Chapter 6 concluding remarks are presented and future challenges and 

directions are discussed. 
 
The activity illustrated in Chapter 3,was carried out in collaboration with 
Angelo Nuzzo for the first developed genomic variant management system 
and in collaboration with Matteo Gabetta, Daniele Segagni, Ettore Rizzo 
and Riccardo Bellazzi for the second one, based on NoSQL and i2b2. 
The methodological part of the algorithm for variant prediction presented 
in Chapter 4 was carried out in collaboration with Simone Marini.  
The experimental studies presented in Chapter 5 were carried out by the 
Department of Molecular Medicine, University of Pavia by using the 
sequencing technology (Illumina Genome Analyzer IIx) of the IRCCS 
National Neurological Institute C. Mondino in Pavia, Italy. 
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Chapter1 

1 Introduction 

New generation sequencing technologies are able to produce huge 
amount of data related to the nucleotide sequences of the DNA molecule.  

The latest sequencing machines can reach up to ten Terabytes of 
sequence data in a single run experiment making possible to read the DNA, 
in parallel, of hundreds of samples.  

It is clear that a fundamental issue is to address the management of such 
large amount of data from a computational, storage and accessibility point 
of view. 

Assuming we have the hardware and the software infrastructure to 
process and reduce sequencing data into a human readable format (e.g. 
genomic variants) we need to store them in such a way that would be 
possible to answer to several questions posed by the geneticists. Herby 
some examples: 

 
- Which are the genomic variants of the sample A? 
- Which are the genomic variants of the sample A in the gene B? 
- Does the sample A have the genomic variant C known in 

literature ? 
- Which are the genomic variants of the sample A in the gene B 

that the samples D,E,F and G do not have? 
- Which are the genomic variants of the sample A with an allele 

frequency below a given threshold respect toa selected subset of 
samples? 

 
By looking at these questions it is possible to derive the main requirements 
needed by the software systems that should be able to manage and retrieve 
genomic variants: 
 

- A data model able to link genomic variants to samples 
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- A data model able to link variants to their genomic context 
(e.g. genes) 

- An accessible user interface allowing for data extraction  
 
Intuitively, the system needs to integrate different genomic data sources, 
e.g. public omics-database and repositories, and integrate them with the 
sequencing data of interest, in our case, genomic variants. 

Let’s consider another common task: 
 

- Which are the genomic variants of the sample A in gene B and 
gene H that could affect the protein stability ? 

 
By sequencing a whole human genome we have to face with a number of 
variants in the order of millions. Even if we filter out intergenic or non-coding 
variants, we deal with dozen of thousands variants per sample.  
Considering that only a small number of variants of the human genome have 
been linked with a known phenotypic trait [1] and that for a certain kind of 
diseases only one or two variants can be fully or partially explanatory, this 
task is similar to looking for a needle in a haystack. 
Our prior knowledge about biological pathways and genes involved in a 
particular disease can help us to create a subset of genes that may allow us in 
going further with a deeper investigation, but typically there is the need to 
distinguish and weight those rare or unseen genomic variants that can alter the 
protein structure and function from those that do not. 
Despite the existence of several algorithms made available in the last years to 
this end, more accurate, fast, exhaustive and accessible solutions are needed.     

1.1. Genomic Variants Management Systems 

To store and manage genomic variants, a web-based interactive 
framework was developed. Based on a J2EE architecture, it relies on a 
Relational Database Management System (RDBMS), that is MySQL. 
Genomic variants are uploaded trough a web interface along samples and 
experiments data. The data model of the RDBMS was built in order to 
integrate several genomic resources allowing to enrich or “annotate” variants 
with useful information such as mRNA transcripts, genes and allele 
frequencies from public variant databases. 
An import data layer is able to import standard files in the Variant Calling 
Format (VCF) and additional modules that allow to compute, at the importing 
stage, several variant attributes related to its genomic position and type, such 
as possible changes in the protein sequence. 
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Other application modules are able to generate automatic queries to web 
resources, such as the University of California Santa Cruz (UCSC) database or 
variant prediction tools such as PolyPhen2 [2]and MutationTaster [3]. Once 
queries are performed, results are stored into the database and can be re-used 
by further analysis. 
Thanks to the web interface, the user can select the subset of samples for the 
variant retrieval and another one to compute data aggregates for each reported 
variant (e.g. allele frequency in the subset). Several filtering criteria on the 
variant attributes can be set in order to retrieve only the subset of variants of 
interest. Final results can be exported in a tab-delimited plain text files. 
Such developed system allowed to manage 437 sequenced samples and 
33,799,523 genomic variants for a total amount of 293GB of data on a single 
workstation with an Intel i3 CPU and 4GB of RAM. 
The system allowed extracting and combining data on the filtering criteria and 
to finally end up with a candidate genomic variant lists for each study. In 
particular, for several disease studies (see Chapter 5) it was possible to 
determine the underlying genetic causes.    
Despite the system was built to be light in terms of CPU and RAM 
requirements, it showed its drawbacks in terms of computational time 
performances. Furthermore, the choice to integrate portions of public genomic 
databases in order to annotate genomic variants, can introduce data 
consistency issues when the same genomic databases have to be up to date. 
For these reasons, a completely different approach was developed, both in 
terms of workflow and technology. 
The main idea was to consider the annotation task as a pre-processing step 
without involving database resources and to pre-compute each possible variant 
attribute at this stage working on a high-parallel environment. The public 
genomic databases containing features tracks are represented by text files, 
compressed in a binary format and indexed by genomic positions. The 
annotation step is performed by querying the indexed resources one-by-one 
through genomic positions and variant type. Because each variant is 
independent from the others, the process can be high parallelized on batches of 
variants. Once this step is completed, data are imported into the NoSQL 
database CouchDB in form of JSON files, where each JSON represents a 
genomic variant with every pre-computed annotation. Each variant attribute is 
then indexed for a fast retrieval of the JSON document when a single attribute 
is queried on its values. Complex queries (on multiple fields) are obtained by 
the combination of each result set on a single attribute. Import and query 
processes showed high performances in terms of computational time if 
compared to the relational database.  
The system interfaces with the i2b2 [4] framework. An ad hoc software 
module guarantees the communication between i2b2 and the CouchDB in 
order to execute the queries on the database and works on an XML-structured 
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messaging standard sent by HTTP both to build queries and retrieve results. 
On the i2b2 webclient, an ad-hoc plug-in, based on a visual programming, 
allows the user to build simple and complex queries and has the power to 
couple patient result sets extracted by the i2b2 phenotype queries with the 
genetic data stored in CouchDB.   

The system was tested on 500 sequenced samples from 1000 Genome 
Project [5]public resources resulting in about 1,500,000 genomic variants 
for a total amount of 160 GB on a single AWS EC2 machine with 8 virtual 
CPUs and 16 GB of RAM (for data query). Both importing and querying 
times were very promising; furthermore, the space of the possible queries 
increased and the system usability improved respect the previous system 
because of the coupling with the i2b2framework and of a new intuitive 
visual plug-in.    

1.2. Genomic Variants Interpretation 

In order to deal with the multitude of genomic variants identified by 
second generation sequencing experiments and to assign to each one a 
score that correlates with the possible perturbation induced in the codified 
proteins, a software that aims to classify genomic variants was developed. 

The main idea relies on the use of the known changes in amino acid 
sequences linked to several diseases, assuming that each is fully 
explanatory of the pathology and therefore causes a strong modification of 
the protein behavior. The amino acid sequence changes were represented 
under a discrete form by using Pseudo Amino Acids Composition 
(PseAAC) [6]. This allowed to train a Random Forest [7]classifier on the 
aforementioned known genomic variants by using the PseAAC values as 
features.  

The classification results were combined with two well-known variant 
prediction algorithms in order to improve accuracy, i.e. PolyPhen-2 and 
SIFT [8],which rely on different approaches. 

The algorithm, we called PaPI, showed prediction performances in terms 
of accuracy significantly greater than the other considered tools on three 
different independent test sets and as an additional proof of concept it was 
run on several well-known pathogenic variants for which both PolyPhen-2 
and SIFT were discordant, giving back the right classification for each 
case. 

In order to let PaPI be accessible by the scientific community, a web 
service was developed. The web interface allows uploading data about a 
single genomic variant or a list up to thousands of them. Asynchronous 
processes manage the requests that are put in queues depending on the 
analysis type. Results, once ready, are sent back by e-mail. 
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The algorithm logic was implemented by Java, Perl and Weka [9] and 
the web service by a J2EE architecture.  
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Chapter2 

2 Background 

This Chapter introduces, in brief, the principles and technologies of new 
generation sequencing systems and their impact on the scientific 
community through their applications in the last years. 

Several open issues about these technologies from the bioinformatics 
point of view are discussed, highlighting those on data management and 
interpretation.  

Last sections describe a) the genomic databases that have been strategic 
for the variant management system (VMS) development and b) different 
kind of variant prediction tools that have been integrated into VMS and 
used to the develop the variant prediction algorithm discussed in Chapter 4. 

2.1. New Sequencing Technologies 

Since their introduction in 2004 with the Roche 454 pyrosequencing 
machine, the so-called “Next Generation Sequencing” (NGS) technologies 
have been undergoing a tremendous development. 

The Human Genome Project, carried out by the International Human 
Genome Consortium, needed more than ten years (1991-2003) to sequence 
the whole genome of a human being and cost about 1 billion US dollars. In 
2014 state-of-the-art instruments process a whole genome in less than a 
week and for nominally less than ten thousand dollars [10]. 

As a consequence, these technologies had an extraordinary impact on 
scientific community and led to ever-growing investments by the major 
biotech vendors: today, NGS market has a worth of $2.5 billion, poised to 
reach $8.7 billion by 2020. 
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Moore’s law states that for computer industry the compute power doubles 
every 24 months. Sequencing technologies have out paced Moore’s law by far 
(see  
Figure 1). 
 

 
 

Figure 1.Sequencing technologies costs and Moore’law. 

Source:http://www.genome.gov/sequencingcosts/ 

 
Sequencing instruments can be distinguished by their implemented techniques 
that include pyrosequencing, sequencing-by-ligation and sequencing-by-
synthesis developed by the three leading biotech companies Roche, Applied 
Biosystems  (now Life Technologies) and Illumina, respectively. 
 
In the last five years, Illumina sequencing instruments gained market 
dominance with a NGS market share of 71% during 2013. 
The Illumina success can be explained by the well-balanced combination 
between sequencing accuracy and reproducibility plus the market strategy of 
product segmentation (and prices) that allowed reaching a wide gamma of 
customers with different needs. Moreover, the Illumina’s sequencer MiSeq 
was the first new generation sequencer to be authorized by Food and Drug 
Administration (FDA) for broad clinical use. 
 
Nevertheless, sequencing technology is under a continuous evolution, and the 
recent introduction of a further new method based on single molecule real time 
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sequencing by Pacific Biosciences seems to be a milestone for the third 
generation sequencing platforms in the next years.  
 
Explain the principles of the different new sequencing technologies is beyond 
the scope of this thesis; therefore, only a brief description of the methodology 
at the basis of the most used sequencing platforms, i.e. Illumina’s ones, is 
reported hereby.  
Notably, the same sequencing technology was used in the application studies 
discussed in Chapter 5. 
 

2.1.1. Illumina Sequencing 

Illumina (San Diego, CA) is an American company that since 1998 
develops systems for the analysis of genetic variation and biological 
function. Very soon, Illumina began to offer micro-array based products 
such as SNP genotyping, gene expression and protein analysis.  
In 2007 it acquired the Solexa company that developed a new genome 
sequencing technology, the Solexa machine. 
In seven years (2007-2014) Illumina developed seven different sequencing 
platforms including their updated versions. 
The state-of-the-art of Illumina sequencing products are: MiSeq, NextSeq500, 
HiSeq2500 and HiSeq X Ten ordered by increasing throughput capacity in 
terms of sequenced bases. 
In Table 1, the evolution of Illumina technology in the last seven years is 
reported: costs and throughput trends confirm the statements of the previous 
section. 
 
 

Year 2007 2009 2011 2012 2014 

Platform GA GAIIx 
MiSeq, 

HiSeq2000 
HiSeq2500 NS500, XT 

Costs*  

($) 
800K 16K - , 6K 5K 4K, 1K 

Output 

(GB) 
10 80 15 , 200 600 129 , 1800 

 

Table 1.Development of Illumina sequencing technology in the last seven years. GA= Genome 

Analyzer; NS= NextSeq; XT=HiSeq X Ten; K=1x103; GB=billions of sequenced bases. *Costs to 

sequencing a whole human genome. 
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We can split the Illumina sequencing process into three main steps: 
 

- DNA library preparation 
- Sequencing run 
- Base calling 

 
Note that the first step is almost the same for every other sequencing platform. 
The three steps are briefly described below and Figure 2represent an overview 
of the whole process. 
 

 
 

Figure 2. Sequencing process – from DNA sample to sequence reads 

2.1.1.1. DNA Fragment Library Preparation 

Once extracted from tissue cells, the pool (sample) of DNA molecules is 
broken into millions of pieces. Nebulization or sonication methods [11]are 
typically used for this aim. After fragmentation step, DNA sample is 
amplified by Polymerase Chain Reaction (PCR) technique [12]. Finally, 
only the fragments within a certain length range are selected through gel 
electrophoresis, a method able to order DNA fragments by their mass, 
therefore, their length. 
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The resulting sample consists of a “library” of DNA fragments ready to 
be sequenced. Indeed, sequencing technologies, even the newest ones, are 
not able to read consecutively a high number of bases, but only few 
hundreds.    
 

The library is fixed by ligation to a glass chip, the so-called flow-cell, the core 
of the sequencing machine. This is a microfluidic device with few distinct 
micro channels or billions of nanowells, as in the case of the last Illumina 
technologies. 
Once fragments are fixed on the flow cell surface, a particular in-loco PCR 
replicates each fragment and generates cluster, that is, a certain number of the 
very same fragment copies in its neighborhood. This will allow enhancing the 
signal coming from each fragment/cluster in the sequencing step.    

2.1.1.2. Sequencing Run 

The flow-cell with the DNA library fixed on it is inserted inside the 
sequencing platform. Here the sequencing starts and proceeds by cycles. 
Each cycle corresponds to read a single DNA nucleotide base for each DNA 
fragment fixed on the flow-cell, in a parallel fashion. For this reason, new 
generation sequencing systems are also called “massive parallel” sequencing. 
 
The DNA fragment is read by a technique called sequencing-by-synthesis. In 
brief, each fragment is literally copied by an enzyme, the DNA polymerases, 
capable to incorporate a DNA base that is complementary to a given one. 
The Illumina technology peculiarity is the capacity to stop the DNA 
polymerases at each incorporated base, through the use of particular modified 
nucleotide called “reversible chain terminators”, and to re-start DNA 
polymerases incorporation for the next one in a process called “single-
nucleotide addiction”. 
This allows to hit by a laser the flow-cell surface at each cycle (corresponding 
to a nucleotide incorporation) and to stimulate the fluorescence of the 
modified nucleotide. In fact, each type of modified nucleotide (A,C,G,T)  has 
a particular fluorophore that emits fluorescence with a specific wave length. 
By a Charge-Coupled Device (CCD) camera, four pictures of the flow-cell at 
each cycle are taken, corresponding to four applied filters able to enhance the 
fluorescence by its wave length. 
For each picture, fluorescence dots are present: a dot represents the 
fluorescence signal coming from a DNA fragment cluster. 
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The final result of the sequencing step is a number N of flow-cell image 
quadruplets, where N corresponds to the number of bases that are read from 
each DNA fragment on the flow-cell. 

2.1.1.3. Base Calling 

Images produced in sequencing step are then analyzed by the Illumina 
proprietary software installed on a workstation connected to the sequencing 
machine. This software proceeds to: 

 
a) filter the images background noise 
b) enhance luminescence signal for each cluster 
c) identify cluster positions 
d) assign the most probable base for each cluster at each cycle 

 
The final result of this procedure, or “base calling”, is a multitude of 
sequences with A,C,G or T characters, corresponding to the DNA bases of 
each DNA fragment on the flow-cell. 
Together with the set of sequences, or “reads”, the quality for each sequenced 
base is reported as well. This is computed by estimating the probability that 
the base has been wrongly assigned, on the basis of the difference with the 
second probable base. Quality scores are finally logarithmically related to the 
base calling error probability by Phred scale [13]. 
 
DNA reads are stored in plain text files, which can be compressed, following 
the fastq standard format (see AppendixA.1for more details).   

2.2. Sequencing Applications 

Sequencing platforms basically take DNA fragments in input and 
generate nucleotide sequences in output. 
Nonetheless, the range of the possible sequencing applications is wide. 

2.2.1. Same Data for Different Scopes 

Each possible application differs from the others in two main aspects: 
 

1. Library preparation 
2. Secondary analysis 
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In the previous section we briefly described sample library preparation. 
Actually, several steps were omitted on purpose, in order to list only the 
most common ones, shared by the major part of sequencing applications. 
Next section discusses in more details one particular application along with 
its library preparation. 

 
Secondary analysis typically refers to the whole data analysis process 

afterwards the base calling step previously described. Intuitively, each 
sequencing application has its own goals in terms of genomic features to 
detect, and requires ad-hoc data analysis. 

 
Shendure and Aiden [14] listed twenty types of next generation 

sequencing applications. 
Figure 3 summarizes and stratifies them at the level of species, organism, cells 
and biological mechanisms of the cell. While the earliest sequencing projects 
aimed to assembly the genome of a particular specie, new technologies 
enables the study of biological systems at a finer scale: we can explore 
genomic variations between individual members or at population scale; 
highlight genetic and epigenetic differences between cells of a single 
individual; provide insights into several cell processes (Figure 3). 
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Figure 3. NGS applications for species, individuals, organisms, cells and cell processes [14]. 

 
Briefly, next generation sequencing can be applied to study the genomics, 
transcriptomics and epigenomics of germ and somatic cells. 
Figure 4shows several common applications belonging to these three main 
categories and a hint for each is given below. 
 

• Methylation sequencing 
 
Used to determine methylation patterns that regulates gene expression 
[15], library preparation requires to trait DNA with the bisulfate ion 
(HSO3

-) through which DNA comes under nucleotide modifications in 
specific genomic regions (CpG islands).   
 

• ChIP sequencing 
 
Used to identify DNA binding sites for proteins[16], library 
preparation requires to capture only the DNA pieces bonded to proteins 
by the Chromatin Immunoprecipitation (ChIP) technique.   
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• Whole Genome Sequencing 
 
Used to identify genomic variants ranging from one to millions bases 
in length, is the most exhaustive protocol applicable to a genome and 
library preparation is basically the one showed in Section 2.1.1.1. 
 

• Targeted Enrichment sequencing 
 
Used to identify genomic variants ranging from one to hundreds bases 
in length, library preparation requires to capture only the DNA pieces 
belonging to regions of interest.  
 

• RNA sequencing 
 
The whole transcriptome is converted into cDNA and by selecting 
fragments by range size, a specific type of RNA can be analyzed: 
mRNA sequencing aims to identify differentially expressed transcripts, 
splice-junctions and new transcripts [17]; micro-RNA (miRNA) 
sequencing aims to identify differentially expressed miRNAs, predict 
novel miRNAs and mRNA targets[18]. 
 

 

 
 

Figure 4.Main NGS applications. Seq=Sequencing; Methyl=Methylation;DPI=DNA-Proteins 

Interactions; WX=Whole-Exome;WG=Whole-Genome. 
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Among these applications, targeted enrichment sequencing is the only one 
discussed in deep, because of the goal of this thesis. 

2.2.1.1. Targeted Enrichment DNA Sequencing 

Whole genome sequencing is the gold standard to detect all possible 
genomic variants in the genome, nevertheless its costs, if not amortized by 
sequenced sample quantities using the last technologies (e.g. HiSeq X Ten), 
makes its routinely use really hard for the major part of molecular 
laboratories, which typically deal with a modest number of samples to 
sequences (hundreds or less per year). 

 
Therefore, in the last five years, cheaper targeted enrichment strategies 

were widely adopted and successfully applied to a broad range of genetic 
context [19-22]. 
By applying targeted enrichment sequencing it is possible to chemically select 
only those DNA fragments belonging to region of interest (ROI). Typically, 
ROIs correspond to DNA regions whose sequences (exons) codify for genes. 
 
Whole-exome sequencing (WES) is the most exhaustive targeted enrichment 
strategy since it allows capturing all exons, therefore genes, of the human 
genome. 
Even if the whole set of human genes corresponds about the 1% of the whole 
human genome, coding genomic variations are much more likely to have 
severe consequences than in the remaining 99%[22]. 
 
WES has been widely used to discover the genetic cause of Mendelian 
diseases [23-26], but also to provide insights into complex traits[27-29]and 
cancer as well[30-32]. 
 
An alternative to WES, even cheaper, is to sequence only a reduced panel of 
genes chosen a priori, basing on the genetic knowledge of the trait of interest. 
This strategy is actually the most used and appreciated by molecular clinical 
laboratories, both for costs and practical use in diagnostic[33],since can be 
ideally treated as an extension of the classic Sanger sequencing technique. 
Benchtop sequencing instruments such as the Illumina MiSeq are typically 
used for such purpose. 
In the last years, targeted gene panels were massively applied with success to a 
broad range of complex diseases [34-36]and to study genomic variation even 
at clone and sub-clone level of somatic cells coming from cancer tissues [37-
39]. 
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WES can be considered an extension of targeted genes panel; therefore library 
preparation and secondary analysis steps are identical. 
 
Library Preparation 

 
The peculiarity of targeted enrichment library preparation is the so-

called “capturing” step (Figure 5).    
 

 
 

Figure 5. Targeted Enrichment Library Preparation 

The DNA library is mixed up with synthesized DNA fragments (probes) able 
to hybridize only those similar DNA fragments. 
Probes have been previously biotinylated and, due to biotin affinity properties, 
streptavidin beads bind only those coupled DNA fragments consisting of at 
least one probe. 
Beads and probes are therefore washed out and selected DNA fragments are 
ready to be sequenced. 
 

Secondary Analysis 

 
Once DNA reads have been produced by the sequencing platform, they 

are processed by a quasi-standard data analysis protocol whose main steps 
are reported below. 

 

• Genome Reference Mapping 
• Mapping Correction 
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• Variant calling 
 

Genome Reference Mapping 
 

The Human Genome Project ended up in 2001 with the first release of 
the human genome reference assembly. In the last years, next generation 
sequencing platforms allowed to sequence many human genomes and 
allowed to refine the original assembly producing more updated and precise 
versions of the human genome model as a DNA sequence. The most update 
version at the time of this writing is the GRCh38 released on February 
2014 by the Genome Reference Consortium[40]. 

 
Assembling sequencing reads is likely to build up a huge and 

complicated genomic puzzle. The use of a genomic reference can speed up 
this process by positioning (mapping) each read to the most likely portion 
of the reference basing on its sequence similarity. 

In the last years lots of next generation sequencing mapping algorithms 
were developed [41-46], applying heuristic methods with the aim to reach a 
good compromise between accuracy and time and/or computational 
performances, giving the high number (billions) of reads to map. 
In targeted enrichment protocols a pool of DNA cells is sequenced randomly 
only for the selected genomic regions: probes used for this aim are exactly 
designed basing on the reference genome, therefore we expect the major part 
of reads to map within these regions we define “target”. Moreover we expect 
them to redundantly map a target genomic locus given the presence of many 
DNA molecules coming from different cells of the same sample, or given the 
same artificially DNA replicas due to PCR at library preparation stage. 

The number of reads that overlap the same target genomic locus is called 
“coverage”. Its average across the whole target is a typical indicator used to 
assess experiment quality. 

 
Mapped reads are stored in a plain-text standard format called Sequence 

Alignment Map (SAM)that is typically compressed in binary format and 
indexed in the Binary Alignment Map (BAM)[47]. 

 
Mapping Correction 
 

The heuristic reads mapping algorithms have several limitations, 
especially to correctly map reads over problematic regions of the genome 
reference[48]. To overcome these issues they are complemented with a 
series of post-mapping steps such as PCR duplicates removal and more 
accurate re-mapping over these problematic regions[47, 49, 50]. 
 
Variant Calling 
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Human beings share, on average, the 99.9% of their genome[51]. 

Variant calling aims to identify the 0.1% of the human genomic differences 
among which can be included those linked to a trait or a disease. 

Genomic differences, we call “variants”, are related to the genomic 
reference used for reads mapping. As previously discussed, each genomic 
target locus (base) is covered by a certain number of overlapping reads: we 
expect to observe on the corresponding base “pileup” the same kind of 
base, given the sequence similarity found by mapping. Actually, mapping 
algorithms admit a certain degree of freedom in terms of sequence 
similarity, therefore is possible that each read hold variants respect to the 
reference. Variants can be of three kinds: 

 
1. Single Nucleotide Variants (SNV) 
2. Nucleotides Insertions 
3. Nucleotides Deletions 

 
Insertions and deletions are generally grouped under the term Deletion 
Insertion Variations  (DIV) or “indel” due to the fact that is possible to 
observe, at a single genomic locus, a variant event consisting of an insertion 
followed by a deletion or conversely. 
 

 
 

Figure 6.Example of variants along mapped reads. Mapped reads are represented in grey color in 

case of base equality to the reference, a colored base is shown otherwise. A: SNV in heterozygous 

state; B: SNV in homozygous state; C: a single base deletion. 

 
Variant calling aims at scanning in an efficient way the whole set of 

mapped reads and calls a variant at a given genomic locus when at least 
one overlapping read hold a difference for it.  
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Sequencing platform base caller error rate, poor quality of sequenced bases 
and mapping errors introduce noise that heavily can reduce variant calling 
accuracy, resulting into high false positive rate1[52, 53]. Therefore is not 
advisable to rely on single read difference to call a variant, but is essential to 
combine the information coming from the overall set of mapped reads 
covering a candidate variant locus. 

Another point should be considered: genomic reference is an arbitrary 
mix of two haploid2 genomes, while the DNA fragment library is usually 
derived by a diploid one. This requires determining the so-called 
“genotype” for a genomic locus: given the variant site, variant calling 
should be able to assess which is the most reliable combination of two 
alleles. An allele can be a single base or an indel. 

Several variant calling algorithms have been developed and can be 
divided by methodology: heuristic methods[54, 55], probabilistic 
frameworks[47, 49, 56], supervised [57]and unsupervised machine 
learning[58]. Nonetheless scientific community agrees that the optimum 
variant caller does not exist yet and only ensemble strategies reach the best 
accuracy[59]. 
 
Identified variants can be stored in a plain-text standard format called Variant 
Calling Format (VCF)[60], see AppendixA.1for more details. 

2.3. Challenges in NGS bioinformatics 

Next generation sequencing technologies challenge bioinformatics in 
different aspects including: i) computational resources and tools for data 
processing ii) data archival and retrieval solutions iii) analysis and 
interpretation of NGS data.  

2.3.1. Computational resources and tools for data processing 

The huge amount of genomic data requires appropriate computational 
resources and tools for data processing. High Performance Computing 
(HPC) based on physical or virtualized computer clusters along with high 
parallelized methods have been successfully applied to NGS bioinformatics 
[61-64]although originally developed to manage huge web data on high 
parallelized environments [65]. Such systems allow to process genomic 
data in a reasonable time (e.g. few hours for a whole genome analysis). 
Recently, an ad-hoc developed processor aims to further reduce 

                                                        
1 Positive event = presence of a truly variant 
2Haploidy/diploidy = One/Two sets of chromosomes 
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computational time to less than 20 minutes for a whole genome with a 
single hardware and software integrated optimized card [66]. The challenge 
here is to reduce computational processing time and related costs. 
Computational time should be lower than sequencing time to avoid 
bottlenecks. Costs should respect the actual ceiling price of 1000$ per 
genome (comprehensive of sequencing costs as well). 

2.3.2. Data archival and retrieval solutions 

Managing data of this magnitude requires a well-defined policy, but 
assessment of data storage needs is complicated by the variability of data 
formats [67] despite the use of standards such as BAM and VCF: secondary 
analysis varies for each kind of application and, for many genomic data 
types, a standard format does not exist yet. Moreover, metadata regarding 
NGS experiments, samples, tissues, analysis protocols should be archived 
as well, in order to ensure results reproducibility. Storing and retrieving in 
an efficient way this multitude and different type of data requires both 
hardware and software dedicated solutions. Over the last few years several 
online, control accessed NGS repositories have been developed [68-
70]especially by national or international consortia of research institutions 
due to the big efforts and resources needed to manage these petabytes of 
data. 

In order to reduce data of orders of magnitude one could think to store 
and retrieve only a certain subset of processed NGS data, such as secondary 
analysis results that for some applications, including targeted enrichment, 
are the identified genomic variants. 

Recently, several public and commercial solutions able to store and 
query genomic variants have been developed[71-74]. The challenge here is 
to develop efficient genomic variant management systems in terms of costs 
and computational time, able to integrate genomic and clinical data plus the 
results from software-based genetic analyses that can be helpful to 
determine which variant candidates are more likely to be causative of the 
disease of interest.        

2.3.3. Analysis and interpretation of NGS data 

The analysis and interpretation of secondary analysis results, also called 
tertiary analysis, aims to unravel the identified genomic variation and, in 
case of whole genome/exome sequencing, interpret the large amount of 
genetic variants by determining those that are likely to contribute to the 
phenotypic trait under study. Filtering and annotation are two important 
steps in this sense: filtering consists in removing variants that fit a specific 
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genetic model (e.g. inheritance patterns), while annotation looks up all 
possible information about variants to fit the biological process [75]. 
Annotation step typically searches into the existing biological knowledge 
and uses methods able to infer variant potential pathogenic effects to 
prioritize the whole set of variants[76]. The challenge here is to develop 
annotation-prediction tools able to accurately identify disease-related 
genomic variants both when phenotypic traits are known and when they are 
not. 

The analysis and interpretation of the genomic variation cannot be 
disjointed from the genomic variant management system (VMS): the latter 
should be able to integrate the whole set of genomic variants per genome, 
individual phenotypic traits, variant annotation data, prediction tools results 
and filtering procedures. 

2.4. Genomic Databases 

Sequencing and many other high throughput based research projects 
have generated an explosive growth in biological data, which diversity and 
complexity revealed them as one of the Big Data sources [77]. As a 
consequence, the number of genomic databases, aimed to store and publicly 
share this amount of genomic measures and findings, grew up within their 
users and User Services (see Figure 7). 

 

 
 

Figure 7. Data for Twenty 24 Years of Growth: NCBI Data and User Services 

(http://www.nlm.nih.gov/about/2015CJ.html) 
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Human genomic databases can be catalogued by their content (see Table 

2), but drawing precise borderlines between them is not trivial. Moreover, 
the sheer volume of the raw sequence data in these different repositories 
has led to attempts to reorganize this information into smaller, specialized 
databases such as genome browsers [78-80]. 

 
In the next sections, one of the main genome browsers and several NGS 

genomic variant resources will be discussed in more detail.  
 

Category Brief Description  Examples 

Nucleotide 
Sequences 
Databases 

Collect, annotate, release and 
exchange original DNA 
sequence data both for 
assembled genomes and raw 
short reads coming from NGS 
platforms. 

• The Sequence Read 
Archive (SRA) 

• DDBJ - DNA Data Bank 
of Japan 

• European Genome-
phenome Archive (EGA) 

RNA 
Sequences 
Databases 

Collect, annotate, release and 
exchange microRNA, non-
coding RNA, transfer RNA and 
other sequencing-derived 
transcriptome features. 

• HMDDv2.0 
• ncRNAs database 
• RNAJunction 
• deepBase 

Protein 
Sequences 
Databases 

Provide resources for protein 
sequences, functional, feature 
annotations and literature-
based evidence attribuitions.  

• UniProt 
• NCBI Protein database 
• InterPro 

Structure 
Databases 

Databases for annotated 3D 
protein structure models 
deriving from computational 
predictions, X-ray 
crystallography, NMR 
spectroscopy etc. 

• PDBe 
• SWISS-MODEL 

Repository 

Metabolic 
and 
Signaling 
Pathways 

Integrated databases that 
establish links due to 
interactions or relationships 
between genes, higher-level 
systemic functions of the cell, 
organism and ecosystem. 

• BioCarta 
• KEGG 
• Reactome 
• BioGrid 
• String 

Human 
Genomes 

Databases for gene-specific 
information. Contain all 
annotations (nomenclature, 
map location, gene products, 
expression etc.) that are 
constantly updated. 

• Ensemble 
• Entrez Gene 
• ENCODE 
• GeneBank 
• UCSC Genome Browser 

Human 
Genes and 
Diseases 

Resources of sequences data, 
genomic variants, 
polymorphisms related to 
human diseases. In this 
category general 
polymorphisms databases are 
included (e.g. 1000 Genomes 
Project) 

• dbGaP 
• OMIM 
• dbSNP 
• 1000 Genomes Project 
• HapMap 
• PharmaGKB 

 

Table 2.Some molecular biology databases categories and examples [81] 
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2.4.1. UCSC Genome Browser 

Genomic variants can be represented at the genomic reference mapping 
level, which is the format for variant calling as discussed in Section 2.2.1.1.  
It is therefore straightforward to abstract variants and, in general, genomic 
annotations by simply considering them as intervals of the genomic 
reference. This is the principle on which genomic browsers have been 
developed, with the aim to visualize and browse entire genomes with 
annotated data from multiple diverse resources. 

 
The University of California Santa Cruz (UCSC) Genome Browser is a 

web-based platform that repacks genome and gene annotation data sets 
from GenBank and other databases in order to provide a genomic context 
for individual genome features, such as genes or disease loci [82]. 

The user can search for a specific region of a genome, such as a gene, 
and the sequence plus annotation data are displayed graphically as ‘tracks’ 
aligned to the genomic reference and grouped by shared characteristics 
such as gene predictions, comparative genomics or regulatory elements (see 
Figure 8). 

 

 
 

Figure 8.A snapshot from UCSC Genome Browser. For a given genomic region genes, mRNA, 

evolutionary conservation and variation tracks are displayed and mapped to the genomic 

reference. 

Other annotation tracks include expression, epigenetics and tissue 
differentiation, phenotype and disease association data and text-mined data 
from publications. 

 
The UCSC Genome Browser also offers advanced research capabilities 

such as the UCSC Table Browser [83], built on the top of the Genome 
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Browser Database. It consists of MySQL relational databases, each 
containing sequence and annotation data for a genome assembly. Tables 
within each database can be based on genomic start-stop coordinates or be 
referenced by internal ids. The whole database set is free downloadable 
within SQL scripts to build up table structures and indexes.  

2.4.1.1. The UCSC Binning Scheme 

The UCSC Genome Browser holds annotation data amounting to several 
Terabytes of tables in the MySQL database [84]. 

The database has been built under a “read-mostly” purpose and the user 
queries mainly consist of range queries over genomic intervals identified 
by three attributes: chromosome, genomic start and stop positions in the 
chromosome. 
In order to efficiently retrieve the whole set of annotation data that map over a 
requested genomic interval, a suitable binning scheme has been implemented 
[85]. 
 
Let us suppose to perform a query on a Table with the aim to retrieve all data 
within a genomic interval.  The resulting range query would be something 
similar to: 

select * from Table where chrom=’chr1’ and 
chromStart<20000 and chromEnd>10000  

To speed up the data retrieval it is possible to index each queried field; this 
solution works for table with up to dozen of thousands rows. For larger tables 
with millions of rows, performances decrease even if we try to split tables by 
chromosomes. 
 
The binning scheme splits each chromosome into consecutive equal-size 
intervals, called ‘bins’. By changing the bin size we can obtain a hierarchical 
bin structure (see Figure 9)where each bin is enumerated. 
 

 
 

Figure 9.A simplified version of the binning scheme. 
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In the Genome Browser five different size of bin are used: 128Kb, 1Mb, 
8Mb, 64Mb and 512Mb. 

Each genomic feature (or annotation) reports the smallest genomic bin in 
which it fits. Looking at Figure 9, features A, B and C are associated to bin 
1,4 and 20 respectively. When the browser needs to access features in a 
region, it must look in bins of all different sizes: to access all the features 
that overlap or are enclosed by range B, the browser looks into bins 1, 4, 
14, 15, 16 and 17. 
Because bins are pre-computed, it is possible to pre-calculate the smallest 
fitting bin, given the genomic coordinates of the feature to store in the 
database. When a range query is performed, all the possible bins of 
different size are pre-selected basing on the range query coordinates.   
Therefore, the previous query becomes:   

select * from Table where chrom=’chr1’ and 
chromStart<20000 and chromEnd>10000 and (bin=1 or b in=2 
or bin=10 or bin=74 or bin=586)  

Even if the query appears more complex than before, it runs much faster 
thanks to the reduced searching space. 
 
Binning scheme combined to B-tree index (by indexing the bin field within 
the database) finally provides a crude approximation to a R-tree [86] that, 
notably, is implemented into MySQL as an index scheme. Actually, when 
the UCSC Genome Browser has been firstly implemented, R-trees were not 
supported yet into the MySQL engine and later attempts to use the engine 
built-in R-trees failed [87].  

2.4.2. Human Genomic Variant Resources 

In the last three decades, high throughput single nucleotide 
polymorphism3 (SNP) genotyping has produced a great amount of data in 
terms of genomic polymorphisms. 
Efforts to catalogue these data at population level resulted into the 
International HapMap Consortium [88] that aimed to build linkage maps  and 
identify chromosomal regions where genetic variants were shared [89].These 
variations have been the core around which genome wide association studies 
(GWAS) were built. 

The advent of sequencing technologies, allowed exploring the wide 
range of human variations, including rare variants, too. 

                                                        
3 A genomic variant for which one of the allele has a frequency greater than 5% in the 
reference population 



Background 

 

 26

Hereby are briefly described the main genomic variant resources based on 
NGS data. In addition to merely cataloguing human variation, these databases 
serve many purposes such as estimating linkage disequilibrium in a given 
population or reducing the number of variants used in association tests.  

2.4.2.1. The Single Nucleotide Polymorphism database 

 
The Single Nucleotide Polymorphism Database (dbSNP) is a free public 

resource of genomic variation developed by the National Center for 
Biotechnology Information (NCBI) and the National Human Genome 
Research Institute (NHGRI). 

Published in 2001 [90], it pursues the challenging goal to catalogue 
every found nucleotide sequence variations through different experimental 
settings, including next generation sequencing. Despite its name that quotes 
only polymorphisms, in fact, there is no requirement or assumption about 
minimum allele frequencies or functional neutrality for the genomic 
variants in the database: it includes both human disease-causing clinical 
mutations and neutral polymorphisms as well. Moreover, genomic locus is 
cross-linked with other information resources such as GenBank, 
LocusLink, the human genome sequence and PubMed. 

 
DbSNP collects genomic variations through submissions from public 

and private sources that have to follow a specific data format protocol (e.g. 
organism, population, observed alleles, 5’ and 3’ flanking sequences, gene 
name etc.). An accession number (ss#) is assigned to each submitted 
variation. A reference SNP (refSNP) cluster ID (rs#) will is also assigned 
to each unique variation in an organism reference genome. 
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Figure 10. The dbSNP build cycle. Inspired by The NCBI Handbook, 

http://lgmb.fmrp.usp.br/cbab/NCBIHandBook/ch5d1.pdf 

 
When a new version of dbSNP is going to be released, the dbSNP build 

cycle begins (see Figure 10). 
Newly submitted variants (#ss) plus the whole set of the refSNPs are 

mapped into the reference genome sequence. Map data are used to merge 
(cluster) submissions into existing refSNP clusters or to create new ones. 
New refSNPs are annotated trough genomic resources (e.g. RefSeq and 
Entrez) and the release content is delivered in diverse formats on the 
dbSNP FTP site. 

 
Working with dbSNP data, some issues should be taken into account. 

Firstly, refSNP are based on the current genome assembly because of the 
mapping process and therefore are subjected to the updates of the same 
reference: each time there is a new version of the genomic assembly refSNPs 
must be update or reclustered and it is not rare that different refSNPs are 
clustered together and both assigned only one refSNP id (generally the one 
with lower number). As a consequence, refSNP is not a stable id over different 
dbSNP versions.  
Secondly, a refSNP points to a genomic locus, but not to an univocal variant 
(respect to the genomic reference): e.g. rs1800001 is mapped to the chrX at 
the genomic position ‘18644526’ on the GRCh38 assembly; by exploring 
dbSNP (v.142) it is associated to three different alleles (G/C/A) and the 
reference allele is ‘A’; indeed, this refSNP holds two variants with respect to 
the reference: from A to G (A>G) and from A to C (A>C). 



Background 

 

 28

Thirdly, refSNPs can be reported on the plus or minus strand of the DNA and 
the strand orientation can be challenging to the researchers when it comes to 
consistency and comparing variant sets, especially when misleading the 
“forward” and “reverse” terms are used [91]. The Illumina TOP/BOT strand 
convention has been introduced, for example to solve G/C and A/T allele 
ambiguities [92]. 

2.4.2.2. The 1000 Genomes Project 

Launched in 2008, the 1000 Genomes Project is an international 
research effort to characterize the human genome sequence variation with 
the aim to provide a foundation for investigating the relationship between 
genotype and phenotype [5].  

Scheduled in three sequential phases, it has the goal to sequence and 
characterize more than 2500 “healthy” individuals belonging to 26 different 
ethnicity groups around the world. At the time of this writing, a first release 
of the phase 3 is available containing over 79 million variant sites from the 
whole genome sequencing of 2504 individuals. 

 
The 1000 Genomes Project (1000GP) resources is downloadable via two 

the mirrored EBI and NCBI FTP sites and data can be directly viewed 
through the dedicated 1000 GP web browser. 

Genomic variants for each individual, identified by the combination of 
several variant callers, are reported by the VCF format (see 2.2.1.1) and 
comprise SNVs, indels and structural variations (SVs) that, in this case, 
group deletions, insertions or copy number variants for genomic region 
encompassing generally more than 50 bases. 

 

2.4.2.3. The Exome Sequencing Project 

The NHLBI GO Exome Sequencing Project (ESP) is actually the biggest 
integrated resource of whole exome sequencing (WES) data comprising, in 
the last version (ES6500), genomic variations from 6503 samples 
belonging to African-Americans and European-Americans ethnicity groups. 

Made up by the cooperation of several USA research institutions, it aims 
to discover and characterize novel genes and mechanisms contributing to 
heart, lung and blood disorders [93]. 

Genomic variants with data aggregates are free-accessible through the 
Exome Variant Server: data can be viewed by the integrated data browser 
or can be downloaded directly via HTTP. Individual variants and other 
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related genomic data are publicly accessible only via dbGap, a controlled 
access resource for research purpose [69].  

2.4.2.4. The Ensemble Variant Database 

Ensembl is a joint project between EMBL-EBI and the Wellcome Trust 
Sanger Institute that aims to develop a software system able to produce and 
maintain automatic annotations on eukaryotic genomes. The Ensemble core 
database has been developed for the latter purpose. 

The Ensembl Variant Database [72] is based on MySQL [94] engine and 
has been developed specifically to deal with genotyping and sequencing 
data (see Figure 11 for a simplified version of the database schema). Data 
are accessible through the Ensemble Application Program Interface (API) 
written in Perl [95] and allows to connect to the requested database and 
represent database entities as Perl objects. 

 
Variation data, such as a SNV or DIV is defined by using its upstream 

and downstream flanking sequences ad at least one variant allele. Flanking 
sequences are aligned to one or more positions of the reference 
genome.Variation, flanking_sequences and allele tables (see Figure 11) 
represent a variant independently from the genome assembly, while the 
variation_feature holds reference genome variant mapping information. 
This data division has been made in order to update only variation_feature 
table in case of genome assembly update. 
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Figure 11.A simplified schema of the Ensemble Variant Database. Variants are stored into the 

Variation Table in the top center of the figure. Connections to the Ensembl core database are 

shown. 

 
Ensemble variant database has been initially developed with the aim to collect 
genotyping data from different resources such as dbSNP and HapMap and 
therefore it has several annotation data in common with such databases (e.g. 
flanking sequences) deriving from the experimental methods.  
Sequencing data are represented as variations, along with some sequence read 
information  (read_coverage table) regarding alignment position of reads, 
coverage levels and differences between alignments and the genomic 
reference. 

2.4.3. Variant Annotation Tools 
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Sequencing pipelines regarding WES or WGS applications end up with a 
plethora of differences between the sequenced genome and the genomic 
reference used to map sequencing reads. 
In 2.2.1.1the standard format (VCF) used to represent genomic variants has 
been introduced. Despite VCF has been designed to group every 
information regarding variants, it is limited to the sequencing context and it 
reports data such as reads coverage, quality and flanking sequences. VCF it 
has not been designed and standardized to hold additional data regarding 
knowledge on functional genomic region to which a variant could overlap 
or the variant allele frequency in a specific public resource (such as 
dbSNP). 
 
In order to deal with the integration of different genomic data sources and 
enrich variants with the related content, several variant annotation software 
have been developed in the last years[96-100]. Note that the Ensembl 
Variant Database supports annotation as well, being linked to the Ensembl 
core database containing genomic annotations. However, in the last years 
the trend was to separate genomic annotation at sequence level from variant 
annotation. The first relies on genomic databases such as UCSC, RefSeq 
and Ensembl. The second uses data from the genomic databases, but 
previously manipulated (a priori or on the fly) in such a way to guarantee a 
fast data retrieval in the variant annotation process. Data pre-processing 
became the key word and this concept will be remarked in Chapter 3.  
 
Hereby two public open-source and most common used variant annotation 
tools are showed in detail. The first (VEP) is based on a genomic structured 
database while the second (ANNOVAR) relies on indexed pre-computed 
files of genomic data tracks. 

2.4.3.1. Variant Effect Predictor (VEP) 

The Variant Effect Predictor (VEP) [96] has been built on the Ensembl 
Variant Database. It consists of an API extension of the aforementioned 
Ensembl API. Written in Perl, it allows matching genomic annotation from 
the Ensembl Variant Database with a given list of variants. Variants are 
represented by their genomic coordinates and alleles, thus allowing the API 
to query transcript related data (table transcript_variation in Figure 11) and 
to match the variants with their possible overlapping transcripts. The latter 
step permits determining if a variant falls within an exon: in this case, a 
new codon is derived for the variant allele. Moreover, the API assesses 
whether a variant falls into a splice-site, intronic, regulatory, untranslated 
genomic region.  
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VEP can be run in a standalone fashion; however its dependency on 
Ensembl database limits its portability. 

2.4.3.2. Annotate Variation Software (ANNOVAR) 

ANNOVAR (ANNOtate VARiation) is a standalone software tool 
written in Perl with portability as a main goal. In fact, it is not based on 
structured database but it simply consists of two components: i) several 
Perl scripts constituting the “business logic” and ii) indexed plain text files 
with the pre-computed genomic annotations.   

ANNOVAR can be accessed only by command line, making it desirable 
for programmatic usability. 
The workflow consists of two steps: preparation of the input file and 
variant annotation by genes, regions or other variants. 
 
Variants are represented by genomic coordinates, reference and variant 
allele. ANNOVAR provides accessory scripts able to convert different 
variant format (such as VCF) to its predefined one and supports both SNVs 
and DIVs. 
Gene-annotation starts from converted variants and scan annotated mRNA 
sequences in order to match a variant within an exon, splice site, intron, 
untranslated region or outside a gene. The search proceeds by genomic 
interval, in a similar way to UCSC Genome Browser as shown in 2.4.1.1: 
genomic bin are pre-computed for each mRNA transcript and are stored in 
the file as a column field. The mRNA file contains genomic coordinates for 
each transcript, such as exon intervals and relative reading frames. 
In the gene-annotation step, the mRNA file (12MB) is loaded in RAM. 
When a variant has to be annotated, the overlapping bin identifiers for the 
corresponding chromosome are computed starting from the variant genomic 
coordinates. The in-memory structure of the mRNA file in the form of key-
value (hash) is queried by keys that are chromosome-bins (Figure 12). 
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Figure 12.ANNOVAR gene-annotation workflow 

 
Once the mRNA of the corresponding variant has been identified, mRNA 
features coordinates are checked in order to assign the variant into the 
coding, intron, splicing or untranslated gene regions. 
In case of exonic variants, the annotated mRNA sequences are scanned in 
order to report the amino acid change given by the variant as well as stop-
gain or stop-loss mutations. 
In such similar way, ANNOVAR annotate variants against several variant 
pre-computed resources such as 1000GP and ESP.  

2.5. Genomic Data Interpretation in NGS 

Human DNA sequencing allows to identify a number of genomic 
variants that can vary from dozen to up 5 million per sample depending on 
the sequencing target (several genes, whole exome or the whole genome). 

The majority of these variants is frequent in the population because it 
consists in the natural genetic variation that has been cumulated during 
centuries, modulated by natural selection and therefore contributed to 
evolution. These variants are typically called “polymorphisms”. Another 
part of these variants results to be more rare among a population or private 
for an individual. The variants belonging to this part are often called 
“mutations”. Mutations can be distinguished between those that give a 
selective advantage and therefore will help the carrier organism to survive 
and will be transmitted to the progenies (becoming therefore common 
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variants in future generations) and those mutations that hinder survival and 
are under negative selection thus tend to be eliminated from the population. 

Polymorphisms consist therefore in the genetic background of a 
population. A single polymorphism can explain only in part a given human 
phenotype such as a common (or complex) disease or trait. 

Genome wide association studies (GWAS) has been developed in the 
last ten years in order to exploit common diseases through the genotyping 
of millions of polymorphisms along the human genome. Genotyping is 
different from sequencing and it briefly consists into “reading” only a 
predefined set of genomic regions that are randomly distributed along the 
human genome. 

GWAS have identified genetic risk factors for common diseases such as 
type II diabetes, schizophrenia and many others including 
pharmacogenetics traits[101, 102]. However, it has to be noted that, for the 
largest part, these identified genetic loci collectively accounted for only a 
small fraction of the observed heritability of the investigated traits [103].  
Complex diseases are the results of a combination of genetic and 
environmental factors and each can contribute to the susceptibility to the 
phenotype. Polymorphisms are rarely directly associated to the disease, 
rather they can be a sort of flag indicating the presence of the causal 
variants through linkage disequilibrium (the non-random allele association 
of two or more genomic loci given the biased DNA recombination) or 
synthetic association (see Figure 13). 
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Figure 13.  Each rare variant shown cause disease and they occur commonly on the haplotype 

containing a certain allele of the polymorphism. The signal credited to the common variant is 

weaker than the real effects of the causal variants. In the case shown, moreover, the causal variants 

do not lie in the Linkage Disequilibrium block of the common variant [104]. 

 
In order to identify risk loci for a given trait, GWAS typically need 
hundreds of genotyped individuals sharing the same phenotype in order to 
hold the statistical power that leads to significant results in terms of 
genotype-phenotype association. However sample size for these kind of 
genetic studies depend upon the expected allele frequency in the population 
and the expected risk incurred by that allele.  
Common Disease Common Variants hypothesis (CDCV) states that 
common disorders are influenced by common variants in the population 
with low or moderate penetrance, that is a polymorphism contributes 
(together with environmental or other genetic factors) to the risk by a small 
amount, thus the prevalence of the disease and the allele frequency are 
slightly correlated. Also, in case of complex diseases showing heritability, 
a polymorphism with a low penetrance must be spread across multiple 
genetic factors. 
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The Rare Disease Rare Variants hypothesis (RDRV) instead, applies for 
those diseases that are typically rare, monogenic, and heritable in 
Mendelian fashion and caused by rare variants at high penetrance and 
effect size, thus the allele frequency and the disease prevalence are in high 
or perfect correlation. 
Figure 14 shows the relationship between disease-related variants effect 
size and their frequency among a population: while GWAS applies on the 
lower right, sequencing covers a broader range and is suitable to detect 
both rare variants causing Mendelian diseases and more common variants 
with moderate effect size.    
 
 
 

 
 

Figure 14.Disease-related variants on the basis of the effect sizes and allele frequencies in the 

population [105]. 

 
Whole genome sequencing is the most comprehensive study to exploit the 
role of rare and common variants in disease; however, until sequencing 
costs will be more affordable in order to sequence thousands of samples 
with a given phenotype and perform whole genome association studies, 
alternative approaches such as family-based and extreme-trait [104] 
experiment designs have to be taken into consideration in order to identify 
genetic causes at the base of complex diseases. 
Family-based strategy consists to sequence affected individuals which 
belong to the same family, possibly the most distantly related ones in order 
to limit the number of shared and possibly causative variants. 
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The extreme-trait strategy consists to sequence a relative small set of 
affected individuals with extreme phenotype traits over the phenotype 
distribution. In this way, the variants that contribute to the trait will be 
enriched in frequency in such a population subset. This strategy, however, 
supposes to have detailed phenotype data for a broad range of individuals 
in order to generate this extreme sample selection. 
 
Both rare and common disease sample sequencing applications needan a 
priori weight for the identified variants, in order to further distinguish 
between putative functional variants that can be related to the disease and 
those variants that constitute natural genetic background or that can be 
related to other secondary traits. 
Especially in case of whole exome sequencing where the major part of 
variants belong to the protein-coding region of the genes, variant weighting 
can be performed by applying several steps [106] (see Figure 15):  
 

- Apply a priori knowledge on gene mapping respect to the 
reference genome 

- Perform discrete-filtering step based on allele frequency among a 
reference population or control samples (under the assumption 
that the control set contains no alleles from individuals with the 
phenotype being studied) 

- Rank and prioritize variants based on the involved coding region, 
qualitative changes to the primary protein sequence, conservation 
of modified DNA bases (or amino acids in case of protein-coding 
variants),normal gene variability in order to avoid those genes 
with highest and noisy mutational rate, protein functional 
domains and variant matching against well phenotype-associated 
variants in literature. 

 
Once obtained the reduced variant candidate list, experimental evidence of 
pathogenicity by functional studies has typically to be assessed. 
Gene expression by RT-PCR, in vitro splicing assays or animal models 
phenotype replication are common examples of such functional studies. 
Family co-segregation is another important feature for variant 
interpretation despite there exist cases (e.g. in case of incomplete 
penetrance) for which establishing the inheritance pattern is far from be 
straightforward [106]. 
A common practice requires also to confirm identified candidate mutations 
with higher accurate experimental methods such as Sanger sequencing.  
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Figure 15.Stepwise interpretation for genetic variants[106]. 

 

2.5.1. In-silico Prioritization of Genomic Variants 

Identifying diseases related variants could be relatively easy in case each 
of the following rules holds: 

 
- overlapping within a known and well mapped protein-coding 

region 
- rare or unseen in a reference population or control groups 
- causing an important and easily interpretable change to encoded 

protein such as the introduction of a premature stop codon 
(nonsense) or a translational reading frame shift (frameshift 
indels) 

- related genes have a known function and have been well studied 
or, better, have been previously related to the same disease 

 
Unfortunately this ideal pattern does not always hold for rare Mendelian 
diseases and (even more rarely) for complex ones where more common and 
mild-effect variants can concur to the phenotype as previously discussed. 
 
Additionally, within whole exome or genome sequencing data, there is the 
need to distinguish between disease-causing or associated variants and the 
overwhelming amount of potentially functional variants present in any 
individual genome, but not pathogenic for the disease under study.  
MacArthur et al.[107]considering only loss of function (LoF) variants 
(nonsense, frameshift indels, large deletion removing the first gene exon or 
more than 50% of the protein-coding sequence transcript) estimated that a 
healthy individual with European ancestry carries ~100 LoF variants with 
the 20% in an homozygous state. This list was even longer (about double) 
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previous to filtering variants by several criteria such as annotation errors or 
frameshift indels close to 5’ end of genes not highly conserved or not 
known to be functionally important and therefore resulting in likely 
tolerated truncating variants. 
Other insights came up by analyzing properties of the relative genes 
mapped to this variant list. In fact LoF variants resulted significantly 
enriched for:  
 

- less evolutionarily conserved genes comprehensive of their 
promoter region 

- genes having more closely related paralogs (gene family 
members) with a greater sequence identity than other genes 

- genes showing lower connectivity in protein-protein interaction 
and gene interaction networks 

 
while they resulted significantly depleted for genes implicated in protein-
binding, transcriptional regulation and anatomical development. 
 
Thus, it is straightforward to integrate both variant-level and gene-level 
prior knowledge in order to carefully and correctly assess sequence variants 
in human diseases and to void false positive assessment of pathogenicity 
that could contaminate published results, and therefore impede the 
translation of genomic research findings into the clinical diagnostic 
setting[108]. 
 
Informatics evidence for variant pathogenicity assessment can be done at 
gene level, variant level or both. 
 
Prioritization at gene level leverages existing knowledge on genes, 
proteins, diseases and phenotypes. 
Given a candidate gene list and a disease or phenotype traits of interests the 
goal is to end up with the ranked gene list according to the 
phenotype/disease under study. 
We can distinguish between two main kinds of gene-prioritization 
algorithms: those that exclusively use bio-ontologies to mine and report 
known and new associations between genes and diseases; and those based 
on “data fusion”, that consist in integrate disparate and heterogeneous data 
sources and match similarities between a given (training) gene list and a 
candidate (test)one. 
 
Ontologies are knowledge databases in which the information is 
represented as a graph: terms are the nodes and respect a precise taxonomy, 
while edge are relationships between terms. The Gene Ontology (GO) 
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[109], Disease Ontology (DO)[110] and the Human Phenotype Ontology 
(HPO) [111]are examples of knowledge databases used in gene 
prioritization. 
Recently, several tools that exploit one or more of these ontologies to 
prioritize variants have been developed [112-115].  
Phevor starts from HPO terms describing the individual traits and comes up 
with a phenotype-linked gene list that further crosses with other ontologies 
such as GO and DO. In the ontology search process to each gene is 
assigned a score depending on relationships with the phenotype, GO terms 
and diseases: generally, more often a gene or its paralog comes up within 
the search, the higher it scores. 
Other methods [113] makes use of semantic similarity between HPO terms 
annotated to genes and those used to describe an individual. Similarity 
between two terms is a function of their specificity and semantic relation: 
specificity tends to penalize those HPO terms with an high gene 
connectivity while semantic relation consider the similarity of two terms by 
the specificity of their most informative common ancestor. 
 
Endeavour [116] and ToppGene [117] are examples of data fusion 
applications to gene prioritization. Functional annotation (by GO), gene 
expression, sequence similarity, transcriptional motifs, protein domain, 
gene network and, in case of ToppGene, mouse phenotype data are 
integrated to rank a list of candidate (test) genes on the base of similarities 
with given training genes. 
As shown in Figure 16, steps for gene prioritization proceed in a similar 
way: a training gene set is used to gather information about diseases, 
pathways and the other kinds of data; a test gene set (corresponding to the 
candidate gene list) follows the same searching process and for each data 
record (corresponding to a data source type) genes are ranked accordingly 
to the data similarity with the training gene list; finally data fusion here 
consist to merge ranks obtained from the separate data sources into a single 
ranking. The different tools differ on statistical approaches used to compare 
similarities between training and test attributes/values (ToppGene uses a 
combination of Fuzzy Measure and Pearson Correlation, while Endeavour 
uses Fisher’s omnibus analysis and Pearson Correlation as well),plus data 
sources used. 
 
However, both ontologies and data fusion based gene prioritization 
methods suppose that phenotypes and/or disease of the individuals under 
study have been well defined or that a list of known genes related to the 
trait of interest exists. If ontologies based methods can help with the second 
issue ending up with a list of gene similarities on functional annotation 
(such as Phevor does) the choice of using phenotype terms can be 
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controversial [113]. Moreover, these methods do not care about genomic 
variants that have led to the candidate gene list building. 
 

 
 

Figure 16. Typical steps in gene prioritization by data fusion [116] 

 
 
Variant prioritization consists in assessing the variant pathogenicity by 
using specific attributes at nucleotide and protein sequence level where a 
genomic variant occurs. 
 
Recently, methods that combine gene and variant prioritization level 
approaches has been developed [118].Moreover, since the availability of 
publicly genome datasets increases with the number of sequenced 
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individuals, statistical frameworks to prioritize genes basing on their 
observed/expected mutational rate have shown their utility especially in the 
identification of rare inherited disease genes [119, 120]. 
In this thesis we further focus on variant prioritization methods, also called 
“variant prediction” algorithms. 

2.5.2. Variant Prediction Algorithms 

Human genomic variants can be first classified on the basis of genomic 
region to which they overlap. 
Coding variants may cause changes to the primary structure of the peptide 
encoded by the relative gene, therefore are the most amenable to functional 
interpretation and, as a consequence, are the most studied. 
Non-coding variants constitute the major part of the individual human 
genomic variation [5] and are likely to contribute with low effect size to 
complex traits as confirmed by GWAS. Moreover, several large-effect 
regulatory variants (e.g. in promoter and enhancer regions) have been 
confirmed to be the cause of several Mendelian diseases. 
 
Predicting the deleteriousness of coding variants is associated to predicting 
whether they alter protein stability, structure and/or protein function. We 
can distinguish between two main coding variant predictor classes:  
structure-based and sequence-based methods [121]. 
Structure-based methods [122, 123] rely on energy function-based 
approaches and require protein three-dimensional structure as input to end 
up with accurate results. Because of their high computational demand, their 
application to the big amount of sequencing data is unfeasible. 
Sequence-based methods typically use sequence homology, sequence 
evolutionary conservation, structural information(e.g. surface accessibility, 
hydrogen bonding). They can be further divided into those adopting a 
“first-principle” approach and trained classifiers [76]. First-principle 
approaches make predictions basing on a defined biological property (e.g. 
evolutionary conservation) while trained classifiers are based on heuristic 
associations of many potentially relevant attributes that significantly can 
discriminate between true positive and negative instances. Trained 
classifiers methods are generally more accurate but can be biased by the 
training data; however, they have the advantage to be tunable. First 
principle approaches are more interpretable, but are limited to their 
assumption and do not model all the possibly relevant factors. 
 
A gold standard algorithm in variant prediction does not exist yet and the 
scientific community is in agreement that the combination of the diverse 
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approaches is actually the most accurate solution [124], despite the optimal 
ensemble model has not been univocally identified. 
 
Many variant prediction methods basing on homology sequence alignment 
[8, 125-127], sequence conservation [124, 128-131] and protein 
structural/functional parameters [2, 3, 132, 133] have been developed.  
Four algorithms, encompassing aforementioned categories are hereby 
discussed in more detail, selected for their strategic role in this thesis. 

2.5.2.1. PolyPhen-2 

PolyPhen-2 is an algorithm that aims to predict weather a single 
nucleotide variants leading to an amino acid substitution (missense or non-
synonymous variant) can affect or not the encoded protein functionality. 

It is based on the multiple sequence alignment (MSA) paradigm and 
makes use of protein 3D structure attributes too. 

 

 
Figure 17. PolyPhen-2 workflow[2] 

 
Given a single nucleotide variant (SNV), it is mapped onto available 
mapped mRNA transcripts: PolyPhen2 makes use of UCSC mRNA 
transcripts tracks by UCSC Table browser for variant mapping. 
Depending on the reading frame of the mRNA transcript, the nucleotide 
sequence flanking the SNV (25 base pair for each snippet) [134] is 
translated into amino acids. 
The amino acid sequences are search via BLAST+ [135] in a database of 
sequence protein (the UniProt UniRef100 and SwissProt) in order to match 
homologous sequences(both orthologs and paralogs with an identity match 
between 10-94%) and are aligned by MAFFT [136], a multiple sequence 
aligner software. The obtained MSA is then improved by alignment 
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refining (LEON [137])and clusters of similar sequences are identified by 
Secator algorithm [138]in order to distinguish between subfamilies. Protein 
subfamilies are frequently representative of sets of protein with related 
functions and/or domain organization and therefore only the compact 
cluster, which includes the analyzed sequence, is further processed. 
Position-specific independent counts (PSIC) software [139] is used to 
assign weights to the amino acids respect to the MSA and obtain the so-
called profile matrix, which elements represent the logarithmic ratio of the 
likelihood of a given amino acid occurring at a particular site to the 
likelihood of this amino acid occurring at any site, computed by using prior 
probabilities from the amino acid substitution matrix BLOSUM62 [140]. 
PSIC for the wild, mutated amino acid and their PSIC difference are 
computed. 
 
At the protein and nucleotide sequence level, PolyPhen-2 considers also: 
whether the nucleotide variant overlaps to CpG islands and is a transition 
(A<->G, C<->T) or a transversion (A<->C, G<->T,A<->T,C<->G); 
whether the variant is inside a Pfam [141]domain. 
 
PolyPhen2 takes into account protein 3D structure parameters related to the 
amino acid change. It first maps with BLAST the analyzed sequence to a 
database of protein structure, in particular PDB [142], considering at least 
sequences with 50% identity. Then, it obtains structural parameters by 
mapping the amino acid residue of the PDB record into DSSP database 
[143] and calculates many parameters, including the normalized accessible 
surface area of amino acid residue, the change in accessible surface area 
propensity for buried residues, the change in residue side chain volume and 
B-factors (a measure of the local mobility resulting from crystallography). 
 
A complete list of PolyPhen-2 features is reported in Table 3. 
 

Features Type Values 
PSIC score for the wild type 
amino acid 

sequence (-1,1) 

PSIC difference between wild 
and mutated 

sequence (-3.27,4.57) 

Number of residues observed 
at the position of the MSA 

sequence (1,432) 

Congruency of the mutant 
allele to the multiple alignment 

sequence (0,95.5) 

Sequence identity with the 
closest homologue deviating 
from wild type  

sequence (1.56,95.5) 

Pfam domain hit sequence Yes,No 
Variant transition/transversion sequence No, 
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in CpG island Transition, 
Transversion 

Change in residue side chain 
volume 

structure (-167,167) 

Normalized accessible surface 
area of amino acid residue 

structure (0,1.55) 

Crystallographic beta-factor structure (-1.85,5.17) 
Change in accessible surface 
area propensity for buried 
residues 

structure (-1.83,2.89) 

 

Table 3.PolyPhen-2 features and relative range values. 

 

Sequence and structure related features are used to train a Naïve Bayes 
classifier coupled with entropy-based discretization[144], chosen because 
of the heterogeneous feature set (discrete and continuous values as shown 
in Table 3) and the presence of missing values (e.g. when PDB structure is 
not available or lack of homologous sequences). 
Being the Naïve Bayes classifier a supervised approach, it requires data for 
training and for testing. 
PolyPhen-2 has been trained on UniProt database for the positive class 
while negative variants (that is supposed neutral) were compiled from 
differences in homologous protein sequences of closely related mammalian 
species. The Naïve Bayes classifier has been trained and tested by 5-fold-
cross-validation consisting in split the dataset in five parts, four for training 
and one for test, repeating it 5 times with different parts used for test. 
 
Actually, two versions of PolyPhen-2 exists, based on the learnt 
classification model on two different filtered data set: HumDiv, with 3155 
Mendelian disease related variants extracted from UniProt database as 
positive instances and 6321 differences between human proteins and their 
closely related mammalian homologs that were considered neutral 
(negative instances); HumVar, with 13032 human disease causing variants 
(comprehensive of Mendelian diseases but not only) and 8946 human 
missense variants without annotated disease data. 
Results on test set showed that for a false positive rate of 20%, PolyPhen-2 
achieved true positive prediction rates of 92% for the HumDiv and 73% for 
the HumVar dataset (see Figure 18). 
A reason for the lower accuracy on HumVar is that the relative variant 
database may contain mildly deleterious alleles that have been classified as 
non-damaging. Therefore, it is recommended to use HumVar to predict 
variants in Mendelian diseases in order to clearly separate high from low or 
null effect size variants.  
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Figure 18.ROC curves of PolyPhen-2 on HumVar and HumDiv datasets. Comparison with the first 

version of PolyPhen is shown as well[2]. 

2.5.2.2. SIFT 

Sorting Tolerant From Intolerant (SIFT) is a multi-step algorithm based 
on protein homology sequence similarities like PolyPhen-2 but it holds 
critical differences on how it retrieves homologous sequences and 
calculates the weights associated to amino acid substitutions in the 
resulting MSA, moreover it does not make use of structural properties and 
uses empirical cutoff for classification rather than learning. 

 
Given a sequence query representing the mutated protein, SIFT searches 

a protein database (SwissProt) using PSI-BLAST and selects similar 
sequences iteratively until conservation in the conserved regions decreases. 
PSI-BLAST, in fact, performs the multiple sequence alignment and SIFT 
clusters aligned regions in case of sequence identity greater than 90%. 
Then, a consensus sequence is made for each group by choosing the most 
frequent residue for each position. The MOTIF algorithm [145] is used to 
search conserved regions which are then grouped together if they are >90% 
identical and a consensus sequence is made for each conserved group. 
Conserved regions of the query sequence and sequences with >90% 
identity constitutes the “seed” to which additional sequences will be added. 
The seed is given again to PSI-BLAST to search among the consensus 
sequences that were excluded from the seed. The best hit is added to the 
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MSA and conservation for each conserved sequences position is computed 
by the following formula: 
 

�� = log� 20 − � ��
 log ��

��


��  

 
where��
 is the frequency at which amino acid a appears in position c. The 
total conservation is calculated as ∑ ��� . If this conservation score is 
greater than or equal to the conservation of the seed, the best hit is added to 
the MSA and the seed is rebuilt. This step repeats until the conservation 
score does not decrease. 
 

 
 

Figure 19. Sift workflow. Image adapted from [146]. 

 
After the selection of the most conserved sequences into the MSA, the 
alignment is converted into a position-specific matrix (PSSM)[147], a Lx20 
matrix where L is the length of the protein sequence. Each element of the 
matrix ��
  is the probability of amino acid a at position c of the 
protein.��
 is a function of the residue frequency into the MSA in that 
position and the pseudo-counts [148]for the same residue, a method used to 
correct profile scores taking into account the fact that the observed 
sequences are an incomplete sample of the full set of related sequences. 
Finally, each ��
  is normalized with respect to the max(��
 ) for that 
position and an empirical cutoff of 0.05 has been chosen to discriminate 
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between damaging (<0.05) and tolerated (>0.05) depending on the observed 
amino acid substitution. 

2.5.2.3. MutationTaster 

MutationTaster is a variant prediction algorithm able to score both 
human protein-coding and non-coding variants. 
Basing on different genomic variant databases (OMIM, HGMD, ClinVar, 
HapMap, 1000GP) and using results from different algorithms, it collects 
features on nucleotide/protein sequence conservation, protein structural 
properties, splicing sites, polyadenylation signals, regulatory regions and 
Kozak consensus sequences to train a Naïve Bayes classifier on known 
datasets of damaging and tolerated variants of different types. 
 

 
 

Figure 20.MutationTaster capabilities based on diverse variant types. On the top a gene is 

represented by its introns (lines), coding exons (larger rectangles) and untranslated regions 

(smaller rectangles). 

 
Conservation of residues or nucleotide sequences is computed analyzing 
the MSA of the sequence query and homologous sequences of ten different 
species both at nucleotide (by bl2seq[149]) and protein level (by blastp). 
MutationTaster then classifies the conservation into three classes (identical, 
partly conserved or not conserved) on the basis of amino acid sequence 
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similarity or in two classes (conserved or not conserved) for the nucleotide 
sequence one. Moreover, MutationTaster also uses two evolutionary 
conservation scores computed on the multiple alignments of 46 vertebrate 
species, phyloP [129] and phastCons [150]. 
 
Protein structure features are retrieved by searching in SwissProt database 
the mapped properties to the protein of interest and check whether the 
analyzed variant overlaps some (directly affect) or may influence others in 
case e.g., of frameshift or splicing-site alterations (indirectly affect). 
Despite it has not been exactly clarified by the authors which protein 
features have been used to train the Naïve Bayes classifier, MutationTaster 
reports the directly or indirectly affected features such as helix and beta 
strands, domains, binding sites, active sites etc. 
 
Variants overlapping splice sites (intron-exon borders) are processed by 
NNSplice [151] a splice site predictor algorithm that uses neural networks 
on dinucleotide frequencies to identify gene structures. 60 bases around the 
variant are used to compare wild-type and mutated sequences. Upon 
NNSplice results the variant is classified on the basis of its probability to 
alter existing splice site in positive/negative way, if an additional splice site 
is activated or the splice site completely lost. 
 
MutationTaster also analyze consensus sequences in untranslated gene 
regions (5’utr and 3’utr), respectively checking whether the variant 
overlaps a Kozak consensus sequence (gccRccAUGG; R=purine) typically 
positioned upstream the start codon (AUG) and polyadenylation signal 
(PAS) regions consisting of two type of examers (AATAAA or ATTAAA) 
by polyadq algorithm. Both features play an important role into the 
corresponding mRNA expression. 
 
Finally, MutationTaster implements several roles in order to limit false 
positives and negative rates by checking if variants have been already 
known to be disease-causing or a potential polymorphisms by querying 
variant disease databases such as HGMD, ClinVar, OMIM and natural 
background variant databases such as 1000GP and HapMap respectively. 
 
The implemented Naïve Bayes classifier has been trained on diverse 
datasets, known disease and neutral variants from HGMD and 1000GP 
(with allele frequency threshold to assume neutrality) filtered upon three 
variant types: intronic or synonymous variants (without_aee model), amino 
acid substitutions (simple_aee model), coding variants such as frameshifts, 
introducing or disrupting a stop codon (complex_aee model).   
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2.5.2.4. GERP++ 

Non-coding variants are difficult to interpret, especially when they 
overlap with not-annotated genomic regions such as splice sites or 
regulatory elements. The effort to annotate all functional elements in the 
human genome such as the ENCODE project[152] is under continuous 
development and evolutionary conservation by comparative genomics is a 
central component in the pursuit of this goal. Sequence conservation, in 
fact, is a peculiarity of regions under negative selection that are reasonably 
supposed to have a biological function. 

Genomic Evolutionary Rate Profiling (GERP++) [128, 153]is an MSA 
based algorithm that estimates evolutionary rates of each single alignment 
column and compares the inferred rates with a tree describing the null 
model, in order to define significance thresholds against a neutral 
background of substitution rate of the species under consideration. The 
identified constrained elements are then scored according to the “rejected 
substitutions” (RS) deficit. 
 
MSA is built up by the multiple alignment of 34 mammalian species by the 
use of TBA algorithm [154].  
Giving the MSA and a phylogenetic tree of the species in the alignment 
(see Figure 21B), GERP++ estimates the neutral rate for the entire tree in 
terms of neutral divergence among closely related species and extrapolates 
rate estimates over the entire branch length tree. During this step, if an 
alignment contains gap in a given position, the corresponding species is not 
considered into the computation of the neutral rate. 
Subsequently, constrained elements at each position of the MSA are 
calculated in terms of RS score, that is the difference between the expected 
and observed evolutionary rate at each position. The observed value is the 
maximum likelihood estimate of the alignment column expected 
substitution count, and likelihood is maximized with respect to all branch 
lengths in the topology of the tree. The expected evolutionary rate for each 
column is obtained by pruning the tree in order to eliminate gaps and 
summing the residual branch lengths. Finally, constrained elements are 
identified by a threshold on the observed/expected rate allowing the 
merging of few diverse positions exhibiting a ratio lower than threshold 
(Figure 21A). The RS is the sum of the individual site differences between 
observed and expected rates of these merged elements. Finally, a p-value is 
assigned to each RS score, representing the probability of a random neutral 
segment of equal length having an equal or higher RS score. 
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Figure 21. GERP++ workflow overview[153] 
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Chapter 3

3 Sequencing data management 

This Chapter describes the Variant Management Systems (VMS) 
developed in the thesis. VMS has the aim to organize sequenced samples 
along with related genomic variants resulting from sequencing pipelines. 
In particular, paragraph 3.1presents the system based on a relational 
database approach developed for such purpose, describes its technological 
components and discusses about results and limitations. Application results 
of this system are shown in Chapter 5. 
Paragraph 3.2deals with the system based on NoSQL database, describes its 
paradigm, related technologies, performances and future directions. 

3.1. A Relational Database for Genomic Variants 

and Annotations 

In Chapter 2 the issue of management and interpretation of sequencing 
data has been introduced, focusing on genomic variants. The plethora of 
data produced by NGS is not straightforwardly interpretable and needs to 
be integrated with genomic and disease knowledge in order to correctly 
link genotype to phenotype features. 

Genomic databases constitute this knowledge, but their data are not 
ready to use in the most part of cases: indeed they have to be accessed, 
processed and linked with target data objects, i.e. genomic variants. 
Organizing genomic variants along with their annotations is a requirement 
in order to learn from collected data and to proceed to variants 
interpretation. 
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We have therefore developed a VMS with the aim to store genomic 
variants collected from sequenced samples in several experiments, using 
different targeting enrichment platforms.  
Variants come in VCF format, are imported into the system and are 
annotated for genomic knowledge such as mRNA transcripts, genes, 
proteins, amino acid consequences, polymorphisms and disease variant 
databases (see Figure 22). Once sample variants have been annotated, the 
system allows choosing the cohort of samples to use as the target (cases) 
and the cohort of samples to use as controls, for which aggregate data on 
variants are computed on the fly. The system queries data by applying user-
filtering criteria on variant annotations such as amino acidic change type 
(non-synonymous, stop-causing), population variant frequency and/or 
variant attributes such as reads coverage and quality. Resulting variants can 
be further processed by variant prediction tools, such as PolyPhen-2 and 
MutationTaster, and results are stored without the needs to re-process the 
same variant entities resulting from other analysis. 
The system relies on the MySQL Relational Database Management System 
(RDBMS) database for variant and genomic annotation storage and J2EE 
technologies for business logic and user interface. We therefore name the 
system as RDBVMS (Relational Database Variant Management System).  
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Figure 22.The RDBVMS general workflow. 

3.1.1. Data Tier 

The MySQL relational database management system (v. 5.5) has been 
chosen in order to store genomic variants and annotations. The choice has 
been leaded by the flexibility, scalability, transaction and indexes support 
that MySQL offers. MyISAM and InnoDB storage engines have been used 
both depending on reads/writes expected ratio for tables and the needs of 
constrains. Figure 23 represents a simplified version of the database 
schema. 
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Figure 23.RDBVMS: the simplified Database Schema 

 
The core of the database concerning genomic variants is made of four main 
tables: sample, coordinate, marker and mutation.  
 

• sample contains data about the sequenced sample and in particular 
the internal id, the sample code, gender and the sample group which 
describe the NGS application used (e.g. exome or a specific gene 
panel). The sample id univocally identifies the row of the sample 
table. 

• coordinate represents genomic variant by their reference assembly, 
chromosome and absolute 1-based chromosome position 
corresponding to the variant starting point. The coordinate id 
univocally identifies a row of the coordinate table. 

• marker table reports genomic variants for each sample. A variant is 
identified by its coordinate id, reference and altered nucleotide 
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bases in a VCF-like format. Each marker holds data on that 
particular variant for the specific sample in terms of genotype, total 
reads coverage, coverage of the reference/altered bases, quality, 
filter annotations and other data coming from the VCF file. The 
coordinate id, reference/altered bases and the sample id univocally 
identify a row of the marker table. 

• mutation instead, is a variant abstraction and store all those 
annotation data that depend on the variant within its transcript and 
not on the specific sample. Therefore mRNA transcript, coding 
region, amino acid change, pathogenic probabilities and other 
genomic annotation data are memorized within each row. The 
coordinate id, reference/altered bases and the mRNA transcript id 
univocally identify a row of the mutation table. 

 
Coordinates have been separated from marker (and mutation) in order to 
make these tables independent from genome assembly and, in case of 
genomic reference update, only coordinates have to be changed by using a 
mapping algorithm such as liftOver [84]. 
The mutation table is filled during data import: business tier components 
annotate each variant using both data stored in the database and requests to 
web services over HTTP. 
B-tree indexes have been set on those tables and fields that are generally 
queried, in order to speed up data retrieval. 

3.1.2. Business and Presentation Tiers 

 
The VMS has been developed as a J2EE-compliant application. The Java 

servlet technology has been chosen: it runs inside the Web Server (in our 
case Apache Tomcat), receives the HTTP request from the browser and 
generates dynamic content through Java Server Pages (JSP) components 
providing HTTP response back to the browser (see Figure 24). 
Servlet technology is convenient in case of server intensive applications, 
such as those accessing a database, that is our case. Servlets are managed 
by the Servlet Container that is Tomcat and their flow and mapping can be 
configured through a specific xml file, the web application deployment 
descriptor (web.xml). A Main Servlet has been configured in order to 
manage every request from the Servlet Container, i.e. the user HTTP 
requests. In order to manage authentication for requested resources, a Filter 
has been configured: it preprocesses the request for the Main Servlet and 
check whether a specific session attribute has been initialized (i.e. the 
username) and it eventually address to the login page for authentication.  
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Main Servlet is used in combination with JSPs and Plain Old Java Objects 
(POJOs). The first are used to manage the dynamic content of web pages, 
the seconds belonging to the business tier, to perform operations such as 
querying database and manipulate data.   
 

 
 

Figure 24.RDBVMS architecture  

 
The Main Servlet has been coded in order to: 
 

• load configuration parameters: a configuration file has been used in 
order to store those parameters needed to the system and that may 
change in time, e.g. URL and credentials of the MySQL database, 
local directories used as file repositories for database dumps. 
 

• dispatch the user requests to POJOs and JSPs: the Servlet interacts 
with the Servlet Container through predefined objects for request 
and response (HttpServletRequest and HttpServletResponse) and 
methods to manage HTTP GET and POST requests. Each request 
hold a parameter (command) that is the code used by the Servlet to 
perform an action, such as instantiate a POJO, call its methods and, 
finally, invoke JSPs (see AppendixA.2, ServletNGS.java). 
 

• initialize a connection pool to the database: in order to limit 
database connections creation and manage them, a connection pool 
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logic has been implemented. The connection pool is initialized 
within the Main Servlet and a new connection is created or pulled 
from the pool when a POJO asks for a connection to the database in 
order to perform a query (see AppendixA.2, ConnectionPool.java). 
 

POJOs have been used in different ways such as representing data objects 
grabbed from the database, processing data during data importing and 
presentation phases, performing requests over HTTP and updating data 
tables. Figure 25 depicts the simplified UML class diagram of the 
application: LoginFilter is between the Servlet Container and the Main 
Servlet (called ServletNGS) and it manages authentication to the requested 
resources (e.g. JSPs). DBAnalize is the Java class used to perform the major 
part of CRUD (Create, Read, Update and Delete) operations on the 
database and makes use of POJOs representing database entities, such as 
Sample, Coordinate, Marker and Mutation. 
 

 
 

Figure 25.RDBVMS: the simplified UML diagram of classes 

3.1.3. Data Workflow 

Genomic variants follow a specific workflow. The user imports and 
retrieves sample variants interacting with the web interface. In Figure 26the 
main VMS variant annotations are reported, distinguishing between those 
that are performed on the fly during data import and data retrieval. 
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Figure 26. Overview of the RDBVMS annotations distinguishing those computed during data 

import and retrieval.  

3.1.3.1. Data Import 

Variants are imported into the system through the web interface (see 
Figure 27). VCF file format is the accepted standard and can process the 
specific fields produced by both GATK Unified Genotyper [49] and 
another variant caller, MuTect [155]. The user fills the form relative to the 
sequenced sample and the NGS experiment to which it belongs and uploads 
the related VCF file. 

 
On back end the request is managed by the ServletNGS which 

instantiates the objects and calls the related methods to parse the file 
(ReadVCF, see Figure 25). Each variant in the VCF file is then annotated 
with several genomic data by querying and processing specific tables 
content: the UCSC table of known genes is queried by genomic intervals 
related to the transcriptional regions. Exons coordinates are scanned in 
order to classify the variant as an “exonic”, “intronic”, “splice-site” or 
untranslated “utr” one. In case of an exonic variant, the amino acid 
sequence of the related mRNA transcript is pulled (ucsc_cds table, see 
Figure 23)and the amino acid change is calculated on the basis of the 
variant allele. The variant is therefore associated to the relative dbSNP-id, 
in case it exists, and relative frequencies. Some dbSNP database tables 
have been dumped into the VMS database in order to link the right id to 
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each variant depending on the reference and alternate allele reported in the 
VCF file, while views regarding dbSNP allele frequencies have been 
elaborated in order to associate the variant allele to the minor allele 
frequencies in the general population. Notably, in case of G/C and A/T 
allele ambiguities, the Illumina TOP/BOT strand convention[92] has been 
implemented in order to be sure to refer to the same variant allele strand 
reported in dbSNP. Not always the TOP/BOT information is available, and 
in such a case, the warning of possible ambiguity is reported as additionally 
fields in the final report. 

 

 
 

Figure 27.RDBVMS - Data import web interface 

 
While VCF related data are stored in the Marker table, genomic 
annotations are stored into the Mutation one. The latter contains variant 
abstractions, therefore rows in this table do not depend on samples: a 
variant is processed for annotation only if its correspondent variant object 
does not exist in the Mutation table, in order to speed up the import phase 
and avoid SQL exceptions of duplicates keys. 
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Data import has been coded in an asynchronous way implementing the Java 
Callable interface (see Figure 25 and ReadVCFCallable.java in 
AppendixA.2) and pulling the object into an Executor with a single thread. 
Therefore, the user can upload several VCF files in cascade and monitoring 
the importing process for each sample. 

3.1.3.2. Data Retrieval 

Data retrieval allows the user to download genomic variants belonging 
to a selected sample cohort and respecting several optional filtering criteria.  
The user first chooses all the samples to include in the analysis by selecting 
them on the assigned sample group or individually. Then, the samples 
cohort to be used as cases (for which the genomic variants are retrieved) 
and as controls can be chosen. Subsequently, filtering criteria based on 
genomic annotation (e.g. exonic region and dbSNP frequency) and per 
sample variant attributes (e.g. coverage, quality) can be selected in order to 
reduce the space of genomic variants to retrieve and further analyze. 
During the retrieval of genomic variants, two main operations are 
performed on the fly: 
 

• Variant frequencies calculated among the controls cohort: 
depending on the samples control cohort for the specific analysis, 
dedicated Java classes retrieve, for each sample-case variant, the 
number of controls samples that share the same variant (rows of 
Marker table) along with data related to the matched sample-
variants (markers) such as the genotype and coverage. In the final 
report, for each variant reported in at least one sample-case, 
aggregate values computed on the sample cohort are available, e.g. 
variant frequency, heterozygosity/homozygosity rates. 
 

• Variant functional predictions: PolyPhen-2 and MutationTaster (see 
2.5.2) are run in order to assess the variant pathogenicity of the 
resulting variants. A predefined Java class (PredictionTools, see 
Figure 25)has been coded in order to run variant predictions by 
directly making requests over HTTP (POST method) to the 
correspondent web services, using the Apache commons 
HttpClient[156] libraries. Data are first processed in order to respect 
the requested format (e.g. mRNA transcript conversions), sent over 
HTTP to the web services and retrieved using HTTP GET method. 
Results are saved into the database and linked to the Mutation table: 
in fact, only those variants lacking a stored prediction follow this 
procedure. Java classes in multithread mode have been coded in 
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order to run requests in a parallel fashion and speed up the retrieval 
of prediction results (seeFigure 25 andPredictionsRunnable.java 
inAppendixA.2). 
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Figure 28.RDBVMS - Data Retrieval Workflow by web interface 
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The final report consists in a list of genomic variants extracted from the 
database and enriched by the aforementioned data. Each row is univocally 
identified by the sample code, variant coordinates and the mRNA transcript 
to which it overlaps. The report can be exported as a tab-delimited text file 
along with genomic annotations and variant frequencies on dbSNP, ESP 
and the control cohort. Finally, the exported file can be optionally 
processed in order to aggregate sample genotypes on variants, resulting in a 
multi-sample variant file, easy to be managed and further analyzed by a 
spreadsheet software such as Microsoft Excel (see Figure 28). 

3.1.4. Results and Discussion 

The developed RDBVMS has been used to perform several case-control 
studies by extracting the related filtered list of genomic variants. This 
procedure allowed the researchers to test their hypothesis on the basis of 
the annotated variants in the final report. In particular, the genetic causes of 
different rare and complex diseases have been exploited starting from the 
RDBVMS output. Some successful case studies have been reported in 
Chapter 5.   

 
The system allowed to store genomic variant data of 437 sequenced 

samples divided between whole-exome (123) and gene-panel applications 
(314).A total of 33,799,523 genomic variants have been collected along 
with data on genotypes and metrics for each sample. Figure 29reports row 
counts for each main table of the database respect to the schema in Figure 
23. 
 

 
 

Figure 29.RDBVMS - Row counts for each genomic-variant related table 
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In terms of memory, the database occupies 293GB on hard disk drive and it 
has been configured within both the presentation and business tiers on a 
single workstation with an Intel i3 CPU and 4GB RAM. 
The system, in fact, has been originally developed in order to be light in 
terms of CPU and RAM consuming, by limiting the number of processes to 
be managed in multi-threading mode both during data import and data 
retrieval. 
 

Despite the efficacy showed by the RDBVMS to give reliable results in 
terms of variant annotation and retrieval, the system drawbacks rely on 
performances in terms of computational times and flexibility. Actually, the 
system imports, in average, a single sample variant in 88.6 ms: considering 
that a whole exome sample holds up to 60K raw genomic variants, that is 
without applying any filter, the system needs, in average, about 1 hour to 
import an entire whole exome variant set as well as to retrieve its filtered 
controls-matched genomic variants with the actual data amount on the 
database. 
For flexibility we refer, in our case, to the capacity of the system to adapt 
data and data structure to a changeable environment in terms of data 
updates and new requisites, respectively. Public genomic data are in 
continuous evolution and for certain databases (such as UCSC genome 
browser) updates are done daily. New insights on genomic variants, genes 
and diseases come up at an impressive rate, especially nowadays, with high 
throughput technologies widespread all over the world. Therefore it is not 
uncommon that researchers ask for the most update genomic variant 
annotations in order to increase their power in discovery and check the 
existing literature for newly disease-related genes and variants. 
The developed RDBVMS is not much flexible in this sense, thus its 
genomic data sources and the elaborated genomic variant annotations are 
integrated into the database itself (e.g. the Mutation table). Therefore, 
efforts are needed to update the database and to maintain data consistency; 
moreover, the insertion of new data fields is challenging due to the intrinsic 
rigidity of the relational database schema. 
Another limitation of the developed system is the lack of phenotype data 
related to the individuals to which the samples belong. While managing 
case-control studies can be relatively easy in family-based approaches 
where only few samples have to be analyzed and the presence of few 
individuals can allow to manually select samples to be included in the 
analysis, it is not the case with large sample cohorts, where a selection 
criteria based on a standardized phenotype terminology would be strategic.     
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3.2. A NoSQL Database for Genomic Variants and 

Annotations 

The knowhow on genomic data annotation and integration acquired 
during the RDBVMS development, joined with the experienced issues with 
its use, the development of efficient genomic annotation algorithms [97, 
157] and the spread of a new generation of flexible databases, leaded us to 
a radical change of strategy in genomic variant management. 
We developed, therefore, a new VMS with the main goal of high 
performances in terms of computational time, flexibility of the data 
structure and, last but not least, the integration of phenotype and genotype 
data. 
The newly VMS consists of different interacting modules (see Figure 30). 
 

• The genomic annotator. We chose ANNOVAR (see 2.4.3.2) to 
annotate genomic variants coming from VCF files. 

 
• The genomic variants database. We chose CouchDB [158], a 

NoSQL database that allows for data structure flexibility. 
 

• The phenotype database. We chose i2b2 platform[4, 159] in order to 
query patients phenotype data and in the meanwhile to interface 
with genomic variants database. 

 
Briefly, genomic variants in VCF format are first processed by ANNOVAR 
and, subsequently, a plain text file with variants and genomic annotations is 
produced. The file is further processed in order to be imported into the 
CouchDB NoSQL database, where genomic variants are stored as 
documents within all relative annotations. An ad-hoc i2b2 software module 
has been developed in order to communicate both with CouchDB and the 
i2b2 core. Moreover another plugin has been developed to provide an 
interface to build genotype query on a selected cohort of patients (see 
Figure 30).   
 
My contribution to this project has been limited to the conception of the 
idea, the design of the software and the genomic data annotation. 
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Figure 30.NoSQL-VMS + i2b2 workflow overview  

3.2.1. NoSQL databases 

NoSQL stands for “Not only SQL” and it is a movement (begun early 
2009) promoting a new generation of open-source databases especially 
suited for Big Data and therefore used by big companies, such as Google, 
Amazon, Facebook and many others, to manage their overwhelming 
amount of data. NoSQL solutions are all characterized by the following 
peculiarities: 

 



Sequencing data management 

 

 69

• non-relational: a NoSQL database is not based on the 
traditional structure of data tables where all the related fields 
(columns) is constrained to a specific type and, in the 
meanwhile, tables have to be normalized in order to reduce data 
duplication. NoSQL database tends to be schema-less or to 
adopt semi-structured schema, allowing data duplication and 
heterogeneity. 
 

• distributed: NoSQL databases are designed to workon 
distributed environments. Therefore, the database does not rely 
on a single machine, but conversely, it holds data duplicates 
and/or replicates among a net of interconnected machines (or 
nodes) in a cluster environment. 

 

• horizontally scalable: relational databases scale “vertically”, by 
adding hardware resources to the high performance server when 
needed. Conversely, NoSQL scales “horizontally”, by adding a 
new node in the distributed database and with no impact ondata 
availability. 

 

• BASE: differently from relational database, adopting the ACID 
(Atomicity, Consistency, Isolation, Durability) set of properties 
in transactions, NoSQL database are Basically Available, Soft 
state and Eventually consistent (BASE) in order to achieve 
much higher performance and scalability with the tradeoff of 
consistency, guaranteed only with a reasonable delay. 

 

In the last years many NoSQL databases (about 150) have been 
developed[160], each one with its peculiarities, but generally classifiable 
under several categories. Among them: 

 
• Document store: the principal component is the “document”, an 

object that encapsulates data in some standard format (e.g. 
XML, YAML, JSON). Two examples: CouchDB, MongoDB. 
 

• Column store: basing on rows and columns with limited 
constrains, their scalability model is splitting both rows and 
columns over multiple nodes. Rows are similar to documents 
and can be collected into groups (table or families). Two 
examples: HBase, Cassandra. 
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• Key Value/Tuble store: based on data dictionary, where to each 
unique and indexed key is associated only one value, typically 
consisting of a collection of elements (bins)[161]. Two 
examples: DynamoDB, Riak. 

 

• Graph database: based on graph models, data consist of nodes 
and relationship between nodes. Data are not queried but 
“navigated” along the graph in order to match data queries. 
Two examples: OrientDB, Neo4j.  

3.2.1.1. CouchDBOverview 

CouchDB [158] is an open source Apache project since 2008. Written in 
Erlang [162], is a NoSQL document-based database, using JavaScript 
Object Notation (JSON) as the standard format for documents, a RESTful 
programming interface and Javascript as the query language combined to 
the MapReduce paradigm. 

 
JSON is an open standard format used to transmit data objects consisting 

of attribute-value pairs. A value can be one of the traditional data type 
(number, Boolean) or an object such as a String, an array or another 
document. 
In CouchDB, a univocal id must be assigned to each JSON document. 
Generally the best choice is to use the ones generated by CouchDB itself, 
that is the Universally (or Globally) Unique Identifier (UUID) consisting in 
randomly assigned numbers with a low collision probability. Hereby an 
example of JSON document is reported. 

{ 
  "couchdb": "Welcome", 
  "uuid": "dca7f93eb1b5d7998ac468a002bcde44", 
  "version": "1.6.1", 
  "vendor": { 
    "version": "1.6.1", 
    "name": "The Apache Software Foundation" 
  } 
} 

CouchDB items are associated to a Uniform Resource Identifier (URI) 
accessible via HTTP. CRUD operations on the database are performed 
using a RESTful API, therefore all HTTP methods (POST, GET, PUT, 
DELETE) can be used. This allows using programming languages such as 
cURL to interact with CouchDB, but also REST clients are available for 
many coding languages such as Java, Python and Ruby. 
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The simplest query to CouchDB is to request a single document by its 
UUID and associated URI. E.g. to request by cURL the previous document 
stored into the “couch” database accessible at localhost on 5984 port: 

curl –X GET 
http://localhost:5984/couch/dca7f93eb1b5d7998ac468a 002bc
de44 

and the relative JSON file is sent back to client. However it assumes to 
know exactly the document id; therefore it would be impractical to use. 
Documents in CouchDB can be organized into groups, called “views”. A 
view is designed by JavaScript to specify attribute-value constraints 
corresponding to the query requirement and by implementing the map and 
reduce functions in the MapReduce style. Map functions are called once on 
each document: the document can be skipped (if it does not respect the 
constrain) or can be transformed (emit) into one or more view rows as 
key/value pairs. All the constraints of the map functions have to refer 
exclusively to the document attributes. View rows are indexed, that is 
inserted into a B-tree storage engine and sorted by key: to look up by key 
or key range is therefore extremely efficient, performing in logarithmic 
time. E.g. to create a view of CouchDB documents respecting the previous 
example format, one can code a map function on the document “version” 
attribute by the following JavaScript lines: 

function(doc) { 
  var version; 
  if(doc.version){ 
  version= doc.version; 
  } 
  emit(version,null); 
} 

The map function takes the document as the argument and emits the view 
row for each document consisting in the version as the key and a null value 
in this case. The document UUID comes by default with the key-value pair 
and a name has to be assigned to the view (e.g. versionView), which rows 
will be sorted by version values, ready to be queried. Note that keys can be 
a combination of two or more document attributes, resulting in sorted view 
rows following the order of attributes-values established into the emit 
function. Once the view has been created one can modify it by accessing to 
its design document (a JSON file as well), modify the JavaScript code 
corresponding to the view and re-upload it to CouchDB, resulting in the 
view re-computation. For example, one can retrieve every raw of the 
versionView, saved into the “versionD” design document, by the following 
command:   
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curl –X GET 
http://localhost:5984/couch/_design/versionD/_view/ versi
onView 

and a JSON document containing the list of documents UUIDs with 
associated key-values are sent back to the client. To query the view for a 
certain value, instead, should be passed an additional parameter, e.g. 
adding to the URI the “?key=(value)” string:  

curl –X GET 
http://localhost:5984/couch/_design/versionD/_view/ versi
onView?key=”1.6.1” 

and only documents respecting this constraint are sent back. 
Range queries, by using the “?startkey=(valueStart)&endkey=(valueEnd)” 
format are supported as well. 
 
Reduce functions can be optionally used in combination with map 
functions in order to report data aggregates grouping by row keys (it 
navigates the relative B-tree), such as counting the number of rows within a 
viewor to calculate averages on related values. Hereby the reduce function 
reporting the number of view rows:  

function(keys,values) { 
  return(values.length) 
} 

If combined with the map function of the previous example, the following 
query  

curl –X GET 
http://localhost:5984/couch/_design/versionD/_view/ versi
onView?startkey=”1.6.1”&endkey=”1.6.2” 

reports the number of documents having version between 1.6.1 and 1.6.2. 
Because map functions are applied to each document in isolation, 
computation can be high parallelized within and across nodes where the 
database is distributed. 

3.2.2. The i2b2 Platform 

Informatics for Integrating Biology and Beside (i2b2) is an NIH-funded 
National Center for Biomedical Computing based at Partners HealthCare 
System in Boston, MA USA. 
The i2b2 Center effort has been focused on developing an open source 
scalable informatics framework designed to bridge clinical research data 
and the data bases arising from basic research (such as genomics):in such 
way the understanding of genetics underlie diseases and the design of 
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targeted therapies for individual patients would be speeded up by a solid, 
fast and easy query able integrated data resource. 
The i2b2 platform nowadays is used worldwide in many hospitals and it is 
supported by an active developers community as well. 
 
Built on multiple (hive)server-side software modules (cells) that 
communicate through their integrated XML-based web services (see Figure 
31), the i2b2 platform consists of several core and optional cells. Each cell 
either hold data or business tier. For the purpose of this thesis, only two 
i2b2 core cells are briefly discussed below. 
 

 
 

Figure 31.i2b2 Hive and accessory modules 

 
The  Clinical Research Chart (CRC) is the i2b2 cell through which clinical 
data of patients are accessed and relies on a “star schema” data warehouse 
[163] with a central “fact” table representing observations about patients, 
recorded by a specific observer regarding a specific concept (e.g. a lab test 
outcome or a reported phenotype) [164]. The concepts are coded and can be 
related to heterogeneous data. In other words, a concept is represented as a 
row rather than a column into the data model, following the entity-
attribute-value (EAV) model [165]. Because concepts of all patients are 
stored into the fact table, indexing on the latter results into efficient cross-
patients queries. 
 
The Ontology Management (ONT) cell manages i2b2 vocabulary 
definitions (ontologies) and contains information about relationships 
between concepts for the entire hive. The controlled vocabulary holds 
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categories organized as a hierarchical structure with relationships between 
terms. The other i2b2 cells accesses to the ONT in order to give semantic 
meaning to the data, e.g. the CRC associates each row of the main fact 
table to an ontology term in order to support data retrieval through the 
ONT. 
 
The i2b2 web client (see Figure 32) allows performing ad hoc queries in 
order to find patient set respecting constraints based on ontology terms. 
The ontology is represented as a tree structure and its terms can be dragged 
and dropped to the query tool. The latter implements a Venn-diagram-like 
logic: terms into the same panel are OR’d together, conversely, terms in 
different panels are logically AND’d. When query is executed, web client 
send the request to the CRC and query results are shown into the Query 
History panel. The query result is the patient set corresponding to defined 
constraints and can be filtered again (by dragging it from the Query History 
panel to the Query Tool again) or passed to i2b2 plug-ins for further 
analysis. Plug-ins are software modules, accessible by the i2b2 Analysis 
Tool web client interface, especially dedicated to analysis methods. 
 

 
 

Figure 32.i2b2 web client 

3.2.3. Data Annotation 

ANNOVAR, described previously in the thesis, has been chosen for its 
portability and performances in computational time.  

Annotation procedure, as well as the other steps, has been implemented 
by creating a Java application able to manage the events flow. 
First VCF files are converted to the ANNOVAR format and subsequently 
the annotation step is launched by using the table_annovar Perl script 
which requires several input parameters in order to tune data output format 
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(CSV files) and annotation steps. ANNOVAR uses genomic indexed files 
within the pointed resource path where it expects to find the mapped 
resource files within its scripts: the resource path is passed as an input. 
Figure 33depicts the simplified UML class diagram of the Java application 
that manages the annotation step. 
 

 
 

Figure 33.Simplified UML class diagram of the Java application that manages annotation and 

import steps. (1) Annotation: PopulateCouch class calls VCF2Annovar methods to both convert the 

VCF file into the ANNOVAR format and run the annotation script table_annovar wrapped into the 

TableAnnovar class. (2) Import: PopulateCouch class call  NGS_Element methods to parse the 

ANNOVAR output, generate the JSON files and load them into the database. The Mutation and 

Environment classes hold the attributes of the JSON documents (partially showed).  

 
In order to speed up the overall process, VCF files are split in batches, 
running an ANNOVAR instances for each. The import step follows the 
same schema. This procedure has been implemented in the Amazon 
AWSCloud [166] allowing the use of different virtual machines (EC2 
instances)running in a parallel fashion (seeFigure 34). 
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Figure 34.The import within annotation steps to CouchDB database. Orange squares represents 

EC2 Amazon instances. 

3.2.4. Data Import 

In order to be imported in CouchDB, first data have to be converted in 
JSON format. In the import step, each row of the annotated variant file 
(ANNOVAR output) is therefore transformed into a JSON having 
predefined attributes (see Table 4) and identified by an UUID. Data are 
sent to CouchDB database through the Java application that makes use of 
the LightCouch Java API [167] to convert the Java objects into CouchDB 
REST methods.  

 
 
Field Name Type Description 

chr String Chromosome  

ref String Reference 

obs String Variant 

function String Variant function 

refGenome String Genome assembly 

start Integer Mutation start position 

end Integer Mutation end position 

gene name String Gene symbol (refSeq)  

segDup Double Sequence identity score for the 
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segmental duplication region 
where variant is located in 

AVSIFT Double Whole-exome SIFT scores for 
non-synonymous variants 

exonicFunc String Exonic variant function 

exonic_hgvs_transcript String Variant in hgvs format on 
transcript  

exonic_hgvs_protein String Variant in hgvs format on 
protein 

exonic_exon Integer Exon number where variant is 
located in   

gt String Genotype  

vcf line String Original VCF line  

1kgp_freq Double Variant frequency for 1KGP 

1kgp_version String 1KGP version 

dbSNP_id String dbSNP identification id 

dbSNP_version String dbSNP version 

dbESP_freq Double Variant frequency for ESP 

dbESP_version String ESP version 

dbClinVar String ClinVar accession number 

dbClinVar_version String ClinVar version 

LJB_phyloP_score Double Evolutionary conservational 
score by phyloP  

LJB_SIFT_score Double SIFT scores for non-
synonymous variants 

LJB_PolyPhen2_HDIV_score Double PolyPhen2 scores for non-
synonymous variants (hdiv 
model) 

LJB_PolyPhen2_HDIV_pred String PolyPhen2 class for non-
synonymous variants (hdiv 
model) 

LJB_mutationTaster_score Double MutationTaster scores for non-
synonymous variants 

LJB_mutationTaster_pred String MutationTaster class for non-
synonymous variants 

LJB_GERP Double Evolutionary conservational 
score by GERP 

LJB_PolyPhen2_HVAR_score Double PolyPhen2 scores for non-
synonymous variants (hvar 
model) 

LJB_PolyPhen2_HVAR_pred String PolyPhen2 class for non-
synonymous variants (hvar 
model) 

LJB_mutationAssessor_score Double MutationAssessor scores for 
non-synonymous variants  
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LJB_mutationAssessor_pred String MutationAssessor class for 
non-synonymous variants 

LJB_fathm_score Double FATHM scores for non-
synonymous variants 

LJB_siPhy_score Double Evolutionary conservational 
score by Siphy 

LJB_ LRT_score Double LRT scores for non-
synonymous variants 

LJB_LRT_pred String LRT class for non-
synonymous variants 

LJB_version String dbNSFP version 
 

Table 4.Genomic variant attributes stored in CouchDB 

 
Along with genomic variants, an identification sample code has to be 

inserted into the JSON as well, corresponding to the i2b2 patient code: 
generally, sample codes are within the VCF file. Actually, both single and 
multi-sample VCF files are supported. 
 
Together to JSON files (one for each sample-variant), designsdocuments 
defining views are imported into CouchDB as well. We previously 
described how CouchDB stores data, and how queries are pre-computed as 
lists of key-values pointing documents by the map and reduce functions 
resulting in views. In our case we chose to pre-compute views for each 
JSON attribute(i.e. genomic annotation) in order to have lists of documents 
grouped and indexed (B-tree storage engine) by the corresponding values.  
The rationale is that the user can choose the desired combination of 
annotation fields to filter patients’ genomic variants. The logical AND/OR 
operations are managed by the application software that communicates with 
CouchDB and works on UUIDS of the returned lists of documents. 

3.2.4.1. A View for Fast Genomic Interval Queries 

One of the most useful and stressed query in Genomics consists in 
retrieve the genomic features overlapping a given chromosome interval. In 
section 2.4.1.1 we have showed how the UCSC Genome Browser binning 
scheme allows combining pre-defined genomic regions (bins) as attributes 
of the genomic features and B-tree indexes to guarantee a fast retrieval by 
range queries. 

We wanted to replicate a similar approach in CouchDB, enabling  
genomic interval queries across all the stored genomic sample variants. 
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Each chromosome has been divided into a predefined set of hierarchical 
bins (tree) depending on the specific chromosome length. The value 0 or 1 
has been assigned to each bin, depending on being the left or right child bin 
within the tree, respectively (with the exception of the root bin, coded by 
0). The ordered combination of 0s and 1s is then assigned to each genomic 
features, thus allowing navigating the binning tree from the root to the 
smallest bin entirely containing the genomic feature. In Figure 35, for 
example, for the genomic feature A, the smallest containing bin is the one 
reached by navigating the tree in the following way (red numbers): 
0,0,1,0,0. Feature B, instead, is contained into the 0,1 bin and despite it 
could be contained, giving its dimension, into a smaller bin, it overlaps to 
lower level bin borders, therefore it is assigned to the higher level one. 
 

 
 

Figure 35.Binning scheme representation implemented in CouchDB 

 
The smallest bin containing each genomic variant is computed, giving its 
genomic coordinates, and stored as an attribute in the JSON file as an array 
of 0s and 1s. 
It is therefore possible to write a map function in CouchDB to pre-compute 
a view having as row keys the following elements in this order: sample, 
chromosome and bin. CouchDB will store the sorted keys into the B-tree 
for the logarithmic search.  
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Given an interval query, the smallest containing bin is calculated and range 
queries on the created view retrieve all the genomic features mapping on 
the computed bin and its pre-calculated overlapping ones. For example, in 
Figure 35 the interval query Q is entirely contained into the 0,0,1 bin. We 
can pre-calculate the search space consisting of the overlapping bins both 
for the upper part of the binning tree (parent bins) and those in the lower 
one (child bins). The view is therefore searched for the genomic features 
(documents associated to the view keys) within these bins.  
Actually, this query would give back genomic features overlapping to the 
search binning space, but not necessarily to the interval search of interest 
(that is a sub-segment of its smallest containing bin). For example, as 
reported in Figure 35, the result of the query Q would report also the 
unwanted genomic feature U: in fact, despite it overlaps to one of the 
searched bin, it does not overlap to Q. Therefore other two queries (views) 
are performed in order to remove the non-overlapping elements: the first 
add the start position of the genomic feature to the view keys (sample, 
chromosome, bin, start)while the second add the stop position. In the 
showed example, genomic feature U would be removed from the query 
result set because its start position is greater than Q stop one.  

3.2.5. Data Retrieval 

In order to build, perform and show query results, two software 
components have been developed and integrated into the i2b2 framework: 
an i2b2 cell, called NoSQL-NGS, and an i2b2 plug-in, called BigQ-NGS. 
 
Figure 36 shows the overall system and the aforementioned interacting 
components. 
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Figure 36.System overview showing interacting components, from data import to data query. 

 
First, the user, thanks to the i2b2 webclient, performs a query on the i2b2 
CRC by setting constraints on Ontology terms and using the Query Tool 
(see 3.2.2). Once the patient cohort has been retrieved, the user selects the 
BigQ-NGS plug-in and builds up the query in the Plugin Viewer, basing on 
available genomic data annotations respect to the selected patient cohort. 
The BigQ-NGS plugin interface is based on visual programming (mxGraph 
Javascript libraries [168]) and the user can graphically build queries with 
drag and drop interactions. Genomic annotation features are represented as 
graphical blocks and can be linked together in order to create the filtering 
procedure used to query genomic variants: AND and OR operations are 
implemented by linking blocks in series and in parallel, respectively. 
Referring to Figure 37, query is made up by the following operations: (1) 
the user drags and drops blocks inside the plugin’s workspace. Blocks are 
connected to each other to define the query. (2) The patient set is dragged 
and dropped on the Patient Result Set Drop (PRS Drop) block. (3) each 
query block (in yellow) holds parameters to set query logic and attribute 
value constraints. (4) when run, each block executes its query sequentially, 
calling the NoSQL-NGS cell. (5) when all blocks have performed their 
query, the user can visualize the results by double-clicking the Patient 
Result Set Table (PRS Table) block, consisting, in the reported example, of 
patient codes having at least one genomic variant matching the query. 
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Figure 37.The BigQ-NGS plug-in with user interactions highlighted. 

 
The i2b2 cell has been developed to communicate with CouchDB and 
execute queries on genomic variants passed by the BigQ-NGS plug-in. The 
i2b2 cell has been written in Java and uses LightCouch API as well as the 
import application. 



Sequencing data management 

 

 83

Each block of the BigQ-NGS plugin performs a query to the NoSQL-NGS 
cell by sending it an i2b2 XML-based message. The cell extracts all 
parameters required to run the query: 
 

• dataIn: the basic object exchanged between the plug-in and the cell 
consisting in a set of documents UUIDs grouped by patient code 
 

• query logic: two mutually exclusively operations are allowed, add 
and filter. The first represents the operation of union, therefore if 
add is chosen, the UUIDs returned by the CouchDB are added to 
dataIn and sent back in the cell response to the plug-in; the second 
in an intersection operation; therefore when filter is chosen, only the 
UUIDs belonging to both sets are returned. 

 
• query type: that identifies the variant fields (see Table 1) on which 

the query should be executed. Examples of allowed query types are: 
gene for gene names, exonicFunc for exonic functions and 
PolyPhenScore for LJB PolyPhen2 score. 
 

• query details:the set of values required to perform the specific type 
of query. For example: the list of gene names for the gene query 
orthe PolyPhen-2 score interval endpoints for the PolyPhen query. 

 
Once these parameters are extracted, the NoSQL-NGS cell accesses the 
CouchDB view associated with the specific query type according to the 
query details; this operation is performed for each patient in the dataIn set.  
Results from database, consisting in a new set of UUIDs (genomic variants) 
grouped by patient, are combined with dataIn according to the query logic 
(add or filter) to build the output of the cell, called dataOut. 
Finally, the NoSQL-NGS cell builds the response XML message encoding 
the dataOut object and sends it back to the client. 

3.2.6. Results and Discussion 

To test our approach for integrating genetic queries within the i2b2 
framework, we have performed a “stress test” on the system by submitting 
increasingly large Whole Exome Sequencing (WES) datasets on which we 
performed the same two queries: a simple one (retrieving patients with a 
given variant in dbSNP) and a more structured one (querying by the 
combination of a given gene name, exonic functions values and PolyPhen2 
score). For each test we have measured the size (in GB) of the database 
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with its views, and the average time necessary to run the two queries in 
particular (see Table 5). 
 

All tests were performed on a single AWS EC2machine: in particular we 
have used a c3.2xlarge machine[169], a medium-high level server with 8 
virtual CPUs and 15GB of memory. Regarding import phase (ANNOVAR 
+ JSON conversion),which is the most computational demanding one, we 
used 6 m1.large EC2 machines. 

 
WES data were retrieved from the 1000 Genomes Project phase1 

integrated release[170]. We have tested our system on sets containing 
variants coming from 10, 20, 50, 100, 200 and 500 exomes. The average 
number of variants of the sequenced exomes, and thereby of the JSON 
documents added to the database for each case, is about 23,000. 
A single exome, in average, has been imported in about 4 minutes and 50 
seconds, i.e. less than 13 ms per single genomic variant. 

 
The first query aimed at extracting those patients having a particular 

mutation (rs1805009) associated with red hair and poor tanning 
ability[171]. The goal of the second query was to identify patients that have 
nonsense or probably damaging (according to PolyPhen2) missense 
mutation in the DCP1B gene, which is known to be related to pancreatic 
cancer[172]. 

 
Table 5 and Figure 38show the results obtained, indicating that the query 

time is independent of the size of the database in the case of the simple 
query 1, while it linearly scales with the size of the database in query 2. It 
is interesting to note that, with the proposed computational infrastructure, 
the query time is almost instantaneous for the user in the case of query 1 
(about 0.06 seconds), while the time to query 500 genomes and more than 
11 million variants is only about 34 seconds. 

 
 

# Exomes Size (GB) Tquery1 (ms) Tquery2 (ms) 
10 1,1 669 3440,2 
20 2,5 678,8 3647,2 
50 7,9 554,4 6462 
100 19 680,4 9753,2 
200 48 691 15595,8 
500 160 678,4 34836,8 

 

Table 5.Results obtained on sets containing variants coming from 10, 20, 50, 100, 200 and 500 

exomes. 
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Figure 38.Results obtained on sets containing variants coming from 10, 20, 50, 100, 200 and 500 

exomes. 

 
Combining NoSQL document database and the i2b2 platform holds all 

the premises to be a winning strategy both in the management of genomic 
annotated variants and in being the ideal knowledge data source to exploit 
new correlations between patients phenotypes and genotypes. 

The system has been conceived to deal with variants of unknown clinical 
meaning. For this reason, the data model is flexible, and reflects the 
contents of ANNOVAR documents; the database can thus be easily updated 
with new versions of the variant annotations. In fact, because of the high 
performances showed, it results more practical to re-annotate and re-import 
all genomic sample variants, even if a single genomic annotation field had 
to be updated or added, rather than try to update JSON documents for a 
single or few attributes. Moreover, the computational time during import 
phase can be further reduced by horizontally scaling: being genomic 
variants treated independently both by annotation and importing including 
view pre-computation (at least for map functions), parallelization is 
straightforward. 
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Indeed, the query system has very promising performance, showing to 
scale well with the database volume, making it feasible to jointly query 
clinical and genetic data. We note that the choice of CouchDB allows 
naturally relying on cloud-based implementations on elastic clusters, such 
as the BigCouch system [173].  

In the future would be interesting to compare our implementation to 
other state of the art extensions of i2b2 and TRANSMART[174]developed 
to deal with NGS data. 
Finally, several pending points have still to be addressed in order to 
complete the whole picture: 
 

• Update process (versioning): any document change in CouchDB is 
tracked by the intrinsic document versioning, which is an 
additional default attribute to the JSON. Imagine that the new 
version of a genomic database of interest comes up and we would 
desire to update JSON documents for it. To completely re-
annotate every variant into the database for every annotation field 
is the most practicable solution. Two ways may be followed in 
order to track data updates: relies on CouchDB versioning by 
updating the same document; create new documents with an 
updated and custom version number as JSON attribute. The latter 
would result in a duplication of the total number of documents in 
the database for each update and in the inclusion of the versioning 
attribute within each view (queries should point, by default, to the 
last update version). Nonetheless, this should be straightforward 
to implement. The second would use CouchDB versioning system, 
but is expected to be more difficult, because it requires tracking 
the JSON UUID during re-annotation process in order to be able 
to associate the very same re-annotated genomic variant to the 
original document.     
 

• Controls cohort with aggregate results: right now there is no 
possibility yet to perform a case control matching at genomic 
variant level as we have seen in the RDBVMS. Reduce functions 
in CouchDB allows us to aggregate data such as averages on 
views etc. but to pre-compute all the possible combination of 
patient cohorts to be used as controls would results in a 
combinatorial explosion; therefore, these kinds of data 
aggregations need necessarily to be performed on the fly. We can 
therefore imagine to have a Patient Result Set Drop block for a 
patient controls cohort as well, whose genomic variants follow the 
same filtering procedure of the patient case cohort: each document 
resulting from the final list of the case cohort would be searched 
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within a view given by a map function emitting (sample, 
chromosome, start, stop, ref, obs), which univocally identifies a 
genomic sample variant, and where sample is set for each sample 
of the controls cohort. 

 
• Patient code mapping: VCF provides the patient code coming 

from the sequencing analysis pipeline. Within the presented 
performed tests, the i2b2 and the VCF codes were the same. 
However, we expect this correspondence to lack in the major part 
of cases; therefore an internal mapping between VCF patient 
codes and i2b2 ones should be present and converted codes should 
be passed to the BigQ-NGS plugin.  

 
• Plug-in enhanced functionalities: BigQ-NGS plugin could be 

improved by adding new features such as :i) the possibility to save 
the performed queries, ii) an expanded genomic annotation 
attributes set through which query variants, iii) the possibility to 
build query exploiting external resources (such as list of genes 
coming from an user file or specific pathway-related gene list 
coming from KEGG database).   
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Chapter 4 

4 Sequencing data interpretation 

In this Chapter a new algorithm for the prediction of genomic variants 
pathogenicity is presented.  
In 2.5.2 and Chapter 3 we have discussed the variant prediction tools 
principles and how their results are utilized as genomic annotation in order 
to prioritize variants according to their prediction and score. 
Hereby we present PaPI, our developed algorithm that makes use of pseudo 
amino acid composition to score human-protein coding variants. 
 
The Chapter is based on the following paper, at the moment under review: 
 
Limongelli I, Marini S, Bellazzi R, PaPI: pseudo amino acid composition to 
score human protein-coding variants. BMC Bioinformatics, under review. 

4.1. Variant prediction by pseudo amino acid 

composition: PaPI 

PaPI is a new machine-learning approach to classify and score human 
coding variants by estimating the probability to damage their protein-
related function. The novelty of this approach consists in using pseudo 
amino acid composition through which wild and mutated protein sequences 
are represented in a discrete model. A machine learning classifier has been 
trained on a set of known deleterious and benign coding variants with the 
aim to score unobserved variants by taking into account hidden sequence 
patterns in human genome potentially leading to diseases. We show how 
the combination of amphiphilic pseudo amino acid composition, 
evolutionary conservation and homologous proteins based methods 
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outperforms several prediction algorithms and it is also able to score 
complex variants such as deletions, insertions and indels.  

A freely available web application (http://papi.unipv.it) has been 
developed with the presented method, able to score up to thousands 
variants in a single run. 

4.2. Background and Rationale 

Variant predictors are generally based on four different approaches: 
multiple sequence alignment (MSA) methods of homologous proteins[125, 
175]such as SIFT [8], protein structure information such as PolyPhen2[2], 
comparative evolutionary data[128-130]and structural or sequence pattern 
encoding[176]. Since each algorithm has some limitations, one approach to 
detect a deleterious variant consists of testing several independent methods 
and checking if at least one assesses its pathogenicity[177, 178]. This 
strategy has high sensitivity, but poor specificity, thus leading to low 
accuracy. Therefore, a number of algorithms that combine the outputs of 
several predictors and optimize accuracy on known variant sets have been 
developed[179-181].Moreover, methods that use prior knowledge (e.g. 
Human Phenotype Ontology, Gene Ontology) in combination with 
functional predictions in order to rank variants on the basis of a given 
phenotype[112, 118]have been successfully implemented, as well. 

In this scenario, due to the importance of having more accurate and 
exhaustive variant functional predictors, we developed a new phenotype-
free method based on pseudo amino acid composition (PseAAC)[6] and 
evolutionary conservation in combination with other two well-established 
and commonly-used approaches (PolyPhen2 and SIFT). We believe that 
our approach may provide a valuable addition to the worldwide research 
efforts devoted to predicting the role of uncharacterized variants. 
PseAAC is a feature encoding method allowing both compositional and 
positional amino acid pattern representation of peptide primary sequence in 
a discrete model. Given a peptide sequence, PseAAC is computed by 
modeling pairwise relationships between amino acids using residues 
chemical properties. In particular, we used amphiphilic PseAAC, based on 
normalized hydrophobicity and hydrophilicity: the arrangement of these 
two indices along a protein chain play an important role in protein folding, 
catalytic mechanism and protein interaction with other molecules and 
environment[182].For example, hydrophobicity is often a major contributor 
of binding affinity between a protein and its ligand[183], hydrophilic 
residues such as Arg, Asp, Lys, and Glu have the highest protein-surface 
frequencies[184], and  intrinsically disordered regions (IDRs) usually have 
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few large hydrophobic residues but favor polar and charged amino 
acids[185]. 
Previous studies[186, 187]analyzed human coding variants in terms of 
amino acid substitution both in disease and natural background variant 
datasets, such as Human Gene Mutation Database [188] and 1000 Genomes 
Project (1TGP). Such studies showed that disease-associated variant 
distributions are radically different from neutral amino acid ones and that 
disease-associated variants exhibit more extreme differences in terms of 
physicochemical properties such as amino acid volume, charge and 
hydrophobicity. 
We therefore coupled hydrophobicity and hydrophilicity PseAAC feature 
encoding with machine learning to develop a model able to learn pseudo 
amino acid composition substitution patterns following coding variants that 
can alter protein function and/or structure, leading to disease. 
The difference in terms of PseAAC between wild and mutated protein 
sequences together with evolutionary conservation scores of the altered 
bases have been used as features to train a Random Forest (RF)[7]with the 
aim to score coding variants into protein-damaging or tolerated class. Since 
PseAACs model amino acid relationships in terms of hydrophobicity and 
hydrophilicity arrangements within the wild and mutated sequences, RF is 
supposed to learn from substitution patterns occurring at amino acid 
composition level in terms of frequency and order. A variant is therefore 
implicitly evaluated within its sequence context. 
We finally combined the RF output with PolyPhen2 and SIFT by a voting 
strategy. Despite the advantages of combining PolyPhen2 and SIFT have 
been previously reported[181], we show the RF inclusion is able to further 
increase prediction performances. 

 
The overall algorithm, called PaPI, provides predictions even for those 

variants that the other tools cannot process (e.g. because of lack of data) 
and it is able to deal with any variant type, including single nucleotide 
variants and insertion or deletion of several nucleotides.  
While RF classifiers have been already used in Genomics, from GWAS to 
RNA-protein binding prediction [189], to our knowledge, this is the first 
time that PseAAC is applied to protein variant prediction. 

4.3. Methods 

Hereby we denote with the term indel the following variants: insertions, 
deletions, insertions followed by deletions (or vice-versa) and multi-
nucleotide variants. We refer to single nucleotide variants (SNVs) in case of 
non-synonymous single nucleotide variants that lead to a single amino acid 
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change. Finally, we denote as in-frame and frameshift indels those variants 
causing the insertion/deletion of one or more amino acids and those altering 
the open reading frame of the coding sequence, respectively. 

 
PaPI is an ensemble classifier consisting of a voting scheme that 

includes a RF classifier, PolyPhen2 and SIFT. The RF model have been 
trained on PseAAC differences of mutated and wild protein sequences, 
evolutionary conservation scores and several full-length protein attributes. 
Figure 39depicts the workflow through which a new variant is classified 
and assigned a score, representing its risk of being protein damaging. 

 

 
Figure 39.Feature encoding scheme. A genomic variant is translated into wild and mutated amino 

acid sequences. The difference in terms of PseAAC features is computed and is given as input to the 

trained RF model along with evolutionary conservation scores and several full-length protein 

attributes. PolyPhen2, SIFT and RF results are finally combined together to obtain the final PaPI 

class and score. 

4.3.1. Psuedo Amino Acid Composition 

An amino acid sequence can be represented by a set of discrete numbers 
mapping the patterns of its amino acid physico-chemical properties into a 
fixed number of features.  
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Traditional amino acid composition approach has been widely used in 
predicting protein structural class[190, 191]and it merely records amino 
acids frequencies in a protein sequence. 

PseAAC adds a number of position-related features and therefore it 
reflects both compositional and sequential order. We utilized, in particular, 
amphiphilic PseAAC, based on normalized hydrophobicity and 
hydrophilicity[182]. 

In brief, given a protein sequence P with L amino acid residues: 
 

P=A1 A2 A3 A4 A5 A6… AL 

 

it is possible to convert it into a finite set of number P 
 

P’={p1, p2, p3, p4, p5,…, p20, p20+1,…, p20+2λ} 

 
where the first 20 numbers are functions of the frequencies of the 20 amino 
acids within P and the remaining 2λ are a set of correlation factors that 
reflect different hydrophobicity and hydrophilicity distribution patterns 
along a protein chain. Correlation factors are given by coupling the most 
contiguous residues whose contiguity condition varies according the 
considered tier (see Figure 40). 
 
 

 
 

Figure 40.Amphiphilic PseAAC representation. This is a diagram shows how the correlation 

factors Hk , based on amino acid hydrophobicity (k=1) and hydrophilicity (k=2), vary in each tier 

by coupling residues at different distances. 
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The maximum number of tiers corresponds to λ. Coupling is then given by 
the hydrophobicity and hydrophilicity correlation functions. 
 

H1
i,j = h1(Ai) · h1(Aj) , H2

i,j = h2(Ai) · h2(Aj) (1) 

 
where h1(Ai) and h2(Ai) are, respectively, the hydrophobicity and 
hydrophilicity values for the ith (i=1,2,…, L) amino acid in P. Correlation 
functions are summed over each λ-tier and the 20+2λ coupling factors are 
given 
 

�� =  
���
�� ��∑ �� + � ∑ ������������ , 1 ≤ # ≤ 20���∑ �� + � ∑ ������������ , 20 + 1 ≤ # ≤ 20 + 2$ (2) 

 
 
where fi are the normalized frequencies of the possible 20 amino acids in P, 
τj is the sum of the  j-tier correlation functions and w is a weight factor. 

4.3.2. Feature Set 

The features utilized for RF and LR training can be divided into three 
groups: (a) PseAAC, (b) full-length primary sequence attributes, and (c) 
evolutionary conservation scores.  The three feature groups are described as 
follows. 

4.3.2.1. PseAAC 

Given a genomic variant overlapping a protein, we first generated the 
altered protein sequence in according to the coding frame, we then 
considered the 20 amino acid residues upstream and downstream the first 
mutated amino acid forming a snippet of 41 amino acid residues. The same 
procedure is followed in the case of the corresponding wild type protein 
sequence. Amphiphilic PseAAC is then computed by PseAAC-
builder[192]for both wild and mutated snippets. The variant-sequence 
features are finally encoded as the element-wise difference of wild and 
mutated PseAAC vectors (see Figure 41). 
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Figure 41.Example of PseAAC variant feature encoding. A genomic variant is translated into the 

relative wild and mutated amino acid sequences. PseAAC for both wild and mutated protein 

snippets are computed and the differences between each PseAAC term makes the PseAAC feature 

set. 

 
Note that even if the method allows theoretically dealing with amino acid 
sequence changes of any length, only insertions/deletions up to 20 amino 
acids (60 nucleotides) were considered for PseAAC model training. 

We chose two 20 amino acid flanking regions for two reasons. First, 
since the features are encoded by PseAAC differences, considering large 
sequence portions (e.g. the whole primary structure) could introduce noise 
and dilute the PseAAC difference information content, especially in case of 
single amino acid substitution, where both positional and composition 
change would be minimal. Second, we considered that protein short 
functional regions, such as short linear motifs, which play a pivotal role in 
protein interactions, range from 3 to 11 amino acids in length 
[193].Changes in their flanking regions could severely alter the protein 
function as well[194, 195].We therefore assumed that 20 amino acids 
constitute a reasonable window size to encompass possible short functional 
motifs and their flanking regions. 

4.3.2.2. Full Length Primary Sequence Attributes 

We included in the RF model three features related to variant position 
and protein length. First, we considered the difference and the ratio 
between mutated and wild amino acid sequence lengths. In other words, we 
measured the number of possible lost/inserted amino acids caused by the 
variant. Second, we considered the position of the variant in the amino acid 
sequence normalized by the protein length (e.g. 0.9 for a 100 amino acids 
long protein and its mutated amino acid at the 90th position). This feature 
reflects the fact that some kind of variants affecting the initial part of the 
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primary sequence may have a huge damaging potential for the whole 
protein (e.g. a stop-causing variant). 

4.3.2.3. Evolutionary Conservation Scores 

GERP++[128], PhyloP [129] and Siphy[130]were chosen because they 
apply different and complementary methods to weight nucleotide 
conservation among different species. In case of indels, the following 
policy was adopted: in case of deletion we took the highest score among 
the deleted nucleotide bases; in case of insertion we took the highest score 
between the two reference bases where insertion occurs. 

4.3.3. Data Set 

We obtained positive (damaging) variants from the HGMD (updated to 
May 2013). Variants were annotated by ANNOVAR using the RefSeq gene 
model. All non-coding variants, as well as variants reported with a 
frequency higher than 5% in the total of 1092 samples from 1TGP (April 
2012 release) were filtered out. Negative (tolerated) variants were extracted 
from the aforementioned release of 1TGP and from ESP (6500si release) 
retaining only variant at frequency higher than 0.05. Non-coding and 
synonymous variants were filtered out by ANNOVAR. Each variant was 
then processed by the PaPI annotation framework in order to build the 
relative feature set. The original variant dataset consisted of 204021 coding 
SNVs and indels, distinguished by transcript and filtered out for 
synonymous SNVs. Stratification for descriptive protein alteration to the 
primary structure unveiled a significant proportion (about 44%) of 
frameshift indels or stop-causing/disrupting variants in the damaging set in 
comparison to the tolerated one (about 3%), as reported inTable 6. 

 
 

 
1.Damaging 

(HGMD) 
2.Tolerated 

(1TGP + ESP) 

Initial variants 3.176523 4.65377 

- SYN 5.1333 6.36546 

- FR/SC/SD 7.77627 8.929 

= Final variants 9.97653 10.27902 

 

Table 6. Damaging and Tolerated variant sets. Damaging and tolerated sets after synonymous-

SNVs and frameshift, stop-causing and stop-disrupting variants removal. An instance of the data 
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set is the coding variant relative to the transcript to which overlaps. SYN = synonymous, FR = 

frameshift, SC = stop-causing, SD = stop-disrupting. 

 
One can suppose these variants should be treated as deleterious a priori: the 
proportion showed above is in accordance with this hypothesis. Including 
these variants in our data set would introduce a severe classification bias, 
due to the aforementioned disproportion. Therefore we randomly 
assembled three quasi-balanced training (70%) and test (30%) sets (see 
Table 7) without considering these types of variants for the evaluation and 
comparison steps, but we trained the final RF model (available online) on 
the whole unfiltered dataset. 
 
 

Set Training Test 

Damaging Tolerated Damaging Tolerated 

1 25291 19570 10729 8332 

2 25318 19570 10861 8332 

3 17838 13763 7616 5879 

 

Table 7.Three random variant sets. Three quasi-balanced variant sets were generated randomly 

and divided by training (70%) and test (30%) sets. 

 
Indeed, PaPI is capable to score stop-causing/disrupting and frameshift 

variants as well. The three test sets have been used to measure the 
performances of the RF and LR (see4.4).  

In order to compare RF, PolyPhen2, SIFT and PaPI (RF + PolyPhen2 + 
SIFT) on the three test sets we further filtered out the variants that 
PolyPhen2 and/or SIFT were not able to classify(see Table 8).  

 
 

Set Damaging Tolerated All 

 1 5316 5153 10469 

 2 5323 5153 10476 

 3 3763 3642 7405 
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Table 8. The three filtered variant set used to measure performances of RF, PolyPhen2, SIFT and 

PaPI. Test sets have been divided by Tolerated and Damaging set. Variants on multiple transcripts 

have been counted once. 

4.3.3.1. Preparing the comparison 

PolyPhen2, SIFT and the other predictors that have been compared to 
PaPI (see 4.4.2)only classify SNVs. Furthermore, these tools may be unable 
to provide any prediction for lack of information (e.g. when only few 
homologous sequences exist or remain after their filtering). To avoid any 
bias that could favor PaPI, we removed from the aforementioned test sets 
all the variants that other algorithms were unable to score (Table 9). 

 
 

Set Damaging Tolerated All 

 1 5189 3631 8820 

 2 5105 3631 8736 

3 3618 2553 6171 

 

Table 9.Filtered test sets. The three filtered-variant set used for comparison with PolyPhen2, SIFT, 

Carol, PROVEAN, FATHMM, MutationAssessor and LRT. Test sets are divided by Tolerated and 

Damaging set. 

 
The whole data set filtering and processing workflow is shown inFigure 42. 
Note that we grouped all the different transcript-variants for each variant in 
the same set, i.e. all the mutated protein isoforms for a variant were either 
all in the training or in the test set. This procedure assured that very similar 
instances were not present in both training and test sets. 
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Figure 42.Data set workflow. Workflow representing the data set selection. Variants from HGMD, 

1TGP and ESP were filtered basing on coding, frequency and non-overlapping (unique) variants 
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among the different data sources. In order to evaluate and compare the performances of the 

variant predictor tools, variants were further filtered for frameshift, stop-disrupting, stop-causing 

and variants not predictable for the other algorithms. 

4.3.4. Voting Scheme 

The RF model score is computed as the posterior probability of the 
class. For each instance, the RF model will provide a probability score for 
damaging class and its complement to one for the tolerated class. The 
instance is thus considered damaging if the related score is equal or larger 
than 0.5, and a tolerated variant otherwise. 

SIFT and PolyPhen2 provide scores in the (0,1) interval, and the 
thresholds ts to separate damaging and tolerated variants are 0.447 and 0.05 
respectively. We needed to standardize both SIFT and PolyPhen2 scores in 
order to compare them with our RF model score. We thus remapped SIFT 
and PolyPhen2 results by forcing scores <ts in the (0, 0.5) interval, and 
scores >ts in the (0.5, 1) interval according the following standardization 

 

A=((A’-min(A’))/(max(A’)-min(A’)))*(max(A)-min(A))+min(A) 

 

(3) 

Where A’ is the score in the original interval and A is the score mapped to 
the new interval, while min/max(A) and min/max(A’) are the minimum and 
maximum scores of the new and original interval, respectively.  

A majority voting scheme is then applied when each of the three models 
provides a prediction. That is, in case of conflict between two tools, the 
vote on class prediction of the third is determinant for the final class 
assignment (damaging or tolerated). The normalized score of the most 
confident tool (distance from decision threshold) is taken as the final score. 
If PolyPhen2 or SIFT are not able to provide a prediction, the most 
confident normalized score between the remaining two algorithms leads 
class and score assignment. Finally, in case both PolyPhen2 and SIFT are 
not able to provide a prediction, only the RF model is used.  
Usually the more tools are combined, the smaller is the number of the cases 
that all of them can predict [196]. However, PaPI is not affected by this 
limitation since the RF model and the policy used allow obtaining a 
prediction even when PolyPhen2 and/or SIFT do not. 

4.3.5. PaPI Annotation Framework 

Each genomic variant (SNVs and indel) is annotated by one of the 
available gene models (RefSeq or GENCODE). Non coding RNAs and 
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ORF genes were excluded. Selenoproteins, for which the UGA-stop-codon 
in the middle of their coding regions codifies for selenocysteine were 
included: notably, we observed that no one of the other mentioned 
prediction tools cited in this paper is able to correctly deal with these 
particular genes, even if several disorders involving changes in 
selenoprotein structure, activity or expression have been reported[197]. 
Therefore, only variants that overlap the identified coding regions of the 
above gene models are considered for downstream analysis. All possible 
transcripts for which the variant is coding are retrieved, and features are 
computed for each transcript. In particular, for PhyloP and Gerp++ 
positional scores that can involve more than one base change, (a) in case of 
deletion/indel the maximum score between the deleted bases is taken, while 
(b) in case of insertion the maximum score between the two neighbour 
genomic positions is taken. Siphy score is included only in case of 
missense SNVs using dbNSFP (v2.1) data source[198]. DbNSFP database 
was used to retrieve SIFT and PolyPhen2 pre-computed prediction scores 
as well. 

The PaPI annotation framework has been written in Java and customized 
Tabix [157]libraries have been used to perform a fast genomic interval 
search on compressed data files. 

4.3.6. Parameter Tuning 

The implemented RF model is based on Weka libraries[9].We tuned RF 
model parameters by running an independent 10-fold cross validation on 
each of the generated training sets. The considered parameters were four, 
two related to the RF (number of trees and number of features per node) 
and two related to the PseAAC (λ and w). Parameter details are shown 
inTable 10. Note that the 41 amino acid snippet length used to compute 
PseAAC is fixed and it was not included in the optimization parameters. 
For each training set, we obtained the same optimal set of parameters, w = 
0.1, λ = 12, number of trees = 250 and number of features per node = 
2.According to the PseAAC representation, λ determines the number of 
positional features (if λ=0, we have the traditional amino acid composition 
representation). In the amphiphilic PseAAC, features are 20 (frequency 
related) + 2*λ (positional). As a consequence, the total number of features 
varies according to λ, from a minimum of 30 (24 for PseAAC, 3 for 
quantitative attributes and 3 evolutionary conservation scores) to a 
maximum of 66 (60 for PseAAC + 3 for quantitative attributes + 3 
evolutionary conservation scores). Thus, with λ = 12, our RF model uses 50 
features (44 + 3 for quantitative attributes + 3 evolutionary conservation 
scores). Being λ responsible for 4 to 60 features in the RF model, the 
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feature selection process stands implicitly in the λ parameter tuning. The 
selected model includes 50 features and it is trained on datasets including 
tens of thousands variants (from 31601 to 44888, as shown in Table 7). 
Since the number of samples is much greater than the number of features, 
we did not proceed with a further feature selection. 
Amino acid sequences shorter than λ+1 cannot be represented with 
PseAAC. This issue, nevertheless, can happen only in the case of a coding 
mutation that introduces a premature stop-codon at the beginning of the 
protein: this is the case of stop-gain variants; these mutations are 
automatically labeled as deleterious. It has to be noted that, considering λ = 
12, only 438 mutated sequences (out of about 204K of the overall dataset) 
were too short to be represented by this PseAAC model. 
 
 

Parameter Used in Values 

Num trees RF 5, 10, 50, 100, 150, 200, 

250, 300, 350 

Num features per 

node 

RF int(log(# trees) +1), 2, 4 

λ PseAAC 4, 8, 12, 16, 20 

w PseAAC 0.5, 0.1 

 

Table 10. Parameter values used for RF model tuning. List of parameters and relative values used 

for the optimization of the RF model on training sets. 

4.4. Results and Discussion 

Known coding disease-related variants (damaging) were retrieved from 
HGMD, including SNVs and indels. We assumed that frequent genomic 
variants are less suitable of being deleterious, therefore, tolerated variants 
were retrieved by combining 1TGP and ESP selecting only polymorphic 
(frequency higher than 0.05) and unique variants. Due to the unbalancing 
between damaging versus tolerated variants of the resulting dataset (Table 
6), we randomly split it into three quasi-balanced sets. We further split each 
into a training (70%) and test (30%) set (Table 7). The whole process has 
been explained in4.3.3. 

For each variant, the difference in PseAAC between wild (reference 
genome) and mutated amino acid sequence was computed, resulting in a set 
of quantitative features, used to train and test a machine learning classifier. 
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Three evolutionary conservation scores and three full length protein 
attributes were included in the feature set as well (see 4.3.2). 

 
An RF and a Logistic Regression (LR) models were built upon the 

resulting training sets, while performances were measured on each relative 
test set. The RF achieved an average area under the curve (AUC) of 0.897 
and an average accuracy of 0.832 on the three sets, resulting in 
performances higher than the LR ones (AUC=0.878, accuracy= 0.813, see 
Table 11 and Figure 43). The gap between the two classifiers can be 
explained by the complexity of the feature set: given its non-linear nature, 
RF is more suitable to detect hidden structures in data with respect to the 
LR.   

 
 

Test 
Set 

M AUC Accuracy 
(IC95%) 

Sens Spec PPV NPV F-m MC
C 

# 1 RF .898 .8314 
(.8381-
.8246) 

.835 .827 .829 .833 .832 .662 

LR .877 .8118 
(.8188-
.8047) 

.841 .782 .795 .830 .817 .624 

# 2 RF .90 .8310 
(.8377-
.8242) 

.837 .825 .828 .834 .832 .662 

LR .875 .8121 
(.8190-
8049) 

.846 .777 .793 .834 .818 .625 

# 3 RF .903 .8344 
(.8422-
8262) 

.840 .828 .831 .837 .835 .668 

LR .883 .8168 
(.8250-
.8083) 

.845 .787 .800 .835 .822 .634 

 

Table 11.Performances of RF and LR Models (M) on the three test sets.Performances of the 

Random Forest (RF) and Logistic Regression (LR) on the three test sets. Area under the curve 

(AUC), accuracy with 95% confidence interval, sensitivity (Sens), specificity (Spec), Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-m) and Matthews 

correlation coefficient (MCC) are reported for each method. 

 
In order to quantify the contribution of PseAAC features in 

classification we measured the performance of the RF trained on the 
aforementioned training sets without evolutionary conservation scores and 
full length protein features (see Table 12). In other words, we assessed a 
RF model based on PseAAC only. Notably, the RF trained solely on 
PseAAC reached, on average, an AUC and accuracy of 0.88 and 



Sequencing data interpretation 

 

 104

0.82,respectively. This is only about one percent less than the RF holding 
the complete feature set. 

 
Tool Test 

Set 
AUC Balanced 

accuracy 
F-m MCC 

RF –  
PseAAC 

only 

# 1 .885 .816 .816 .628 
# 2 .888 .821 .821 .637 
# 3 .892 .827 .827 .65 

 

Table 12.Performances of the RF trained only using PseAAC features, measured on the three 

unfiltered test sets. Area under the curve (AUC), balanced accuracy (sensitivity/2 + specificity/2), 

F-measure (F-m) and Matthews correlation coefficient (MCC) are shown. 
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Figure 43.  ROC curves of Logistic Regression (LR) and Random Forest (RF) on the three 

unfiltered variant test sets. 
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We finally combined the RF model with PolyPhen2 and SIFT scores 

through the implemented voting scheme. In order to independently measure 
performances of the three algorithms on the same data, test sets were 
filtered out for variants that PolyPhen2 and/or SIFT were not able to 
predict. The combined approach, which we called PaPI, increased the 
overall performances: AUC, accuracy and Matthews correlation coefficient 
(MCC) are increased in average by 2, 3 and 7 percentage points 
respectively when compared to the RF model alone. Sensitivity, specificity 
and other performance metrics of the RF, PolyPhen2, SIFT and PaPI on the 
three test set are reported in Table 13,while receiver operating 
characteristic (ROC) curves are reported in Figure 45. 

 
 

Test 
Set 

Tool AUC Acc 
(IC95%) 

Sens Spec PPV NPV F-m Mcc 

# 1 PaPI .9207 .8621 
(.8553-
.8685) 

.858 .866 .868 .855 .863 .724 

RF .8941 .8262 
(.8189-
.8334) 

.828 .823 .829 .823 .828 .652 

PP2 .9137 .8425 
(.8354-
.8493) 

.853 .831 .839 .846 .846 .684 

SIFT .8682 .8045 
(.7968-
.812) 

.772 .837 .830 .781 .800 .610 

# 2 PaPI .9196 .8618 
(.8550-
.8683) 

.857 .866 .869 .854 .863 .723 

RF .8960 .8275 
(.8202-
.8346) 

.831 .823 .829 .825 .830 .654 

PP2 .9121 .8401 
(.8330-
.847) 

.848 .831 .838 .841 .843 .680 

SIFT .8677 .7994 
(.7917-
.807) 

.762 .837 .829 .773 .794 .601 

# 3 PaPI .9239 .8648 
(.8568-
.8724) 

.857 .872 .874 .855 .865 .729 

RF .8999 .8289 
(.8202-
.8373) 

.835 .821 .828 .828 .832 .657 

PP2 .9185 .8416 
(.8331-
.8497) 

.850 .832 .840 .843 .845 .683 

SIFT .8688 .7999 .755 .845 .834 .770 .793 .603 



Sequencing data interpretation 

 

 107

(.7906-
.8088) 

 

Table 13. Performances of RF, PolyPhen2, SIFT and PaPI on the three test sets. Performances of 

the Random Forest (RF), PolyPhen2 (PP2), SIFT and PaPI (RF + PolyPhen2 + SIFT) on the three 

test. Area under the curve (AUC), accuracy (Acc) with 95% confidence interval, sensitivity (Sens), 

specificity (Spec), Positive Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-

m) and Matthews correlation coefficient (Mcc) are reported for each method. Test sets were 

filtered in order to retain only those variants that both PolyPhen2 and SIFT were able to predict. 

 
Being PaPI an ensemble method based on three classifiers, we also 

analyzed the prediction consistency among the three tools. The great 
majority of the correct predictions (over 75%) finds RF, PolyPhen2 and 
SIFT in agreement. More details are summarized by the Venn diagrams 
reported in Figure 44. 

 
 

 
 

Figure 44.Venn diagrams showing contingencies in terms of prediction agreement  between the 

Random Forest, SIFT and PolyPhen2 on the whole variant test set where both PolyPhen2 and SIFT 

hold a prediction. P=Positive (Damaging), N=Negative (Tolerated). 
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Figure 45. ROC curves of the RF, PolyPhen2, SIFT and  PaPI (RF+PolyPhen2+SIFT). ROC curves of 

Random Forest (RF), PolyPhen2, SIFT and their ensemble (PaPI) on the three test sets. Variants 

that PolyPhen2 and/or SIFT were not able to predict were filtered out. 
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4.4.1. Performances on Unpredictable Variants for PolyPhen2 

and SIFT 

We further proceeded to evaluate PaPI performances on those variants 
of the test sets for which both PolyPhen2 and SIFT were unable to give a 
prediction, resulting in a total of 416 tolerated and 974 damaging missed 
variants. In these cases, PaPI classes and scores coincide with the RF 
predictor ones. The average area under the curve (AUC) of the RF was 
equal to 0.94 while the average accuracy on the three variant sets was equal 
to 0.87 (see Table 14for the performance metrics and Figure 46 for ROC 
curves). 
 

 

Tes
t 
Set 

Too
l 

AU
C 

Acc(IC95%
) 

Sens Spec PPV NP
V 

F-m Mcc 

# 1 PaPI  
(RF) 

.9368 .8676 (.8420-
.8896) 

.917
1 

.824
5 

.819
8 

.919
6 

.865
7 

.740
5 

#2 PaPI  
(RF) 

.9418 .8611 (.8352-
8836) 

.921
4 

.807
7 

.809
5 

.920
5 

.861
9 

.729
6 

# 3 PaPI  
(RF) 

.942 .8830 (.8523-
9080) 

.925
6 

.845 .842
1 

.927
1 

.881
9 

.769
9 

 

Table 14. PaPI performances on the unpredictable variants by PolyPhen2 and SIFT. PaPI 

performances on the three test retaining only those variants unpredictable both for PolyPhen2 and 

SIFT. In this case, PaPI coincides with RF. Area under the curve (AUC), accuracy (Acc) with 95% 

confidence intervals, sensitivity (Sens), specificity (Spec), Positive Predictive Value (PPV), Negative 

Predictive Value (NPV), F-measure (F-m) and Matthews correlation coefficient (Mcc) are reported 

for each method. 
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Figure 46.ROC curves of PaPI on the three variant test sets after retaining those variants 

unpredictable for both PolyPhen2 and SIFT. For these cases PaPI coincides with RF.  
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4.4.2. Comparison with Other Variant Prediction Tools 

PaPI’s performances were compared to the following variant predictors: 
Carol[181], PROVEAN[127], FATHMM[175], MutationAssessor[125], 
LRT [124], PolyPhen2 and SIFT. Thanks to the RF model, PaPI is capable 
to score variants of any kind up to 60 nucleotides (see 4.3.2.1). PolyPhen2, 
SIFT, FATHMM, MutationAssessor and LRT only classify SNVs, while 
PROVEAN deals with in-frame but not frameshift indels. Furthermore, 
these tools may be unable to provide some predictions due to lack of 
information (e.g. when only few homologous sequences exist or remain 
after their filtering). Therefore, in order to obtain a fair comparison, we 
removed from the aforementioned test sets those variants that other 
algorithms were unable to score (see Table 9).While PaPI scored every 
variant, missing rates of the other prediction tools on the three sets ranged 
from 7.34% to 23%, as reported inTable 15. 

 
 

 

% Missing rate 

Set #1 Set #2 Set #3 

PolyPhen2 7.66 7.68 7.34 

SIFT 10.41 10.39 9.8 

Carol 11.05 11.44 10.98 

PROVEAN 9.85 9.89 9.34 

FATHMM 7.64 7.72 7.09 

MutationAssessor 9.78 9.72 9.58 

LRT 22.99 22.82 22.23 

PaPI 0 0 0 

 

Table 15. Missing rates on the three unfiltered test sets. Missing rates (i.e. algorithm unable to 

provide prediction) of considered algorithms on the three unfiltered test sets. 

 
The average AUC and balanced accuracy of PaPI were of 0.926 and 

0.864, respectively, reporting an average increase of 1.5 and 3.3 percentage 
points in balanced accuracy and MCC when compared to the second best 
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predictor (Carol). Negative/positive predictive values and other 
performance metrics are reported in Table 16. ROC curves of each 
predictor are reported in Figure 47. 

 
 

Set Tool AUC Balanced 
Accuracy Sens Spec PPV NPV F-

m MCC 

# 1 

PaPI .922 .8575 .852 .863 .899 .803 .875 .708 
Carol .912 .8492 .821 .877 .905 .774 .861 .689 
PRO .893 .8264 .789 .863 .892 .741 .837 .643 
SIFT .883 .8142 .763 .865 .889 .718 .821 .618 
PP2 .914 .8425 .850 .834 .880 .796 .865 .680 

FHMM .830 .7517 .626 .876 .878 .621 .731 .502 
LRT .845 .8249 .800 .848 .883 .749 .840 .640 

MutAss .889 .812 .757 .866 .89 .714 .818 .614 

# 2 

PaPI .925 .863 .862 .864 .899 .817 .880 .721 
Carol .912 .8442 .811 .877 .902 .767 .854 .679 

Provean .898 .8354 .807 .863 .892 .761 .847 .662 
SIFT .883 .8091 .753 .865 .887 .713 .814 .609 

PolyPhen2 .918 .8491 .863 .834 .880 .813 .871 .695 
FATHMM .835 .7603 .644 .876 .880 .636 .743 .518 

LRT .850 .8317 .814 .848 .883 .765 .847 .656 
MutAssessor .892 .8134 .760 .866 .888 .720 .819 .617 

# 3 

PaPI .933 .8721 .875 .869 .905 .831 .89 .74 
Carol .923 .8551 .818 .891 .914 .776 .863 .700 

Provean .915 .8444 .815 .873 .901 .769 .856 .679 
SIFT .891 .8166 .759 .874 .895 .719 .821 .623 

PolyPhen2 .930 .8542 .872 .835 .882 .822 .877 .706 
FATHMM .843 .7643 .641 .876 .889 .635 .745 .52 

LRT .868 .8408 .828 .852 .888 .778 .857 .674 
MutAssessor .898 .8273 .777 .877 .899 .735 .834 .644 

 

Table 16.Performances of different prediction tools on the three filtered test sets. Comparison of 

PaPI, PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, LRT and MutationAssessor on the three test 

sets filtered for unpredictable variants by the other prediction tools. Area under the curve (AUC), 

balanced accuracy (sensitivity/2 + specificity/2), sensitivity (Sens), specificity (Spec), Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-m) and Matthews 

correlation coefficient (MCC) are reported for each method 
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Figure 47.ROC curves comparison between prediction tools. ROC curves of  PaPI, PolyPhen2, SIFT, 

Carol, PROVEAN, FATHMM, LRT and MutationAssessor on the three filtered test sets. 
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4.4.3. PaPI Exploits Pseudo Amino Acid Composition 

Substitution Patterns for Disease-related Variant Prediction 

We hereby show the case of two disease-related variants for which the 
RF is the solely to correctly assign the right prediction in contrast to 
PolyPhen2, SIFT and the other cited tools. These two examples show 
therefore how the RF can positively contribute to a correct variant 
evaluation by exploiting pseudo amino acid composition substitution 
patterns in specific protein-coding regions. 

4.4.3.1. GDF6 - Ala249Glu 

Several studies associated the mutation p.(Ala249Glu) in the growth 
differentiation factor 6 (GDF6) with skeletal and ocular abnormalities [199-
201].  

The p.(Ala249Glu) mutation is within the C-terminal-half of the GDF6 
prodomain, a region thought to facilitate correct disulfide folding of the 
mature secreted peptide and latent complex formation[202].Despite 
segregation and functional analysis conducted by the studies mentioned 
above demonstrated the mutation hypomorphicity, its function within the 
domain remains unclear; moreover, the residue is not highly conserved and 
only two homologue proteins hold the same residue. Interestingly, the 
mutation is in a region rich in GC-content that overlaps with a CpG island 
of 1267 nucleotide bases. The p.(Ala249Glu) mutation, given by c.746C>A 
nucleotide variant, is part of ten adjacent bases that exhibit a variable 
percentage in cytosine methylation according to the Reduced 
Representation Bisulfite Sequencing ENCODE data from five different 
human cell types (see Figure 48). CpG islands are known to be regions with 
high germline mutational rate in methylated CpGs[203]and in coding 
regions they cause biases into the amino acid sequences[186, 187]. For 
example, Arg residue mutates more frequently respect to any other residue 
and this can be in part explained by the fact that CpG in the Arg codons 
occur in the no-wobble positions resulting into missense variants. 
 
 

 Damaging Tolerated 

CpG 15031 3098 

¬ CpG 137793 22506 
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Table 17.Contingency table to compare the proportion of variants overlapping CpG islands into 

the whole Damaging and Tolerated data set.Fisher exact test has been performed by Matlab 

function developed by Michael Boedigheimer “fexact” 

(http://www.mathworks.com/matlabcentral/fileexchange/22550-fisher-s-exact-test). 

 
By analysing our training data set, we found 15,031 and 3,098 variants 
overlapping CpG island for the damaging and tolerated variant set, 
respectively, resulting in a significant difference in numbers between the 
two sets (p = 1.7 x 10-27; Fisher exact test, see Table 17). 
 

The proportion of the amino acid changes inside and outside methylated 
regions of CpG islands (human cell line GM12878, downloaded by UCSC 
Genome Browser) resulted significantly higher for the damaging variant set 
with respect to the tolerated one (p = 3.2 x 10-2; Fisher exact test, see Table 
S4 in Additonal File 1). 

 
 

 Damaging Tolerated 

mCpG 806 137 

¬mCpG 14225 2961 

 

Table 18.Contingency table to compare the proportion of variants inside and outside methylated 

regions of CpG islands into the whole Damaging and Tolerated data set.Fisher exact test has been 

performed by Matlab function developed by Michael Boedigheimer “fexact” 

(http://www.mathworks.com/matlabcentral/fileexchange/22550-fisher-s-exact-test) 

 
These results show biases between damaging and tolerated data sets, thus 
amino acid composition following amino acid changes within these regions 
may be different, too. We suppose that the RF may have learnt the model of 
substitution patterns in CpG islands within the tolerated and damaging 
datasets, thus correctly predicting the p.(Ala249Glu) in the GDF6 encoded 
protein. 
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Figure 48.  Mutation p.(Ala249Glu) (red asterisk) in the GDF6 gene from UCSC Genome Browser. 

CpG island (dark green), Mammal and Vetrebrate conservations (light blue),  Methylation sites 

from 5 cell types (from light green to red respect to the percentage of DNA molecules that exhibit 

cytosine methylation) are shown. 

 

4.4.3.2. GUCY2C - Asp387Gly 

Romi et al.[194] identified a single mutation p.(Asp387Gly) in the 
guanylate cyclase 2C (GUCY2C) transmembrane receptor causing 
meconium ileus (MI), an intestinal obstruction in newborns. GUCY2C has 
an extracellular domain that is activated by ligands (guanylin and related 
peptide uroguanylin or E.coli heat-stable enterotoxin STa). The 
p.(Asp387Gly) mutation is within an essential region of its extracellular 
ligand-binding domain and is adjacent to seven other pivotal amino acids 
for the ligand binding [204]. The resulting significant reduction of ligand-
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binding leads to a reduction in guanylate cyclase activity and activates a 
signalling cascades that finally leads to MI. 

The GUCY2C extracellular domain belongs to the periplasmic binding 
protein-like I superfamily domain and corresponds to the extracellular 
ligand-binding receptor, IPR001828 in InterPro database[205].The same 
domain is shared by other 157 human proteins (including the one encoded 
by GUCY2C). Among the disease variant set used for RF training, 242 
disease variants belonging to the IPR001828 domain and related to 7 
proteins are present. We suppose that the RF learned the model of 
substitution patterns in the extracellular domain of these proteins and 
therefore it was able to assign the correct prediction for p.(Asp387Gly) in 
the GUCY2C encoded protein. 

4.4.4. PaPI Leads to Right Prediction in Case of PolyPhen2 and 

SIFT Conflict 

Here we report an example that shows how PaPI can correctly classify 
variants for which PolyPhen2 and SIFT are discordant in prediction. 
Tchernitchko et al.[206]compared PolyPhen and SIFT considering several 
variants known to be responsible for affecting the products of hemoglobin 
and glucose-6-phosphate dehydrogenase genes, leading to several forms of 
sickle cell anemia and G6PD deficiency, respectively. In the results in that 
paper, PolyPhen and SIFT had discordant predictions on ten pathogenic 
variants, for which experimental evidence was reported. We therefore run 
PaPI on the same variant set and we correctly classified all of them as 
damaging. Five variants were predicted both by PolyPhen2 and SIFT 
(thanks to updated versions now available) as damaging while for the other 
five variants there were still discordant predictions between these tools 
(Table 19). 
 
 

Gene Protein PP2 SIFT RF Related 
Phenotype PaPI 

HBB 

p.E7V 
B 
(0.002) 

D 
(0.01) 

D 
(0.891) 

Sickle cell 
anemia 

D 
(0.901) 

p.E122Q 
B 
(0.007) 

D 
(0.01) 

D 
(0.975) Severe 

sickle cell 

syndromes 

 

D 
(0.975) 

p.E122K 
B 
(0.109) 

D  

(0.0) 

D  

(0.96) 

D  

(1.0) 

p.E7K B D D  D 



Sequencing data interpretation 

 

 118

(0.006) (0.01) (0.94) (0.94) 

G6PD p.S188F 
B 
(0.039) 

D 
(0.04) 

D 
(0.988) 

G6PD 
deficiency 

D 
(0.988) 

 

Table 19.Examples of known disease-related variants. Known disease-related variants reported 

by Tchernitchko et al. for which occurs a different outcome in prediction by PolyPhen2 (PP2) and 

SIFT. For these cases, the RF is able to vote for the right class leading PaPI to the correct prediction 

as well. In brackets the score for each variant predictor is reported. B= tolerated, D=damaging. 

 
For these cases, the RF vote allowed obtaining the right class assignment. 
Notably, SIFT is able to assign the right class for each variant as well, 
despite we show that RF and SIFT have the lowest concordance rate in 
prediction in case of PolyPhen2 conflict (see Figure 44). 

4.4.5. Web Accessible Tool 

PaPI software is freely available online (http://papi.unipv.it) as a web 
accessible tool.  

The user interface allows to submit a single variant or to perform queries 
in bulk by uploading a plain text file with a list of variants (see for a 
screenshot).  

Users can choose between the RF and LR model. Although we showed 
LR is less accurate than RF, it is faster and can be used for a quick 
response.  

Two different gene annotation models are available (RefSeq and 
GENCODE) and a variant score is given for each different transcript. 

Results are reported in a tab-delimited text file and can be sent by email: 
PaPI prediction (damaging or tolerated) along with its confidence score 
plus prediction/scores of RF/LR, PolyPhen2 and SIFT. Each variant comes 
with information about transcript, gene, type (missense, synonymous, 
frameshift etc.) and evolutionary conservation scores. Prediction runtime 
takes, in average, between 0.3 and 0.7 seconds per variant.  

 
The business logic of the web application has been developed in Java, 

allowing asynchronous processes managed by two main queues: one for the 
RF requests and another for the LR ones. The RF queue run requests one 
by one (due to the RAM usage to put in memory the Random Forest model) 
while the LR can execute 4 requests in parallel.  
Presentation tier has been designed using a Model-View-Controller pattern 
(MVC) by employing Java Server Faces (JSF) technology.  
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Figure 49.PaPI web interface, results for single query are shown in the browser, or can be sent by 

email. 

4.4.6. Conclusions 

We developed a new method, called PaPI, to classify and score human 
coding variants potentially leading to functional alterations of related 
proteins, especially as human inherited diseases are concerned, since the 
algorithm has been trained on HGMD database, which is known to be 
biased towards human Mendelian diseases. The main novelty of the 
approach is the introduction of features based on the difference in pseudo 
amino acid composition between snippets of wild and altered protein 
sequences where coding variants occur. Hydrophobicity and hydrophilicity 
pairwise relationships between amino acids are encoded by these features. 
Evolutionary conservation scores and quantitative descriptors at the whole 
protein level were included in the feature set as well. A RF classifier was 
trained on these features to mine disease and neutral pseudo amino acid 
composition substitution patterns and classify unseen coding variants into 
damaging or tolerated class.  

Despite it has been shown that the combination of variant classifiers is 
not always beneficial[207],we showed that the implemented voting strategy 
between PolyPhen2, SIFT and our RF model improves performances in 
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terms of area under the curve, accuracy and other reported metrics in 
comparison to the ones of each predictor alone. Considering only those 
variants that PolyPhen2 and SIFT are unable to predict, PaPI maintains 
high performances thanks to the RF model. Moreover, it has to be noted 
that in case of prediction by both PolyPhen2 and SIFT, PaPI is biased 
toward sequence conservation, because of the majority voting system 
between the RF and these two tools[196].We compared PaPI with other 
variant prediction tools (PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, 
MutationAssessor, LRT) and we showed that PaPI performances were the 
highest on the data sets used. Notably, PaPI is able to score any variant, 
including the ones that the other mentioned methods were unable to 
predict. 

We have reported two examples for which the RF model is the only 
algorithm that predicts the correct class, thanks to its capability of 
exploiting potential disease-related pseudo amino acid composition 
substitution patterns such as protein ligand-binding domains and CpG 
regions. We also showed several examples where the RF model vote leads 
to a correct prediction, in case of conflict between PolyPhen2 and SIFT. 

To our knowledge, PseAAC has never been used in variant prediction. 
We are confident that the algorithm can be further improved by optimizing 
other parameters (e.g. length of sequence snippets surrounding variants) or 
by exploring other PseAAC descriptors (e.g. including amino acid side 
chain mass property). 
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Chapter 5 

5 Clinical Applications 

In this Chapter, some clinical applications of the Variant Management 
System based on the Relational Database (RDBVMS) approach discussed 
in 3.1 are reported. 
The presented cases have been published on international scientific 
journals, as referenced below. 

 
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from 
mutations in PIEZO1.Andolfo I, Alper SL, De Franceschi L, Auriemma C, 
Russo R, De Falco L, Vallefuoco F, Esposito MR, Vandorpe DH, Shmukler 
BE, Narayan R, Montanaro D, D'Armiento M, Vetro A, Limongelli I, 
Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW, Delaunay J, 
Iolascon A.Blood. 2013 May 9;121(19):3925-35, S1-12. doi: 
10.1182/blood-2013-02-482489. Epub 2013 Mar 11. 
 
Improving molecular diagnosis in epilepsy by a dedicated high-throughput 
sequencing platform.Della Mina E, Ciccone R, Brustia F, Bayindir B, 
Limongelli I, Vetro A, Iascone M, Pezzoli L, Bellazzi R, Perotti G, De 
Giorgis V, Lunghi S, Coppola G, Orcesi S, Merli P, Savasta S, Veggiotti P, 
Zuffardi O. Eur J Hum Genet. 2014 May 21. doi: 10.1038/ejhg.2014.92. 
(Epub ahead of print) 
 
Lower motor neuron disease with respiratory failure caused by a novel 
MAPT mutation.Di Fonzo A, Ronchi D, Gallia F, Cribiù FM, Trezzi I, 
Vetro A, Della Mina E, Limongelli I, Bellazzi R, Ricca I, Micieli G, 
Fassone E, Rizzuti M, Bordoni A, Fortunato F, Salani S, Mora G, Corti S, 
Ceroni M, Bosari S, Zuffardi O, Bresolin N, Nobile-Orazio E, Comi GP. 
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Neurology. 2014 Jun 3;82(22):1990-8. doi: 
10.1212/WNL.0000000000000476. Epub 2014 May 7. 
 

The contents (including tables and figures) of the following sections 
have been extracted from the aforementioned papers. Contribution to these 
studies comprise sequencing data analysis, from raw sequencing data to the 
list of the genomic variant candidates for each patient, by using the 
RDBVMS presented in 3.1. Furthermore, statistical analysis has been 
performed for Della Mina et al related work. 

5.1. Multiple clinical forms of dehydrated 

hereditary stomatocytosis arise from mutations in 

PIEZO1 

Autosomal dominant dehydrated hereditary stomatocytosis (DHSt) 
usually presents as a compensated hemolytic anemia with macrocytosis and 
abnormally shaped red blood cells (RBCs). DHSt is part of a pleiotropic 
syndrome that may also exhibit pseudohyperkalemia and perinatal edema. 
We identified PIEZO1 as the disease gene for pleiotropic DHSt in a large 
kindred by exome sequencing analysis within the previously mapped 
16q23-q24 interval. In 26 affected individuals among 7 multigenerational 
DHSt families with the pleiotropic syndrome, 11 heterozygous PIEZO1 
missense mutations cosegregated with disease. PIEZO1 is expressed in the 
plasma membranes of RBCs and its messenger RNA, and protein levels 
increase during in vitro erythroid differentiation of CD341 cells. PIEZO1 is 
also expressed in liver and bone marrow during human and mouse 
development. We suggest for the first time a correlation between a PIEZO1 
mutation and perinatal edema. DHSt patient red cells with the R2456H 
mutation exhibit increased ion-channel activity. Functional studies of 
PIEZO1 mutant R2488Q expressed in Xenopus oocytes demonstrated 
changes in ion-channel activity consistent with the altered cation content of 
DHSt patient red cells. Our findings provide direct evidence that R2456H 
and R2488Q mutations in PIEZO1 alter mechanosensitive channel 
regulation, leading to increased cation transport in erythroid cells. 

5.1.1. Introduction 

Dehydrated hereditary stomatocytosis (DHSt), also known as hereditary 
xerocytosis (OMIM=194380), is an autosomal dominant congenital 
hemolytic anemia associated with a monovalent cation leak. DHSt consists 
of a usually compensated hemolysis, associated with moderate 
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splenomegaly[208]. Blood smears show variable numbers of stomatocytes, 
sometimes rare and ill-formed, and likely to be overlooked. The 
reticulocyte count is elevated, and red cell mean corpuscular volume 
(MCV) is slightly increased. DHSt red blood cells (RBCs) exhibit 
decreased intraerythrocytic K+ content and increased intraerythrocytic Na+ 
content, usually accompanied by increased mean corpuscolar hemoglobin 
(Hb) concentration. 
The cation leak of DHSt red cells resembles that of control RBCs in its 
temperature dependence, but is of greater magnitude at all 
temperatures[209]. The definitive diagnosis of DHSt is ascertained by 
osmotic gradient ektacytometry, which shows a leftward shift of the bell-
shaped curve[210]. Occasionally, associated hepatosiderosis beyond that 
expected from the mild hemolytic state suggests a strong tendency to iron 
overload[211]. Unlike hereditary spherocytosis, in which splenectomy can 
be beneficial, splenectomy in DHSt is contraindicated due to increased risk 
of thromboembolic complications[212]. DHSt can present as an isolated 
erythroid phenotype or as associated with pseudohyperkalemia, with pre- 
and/or perinatal edema, or with both pseudohyperkalemia and effusions. 
The pre- and/or perinatal edema is of chylous type and may lead to life-
threatening hydrops fetalis requiring therapeutic drainage[213]. 
Remarkably, the edema recede spontaneously before birth or within several 
months postnatally, and do not reappear. In contrast, edema may also be 
restricted to prenatal, clinically silent ascites detectable only by ultrasound.  
Isolated familial pseudohyperkalemia (FP) is defined by the time-
dependent elevation in serum (K+) when blood samples are left for several 
hours or more prior to analysis at temperatures below body temperature, 
whereas serum (K+) is normal in freshly drawn blood. FP may be 
associated with DHSt or, when linked to chromosome 2, as isolated FP. 
The causative gene of isolated FP linked to 2q35-36 was recently identified 
as ABCB6, encoding a porphyrin transporter[214].  
 

Mapping of gene(s) responsible for familial DHSt identified a 
cosegregating critical region at the telomeric region of 16q[215]. 
Zarychanski and colleagues reported for the first time, in 2 families with 
isolated DHSt, 2 missense mutations in the FAM38A gene encoding 
PIEZO1[216]. We report here our independent findings in 7 unrelated 
families with isolated DHSt, DHSt with pseudohyperkalemia, or DHSt with 
both pseudohyperkalemia and pre-/perinatal fluid effusion, novel mutations 
in the PIEZO1 gene that cosegregate with the multiple disease phenotypes. 
We have further characterized PIEZO1 expression in erythroid cells and 
during mouse and human development, and performed functional studies 
on R2488Q and R2456H mutations in human erythrocytes and Xenopus 
oocytes. 
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5.1.2. Material and Methods 

5.1.2.1. Case Report 

The clinical phenotypes of kindreds Arras (AR), Bicetre (BI), Dax (DA), 
Essex, and Troyes (TR) were previously described[217]. Definitive 
diagnosis of DHSt was made by ektacytometry. Families Dax and Troyes 
showed isolated DHSt. 
Families Arras and Edinburgh showed DHSt plus pseudohyperkalemia 
[218]. Family Bicetre exhibited DHSt accompanied by pseudohyperkalemia 
and massive perinatal fluid effusions that spontaneously and permanently 
regressed within several months after birth. Similar massive but transient 
perinatal fluid effusions have been observed by others [219]. Following our 
initial studies, the patients were followed up locally. 

The expressivity of the phenotype was generally similar among 
members from a given kindred, but some variability was noted. (1) In 
family Dax, the MCV and ektacytometric curve of the father (II.1; 
numbering from Grootenboer et al) were only slightly altered, whereas the 
son (II.2) exhibited a full-fledged DHSt [217].(2) In family Bicetre, 
whereas DHSt in father II.3 [220], was accompanied by 
pseudohyperkalemia and dramatic perinatal fuid effusions, his 2 children 
exhibited effusions which were less pronounced. Splenectomy was 
performed in only 2 patients. In keeping with Stewart et al [209], member 
II.2 of family AR developed a thrombosis after a period in an ankle cast, 
followed some years later by a moderately severe pulmonary embolus, 
treated by chronic anticoagulation. The second patient, member II.2 of 
family DA, was without thromboembolic complication at the time of 
examination. 

Patient SF, a 38-year-old female triathlete, has not been reported 
previously. She was referred by her primary physician to a hematology 
clinic for evaluation of hemolytic anemia, first diagnosed at age 14 in the 
setting of severe weakness of 1-month duration. Similar episodes of 
weakness recurred once in her 20s and again at the age of 32, unrelated to 
medications or specific foods, and resolving with supportive care. The 
patient reported chronic “yellowing of her eyes,” without changes in color 
of urine or stool, and without fevers or gastrointestinal symptoms. Neither 
medication nor food triggered these episodes. Family history was notable 
for recently diagnosed hemolytic anemia in the patient’s brother, 
accompanied by 50% deficiency of pyruvate kinase, and a report of mild 
anemia of unclear etiology in the patient’s father. 

Physical examination revealed mild scleral icterus and hepatomegaly 
(edge 1 cm below costal margin). Hematologic indices were: Hb, 13.2 g/L; 
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hematocrit, 37%; RBCs, 3.573106mm3; MCV, 103.7 fL; red cell 
distribution width, 13.1%; absolute reticulocyte count, 139,300/mL. The 
peripheral blood smear revealed spherocytes, macrocytes, and rare 
stomatocytes and tear drops. Total bilirubin was 1.4 mg/dL, with normal 
lactate dehydrogenase, and testing for Gilbert syndrome was negative. 
Direct Coombs test was negative, and red cell glutathione and enzyme 
activities (G6PD, PK, GPI, HK, ADA) were normal. 

Osmotic fragility testing and ektacytometry revealed osmotic resistance, 
and ektacytometry also showed decreased RBC deformability in hypertonic 
solutions: hypoosmotic point was 112.8 (normal, 139.8 + 16.0 mOsm/kg); 
maximum deformability index was 0.63 (normal, 0.54 + 0.06 artificial 
units), osmotic point was 348.7 (normal, 405.6 + 18.3 mosmol/kg). These 
results supported the clinical diagnosis of dehydrated stomatocytosis 
(DHSt) in patient SF. 

 

5.1.2.2. Bioinformatic Analysis for Exome Sequencing 

Reads were aligned to the most recent version of human genome 
(GRCh37/hg19) using the BWA software package (version 0.5.9). Mapped 
reads were consequently filtered out for polymerase chain reaction (PCR) 
duplicates by Samtools (version 0.1.18), locally realigned around inferred 
insertions and deletions, and their base qualities recalibrated in the context 
of alignment by Genome Analysis Toolkit (version 1.4-21). 

Single-nucleotide polymorphisms, short insertions, and deletions were 
identified by the GATK Unified Genotyper. Resulting variants were 
filtered out for possible sequencing and alignment artifacts, taking into 
consideration variant quality, variant read-depth, and the proportion of not-
uniquely-mapped reads overlapping variants. Prediction tracks for each 
mutation were generated by automatic queries to MutationTaster and 
PolyPhen-2. Output data were filtered on the basis of an autosomal 
dominant model of inheritance, removing those annotated variants which 
were out of exome target, synonymous, common (as annotated in 
dbSNP135), or found in previous exome sequencing of uncorrelated 
samples. Candidate variants were also compared and prioritized with the 
1000 Genome Project Database and the Exome Sequencing Project (ESP) 
Database (Exome Variant Server, HLBI ESP, Seattle, WA; ESP5400 
release). The remaining, filtered variants were assessed for pathogenicity 
by SIFT. The filtered exome sequencing data were graphically visualized 
with Integrative Genomics Viewer (IGV) [221], allowing interactive 
exploration of these genomic datasets. 
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5.1.2.3. RNA isolation and cDNA synthesis from CD34
+
cells 

Total RNA was isolated from CD341 cells at days 0,7, and 14 of 
erythroid differentiation. Single-strand complementary DNA (cDNA) was 
synthesized from 2 µg of RNA template, using 2.5 units of VILO reverse 
transcriptase (Technologies, Milan, Italy). 

5.1.2.4. Two microelectrode voltage clamp of PIEZO1-expressing 

oocytes 

Oocytes were harvested from Xenopus laevis and treated with 
collagenase as previously described [222]. cRNA was injected in a volume 
of 50 nL, and oocytes were maintained at 17°C for 72 hours prior to 
experimentation. 
Defolliculated oocytes were placed in ND96 (in mM, 96 NaCl, 2 KCl, 1.8 
CaCl2, 1MgCl2, 5 HEPES (N-2-hydroxyethylpiperazine-N’-2-
ethanesulfonic acid), pH 7.4) in a bath (RC-16; Warner Instruments, 
Hamden, CT) on the headstage of an upright microscope and imaged at x20 
magnification. 
Oocytes were impaled with pipettes fabricated from borosilicate glass 
(World Precision Instruments, Sarasota, FL) using a Sutter P87 puller. 
Resistances of electrodes were 2 to 10 megaohms when filled with 3M 
KCl. 

A voltage clamp protocol was generated using the Clampex subroutine 
of PCLAMP 10 (Molecular Devices Corporation, Sunnyvale, CA), 
applying 10 sweeps of 400 ms, in 20-mV steps from -70 mV, with a 
sampling rate of 10 kHz. Holding potential was -30 mV in all groups 
throughout the experiment. 
Currents were recorded using a Geneclamp 500 voltage clamp (Molecular 
Devices). The bath reference electrode was a silver chlorided wire with a 
3M KCl agar bridge. Junction potentials were minimized by using 3M KCl 
in the pipettes and by use of a bath clamp. 

Current voltage relationships were determined by fitting the currents 
recorded at t = 370 ms using the Clampfit subroutine of PCLAMP 10, and 
plotted with Sigmaplot graphics. 

 

5.1.2.5. On-cell patch recording of PIEZO1-expressing oocytes 

Defolliculated oocytes were placed in a hypertonic bath and the vitelline 
layer was removed by hand with Dumont no. 5 forceps under x40 
magnification. The devitellinized oocyte was immediately placed in a low-
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volume bath (RC-25; Warner Instruments) on the stage of an Olympus 
IMT-2 inverted microscope, imaged at x40 and patched with fire-polished 
pipettes of 7 to 12 megaohms resistance. Bath and pipette solutions 
contained (in mM) 150 Na methanesulfonate, 10 Na EDTA, and 10 Na 
HEPES, pH 7.4. On-cell patch recording was performed as previously 
described in this paragraph, except that currents were elicited by imposition 
of a 250-ms linear voltage ramp from -100 mV to +100 mV during 
application of negative pressure (0 or -25 mm Hg) to the pipette port and 
recorded by pneumatic transducer (Biotek DPM-1B, Winooski, VT). 
 

5.1.3. Results 

5.1.3.1. Whole Exome analysis 

Whole-exome analysis was performed on 2 affected and 2 unaffected 
members from family Edinburgh (DHSt plus pseudohyperkalemia).After 
filtering out of likely false-positive single-nucleotide variations(SNVs) and 
short insertions/deletions (InDels), an average of 32 362variants was called 
for each of the 4 exomes, spanning about 12 053genes, with about 1700 
novel SNVs/InDels per sample. Among novel SNVs/InDels, we focused on 
heterozygous variants falling in exons, splice-site junctions and 5’ and 3’ 
untranslated regions that segregated with disease among the 4 individuals 
and were absent from 38 unrelated exomes from our internal database. This 
approach highlighted 13 variants in as many genes, 7 of which were exonic, 
5 of which were predicted as likely pathological by the in silico tools 
MutationTaster, PolyPhen-2, and SIFT (see Table 20). 

 
 

Filtered Variants 
Total variants 30,435 
Variants called under dominant model 1,170 
Variants cosegregating with the disease phenotype  13 

CDS Intron / UTR 
7 6 

Predicted damaging 5 0 
 

Table 20.Number of called variants through sequential filtering steps 

 
One of these variants mapped within the previously defined critical region 
on chromosome 16 [218], and was identified asc.6380C>T, T2127M of 
PIEZO1 (see Figure 50). 
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Figure 50.PIEZO1 mutations found in the families here analyzed 
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5.1.3.2. PIEZO1 Mutational Analysis 

PIEZO1 has been sequenced in 26 affected and 16 healthy subjects 
among 7 affected families. The mutations and the number of affected and 
unaffected subjects are described in Figure 50. 
The nucleotide changes are shown in Figure 51A. None of the noted 
nucleotide changes were present in the 1000 genomes database, or in 50 
healthy subjects here analyzed. The amino acids affected by the PIEZO1 
missense mutations identified in the DHSt patients are located in 2 regions 
of the 2521 amino acid PIEZO1 polypeptide: 1 between residues 718 and 
1117, and the carboxy-terminal region beyond residue 2000 (Figure 51B). 
The DHSt phenotype in families AR, Essex, and BI co-segregated with > 1 
novel missense mutation in cis in PIEZO1 (Figure 50). The mutated amino 
acid residues are all conserved in PIEZO1 of macaque and mouse; 9 of the 
10 residues are conserved in rat PIEZO1, and 7 of the 10 are conserved in 
Xenopus tropicalis and Danio rerio (Figure 51C). 
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Figure 51. Mutational analysis. (A) Schematic representation of PIEZO1 (blue squares, exons; 

horizontal double lines, introns; double slashes, large introns); red arrows indicate exonic 

positions of the nucleotides mutated in the 7 families in whom DHSt was previously mapped to 

chromosome 16q. (B) A 2-dimensional (2D) hydropathy profile of human PIEZO1 protein. The 

transmembrane regions of PIEZO1 (UniProt accession Q92508) predicted by TMHMM were 

displayed using TMRPres2D. Red circles mark approximate locations of DHSt-associated missense 

mutations. (C) Evolutionary conservation of the residues mutated in our DHSt patients (red 

shaded boxes) among the species indicated at left. 

5.1.3.3. PIEZO1 expression in human and mouse during fetal and 

embryonic development 

PIEZO1 expression has been analyzed in several mouse and human 
tissues during embryonic development to account for the erythroid 
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involvement of DHSt and for the fluid effusions occurring in some DHSt 
families. We collected mouse embryos at embryonic day (E) 9.5, E10.5, 
E12.5, E15.5 and postnatal day 0 (P0; at birth) for quantitative PCR 
analysis of murine PIEZO1 expression. PIEZO1 messenger RNA (mRNA) 
abundance increased gradually from E9.5 to E15.5 and was sustained 
through birth (Figure 52B). We further showed PIEZO1 polypeptide 
expression in adult RBC membranes from mice (Figure 52C) and humans 
(Figure 52D).  

 
PIEZO1 immunohistochemical analyses were performed on human fetal 

tissues (17 weeks of gestation) to verify PIEZO1 expression in liver, 
spleen, and peritoneum lymphatic vessels. In fetal liver, PIEZO1 showed 
strong cytoplasmic and membrane signals particularly in hepatic 
erythroblasts. Fetal spleen at 17 weeks showed positive cytoplasmic 
staining patterns in splenic plasma cells. PIEZO1 expression in lymphatic 
vessel of fetal peritoneum at gestational week 17 has been also evaluated to 
examine the correlation between PIEZO1 expression and occurrence of 
perinatal edema. PIEZO1 showed a marked signal in lymphatic vessels 
(Figure 52E). In contrast, PIEZO1 immunoreactivity was absent from 
peritoneal lymphatic vessels of healthy human adult subjects. This 
observation provides a first link between PIEZO1 mutations and pre- or 
perinatal edema. 
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Figure 52.PIEZO1 characterization during mouse and human embryonic development. (A) PIEZO1 

mRNA levels (normalized to GAPDH) in murine C57BL/6 embryos at E9.5, E10.5, E12.5, E15.5 and 

P0. Mean 1 SEM of 3 experiments. (B) Immunoblot showing expression of PIEZO1 protein 

expression in lung, spleen, liver, and bone marrow from P0 C57BL/6 mouse. Protein (50 mg) was 

loaded in each lane, with GAPDH as loading control. Representative of 2 independent fresh tissue 

lysate preparations. (C) Immunoblot showing PIEZO1 protein RBC membranes prepared from 

blood pooled from 8 adult C57BL/6 mice. Protein (50 or 100 mg) was loaded in each lane, with 

GAPDH as loading control. One of 3 similar experiments with independent membrane 

preparations. (D) Immunoblot showing PIEZO1 protein in human RBC membranes prepared from 

blood pooled from 3 healthy subjects for each lane. Protein (50 mg) was loaded in each lane, with 

GAPDH as loading control. One of 3 similar experiments with independent membrane 

preparations. (E) Immunohistochemical expression in human fetal (17 weeks of gestations) and 

adult tissues with PIEZO1 rabbit polyclonal antibody. The red arrow in the 3400 liver panel 

indicates a positive erythroblast. The red arrows in the fetal peritoneum panels indicate positive 

staining in the lymphatic vessels, while in the adult peritoneum panels indicate negative staining in 

the lymphatic vessels. Antigen is stained brown; nuclei are stained in purple with hematoxylin. 

Tissues were imaged with a Leica microscope equipped with 203 and 633 objectives. 

Representative of 3 independent experiments.GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase. 
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5.1.3.4. PIEZO1 expression and localization in RBCs 

PIEZO1 localization in RBCs was evaluated in healthy controls. 
Confocal microscopy analysis showed that PIEZO1was expressed on the 
RBC membrane, as demonstrated by its complete colocalization with the 
erythroid membrane marker glycophorin A (Figure 53A), and confirmed by 
colocalization with the membrane marker CD55/DAF. The data confirm 
previous mass spectrometry data of Zarychanski et al [216]showing the 
presence of PIEZO1 protein in red cell membranes. 

 
 

 
 

Figure 53.PIEZO1 characterization in RBCs and in CD341 blood cells during erythroid 

differentiation. 
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5.1.3.5. PIEZO1 expression during erythroid differentiation 

To investigate the role of PIEZO1 in erythroid cells, we first examined 
PIEZO1 expression and localization in an ex vivo model of erythroid 
differentiation. CD34+ cells isolated from the peripheral blood of healthy 
volunteers were induced to erythroid differentiation by 14 days of 
erythropoietin treatment. As shown in Figure 53B, PIEZO1 mRNA was 
significantly upregulated after 14 days of erythropoietin treatment (P = 
.003). These data were confirmed at the protein level by western blotting 
and densitometric analysis (Figure 53C).  

 
We then assessed PIEZO1 protein localization in the same cell systems. 

As shown in Figure 53D, PIEZO1 colocalized with the plasma membrane 
marker glycophorin A at 7 and 14 days of CD34+ erythroid differentiation 
(Figure 53D). No PIEZO1 immunoreactivity was detected in day 0 CD34+ 
cells (not shown). 

5.1.3.6. Expression of WT and mutant PIEZO1 polypeptides 

inHEK-293 cells 

To evaluate expression of the PIEZO1 mutants, we cloned PIEZO1wild-
type (WT) and PIEZO1 mutants R2488Q and R2456H inpCMV6-IRES-
GFP and transiently transfected the recombinant plasmids into HEK-293 
cells.We found that neither mutation impairedPIEZO1 expression at mRNA 
or protein levels (Figure 53E-F). 

5.1.3.7. DHSt red cells exhibit altered ion content and transport 

Patient SF red cells heterozygous for the PIEZO1 mutation R2456Hhad 
elevated Na content of 61 mmol/kg Hb and reduced K content of219 
mmol/kg Hb (after overnight shipment).Magnesium (Mg) content was 
slightly elevated at 9.7 mmol/kg Hb. Red cell activities of K-Cl 
cotransport, Na-K-2Cl cotransport, and Na/H exchange were not higher 
than in unrelated control cells (not shown). On-cell patches recorded from 
patient SF DHSt red cells as described in5.1.2.5(Figure 54A) revealed 
spontaneous ion-channel activity (lower trace) not detected in cells from an 
unrelated subject (upper trace). This activity was characterized by a 
distribution of channel open probability (NPo) of1.47 +0.43 (Figure 54B), a 
single-channel ohmic conductance of 13single channel conductance (pS) 
with reversal potential -11 mV (r2 = 0.95; Figure 54C), and was competely 
blocked by 2.5 mM Grammastola spatulata mechanotoxin-4 (GsMTx4) in 
the pipet (P < .05). 
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Figure 54.Cation channel activity in on-cell patch recordings of DHSt red cells from patient SF. 

5.1.3.8. Function of WT and mutant PIEZO1 expressed in 

Xenopus oocytes 

X laevis oocytes previously injected with hPIEZO1 complementary 
RNA (cRNA) were subjected after 72 hours to 2-electrode voltage clamp 
recording. Uninjected oocytes exhibited a small linear current at holding 
potentials between -100 and +80 mV, with reversal potential of -64 mV 
(Figure 55A). After 14 minutes of exposure to a moderately hypotonic bath 
(20% dilution of ND-96 which, based on the low intrinsic oocyte water 
permeability should produce only minimal swelling), these properties 
remained essentially unchanged. Oocytes previously injected with PIEZO1 
cRNA exhibited slightly elevated currents in ND-96, but with a reversal 
potential depolarized to -40 mV. However, and in contrast to uninjected 
oocytes, 14- minute exposure of PIEZO1-expressing oocytes to hypotonic 
bath conditions substantially increased an outwardly rectifying current, 
while hyperpolarizing reversal potential to -56 mV (Figure 55A). Exposure 
of oocytes previously injected with PIEZO1 cRNA to hypertonic bath (ND-
96 containing 200 mM mannitol, 15 minutes) also led to increased current 
(not shown). Because mPIEZO1 exhibits mechanosensitivity, multichannel 
on-cell patch currents of Xenopus oocytes expressing hPIEZO1 were 
recorded during voltage ramps before and during application of -25 mm Hg 
suction via pipet. As shown in Figure 55B, negative pressure did not alter 
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current in uninjected oocytes. In contrast, negative pressure induced 
increased currents in oocytes expressing PIEZO1 (P < .005) and mutant 
R2488Q (P < .001), but not mutant R2456H (Figure 55C). The response of 
mutant R2488Q to negative pressure appeared to exceed that of WT 
PIEZO1 (P = .057). Occasional oocyte patches allowed resolution of 
single-channel activity, as illustrated in Figure 56. In these resting state 
patches, the uninjected oocyte NPo of 0.013 increased to 0.69 in oocytes 
expressing WT PIEZO1, 0.88 in oocytes expressing PIEZO1 mutant 
R22488, and 0.22 in oocytes expressing mutant R2456H. Respective 
single-channel conductances were 25 pS (WT), 26.5 pS (R2488Q), and 43 
pS (R24566H). 
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Figure 55. PIEZO1 expressed in Xenopus oocytes confers increased current elicited by hypotonic 

medium and negative pressure activates currents in on-cell membrane patches of WT PIEZO1 and 

mutant R2488Q. 
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Figure 56.On-cell patch current traces of R2488Q and R2456H mutations in Xenopus oocytes. 

 

5.1.4. Discussion 

We have identified PIEZO1 as the causative gene for the varied clinical 
forms of autosomal dominant DHSt linked to chromosome 16p. PIEZO1 
was selected as a strong candidate gene within the critical region 
previously mapped to 16q23-qter based on exome sequencing analysis in 
family Edinburgh. Subsequent targeted sequencing analysis identified 
several additional novel PIEZO1 mutations in 7 families with DHSt 
syndromes. PIEZO1 protein expression was characterized during human 
and murine development and during erythroid differentiation. Functional 
studies demonstrated for the first time that PIEZO1 mutations cause altered 
ion transport in erythroid cells. PIEZO1 protein was also detected in fetal 
lymphatic vessel endothelium, consistent with its proposed causative role 
in the pathogenesis of perinatal effusions. Electrophysiology analysis in 
oocytes demonstrated changes in ion transport consistent with the altered 
ion content of DHSt patient red cells.  
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The PIEZO1 open reading frame was first found in the human immature 
myeloid cell line KG-1, and transcript tissue profiles showed apparently 
ubiquitous expression [223]. Satoh et al demonstrated transcriptional 
induction of PIEZO1 in senile plaque-associated astrocytes from Alzheimer 
disease patients [224]. PIEZO1 involvement in integrin activation requires 
recruitment to the endoplasmic reticulum of the small GTPase R-Ras, 
promoting release of Ca2+ from intracellular stores to activate cytoplasmic 
calpain. Recently, PIEZO1 and PIEZO2 were both implicated in 
mechanosensation as stretch-activated cation channels [225]. Soon 
thereafter, expression in human cells of the single Drosophila melanogaster 
PIEZO (DmPIEZO or CG8486) was shown to resemble its mammalian 
counterparts in its ability to induce mechanically activated currents [226]. 
Behavioral responses to noxiousmechanical stimuli were severely reduced 
in DmPIEZO knockout larvae, whereas responses to light touch or to other 
types of noxious stimulus were unaffected. Human PIEZO1 is an N-linked 
glycoprotein that serves as substrate for both acetylation and 
phosphorylation [227]. Coste et al further showed that mouse PIEZO 
(MmPIEZO1) can assemble as a 1.2-megadalton homo-oligomer with a 
total of 120 to 160 transmembrane segments, the largest homomeric plasma 
membrane ion-channel complex identified to date [228]. Purified 
MmPIEZO1 reconstituted into asymmetric lipid bilayers and liposomes 
forms ruthenium-red-sensitive ion channels in the absence of any other 
protein.  

 
PIEZO1 expression has been characterized during mouse and human 

development. We have shown that PIEZO1 expression increased during 
murine embryogenesis and, at birth, expression was predominant in liver 
and bone marrow. In fetal human tissues, PIEZO1 showed marked 
expression in liver and spleen. Of note, PIEZO1 was expressed in 
lymphatic vessels of the fetal peritoneum and was absent in adult lymphatic 
vessels, demonstrating for the first time a potential physiological link 
between PIEZO1 mutations and the perinatal edema that sometimes 
accompanies DHSt.  

 
PIEZO1 expression has been also identified and localizated in the 

plasma membrane of RBCs, confirming immunologically the original mass 
spectroscopic identification of PIEZO1 as part of the red cell membrane 
proteome [229], and its subsequent detection in red cell membrane by 
targeted mass spectrometry.  

 
In 3 unrelated families, we found multiple in cis missense mutations in 

PIEZO1. R2488Q mutation in family Arras altered a residue conserved in 
all analyzed species (Figure 51), and the linked mutation G718S altered a 
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residue conserved in all tested species except D rerio. A2020V mutation in 
family Essex altered a completely conserved residue, and linked mutation 
S1117L altered a residue conserved in all tested species except X tropicalis 
and D rerio. The linked variants at sites of lesser evolutionary conservation 
are not, however, present among normal alleles and SNV databases, and so 
may not be harmless variants. Further studies will elucidate the origin of 
geographic clustering of these mutations. However, the contribution of 
each individual mutation to its linked clinical phenotype cannot yet be 
assigned. At this time, we do not know which one of the mutations 
coinherited in cis might be individually responsible for the disease 
phenotype, or whether disease arises from the combined effects of the 
coinherited mutations. Interestingly, the 2 families carrying 2 novel, linked 
mutations exhibited the phenotype of DHSt plus pseudohyperkalemia, but 
affected individuals in the single family characterized by 3 allelic 
mutations exhibited a more complex phenotype of DHSt plus perinatal 
edema and pseudohyperkalemia. The connections linking genotype to the 
red cell dehydration phenotype and to phenotypic variability could reflect 
mutation position within the 3-dimensional structure of the PIEZO1 
polypeptide (allelic heterogeneity) and/or modifier gene coinheritance.  

 
Patient SF exhibited the same mutation, R2456H, found in one of the 

families reported by Zarychanski et al. Our patient and the previously 
reported R2456H patients showed a similar phenotype characterized by 
DHSt unaccompanied by pseudohyperkalemia or perinatal edema. In 
contrast to the report of Zarychanski and colleagues, our families exhibited 
only heterozygous mutations, as predicted for a simple pattern of dominant 
inheritance.  

 
The presence of PIEZO1 in the red cell membrane suggests a link to the 

erythroid ion imbalance and altered erythroid ionchannel activity of DHSt 
patients. Functional studies in Xenopus oocytes demonstrated that WT 
PIEZO1 expression increased 2- electrode voltage clamp current elicited by 
osmotic swelling, and channel activity in cell-attached patches. The 
PIEZO1 mutation R2488Q increased hydrostatic pressure-induced currents 
in on-cell patches of Xenopus oocytes, likely reflecting, in part, increased 
NPo. Oocytes expressing PIEZO1 mutant R2456H exhibited cell-attached 
patch currents of elevated single-channel conductance. These properties of 
oocytes expressing PIEZO1 mutants are consistent with the steady-state 
elevation of intracellular Na+ and reduction of intracellular K+ that 
characterize red cells of DHSt patients. However, the link between PIEZO1 
mutations and the combination of elevated MCV and mean corpuscolar Hb 
concentration, which underlies the descriptor “dehydrated stomatocytosis”, 
will require further experimentation. Further experiments will be needed to 
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confirm individual mutation-selective changes in single-channel 
characteristics suggested by the present data. Detailed comparison of 
functional effects of endogenous WT and mutant PIEZO1 in intact red cells 
with those of heterologous WT and mutant PIEZO1 expressed in Xenopus 
oocytes will also require additional experiments. These will be directed 
toward a greater understanding of differences between the chronic effects 
and influences of WT and mutant PIEZO1 channels on cell volume and ion 
content and the rapid kinetics of PIEZO1 channels recorded in whole-cell 
and patch modes. Such differences are influenced by the still incompletely 
defined changes in membrane tension and cytoskeletal dynamics inside the 
patch pipet containing the distinct plasma membranes of fetal erythrocytes, 
adult erythrocytes, and Xenopus oocytes. All of these, in turn, likely differ 
from the strains experienced by the membranes of intact red cells over their 
normal 120-day lifespan as they experience a range of laminar and 
turbulent shear stresses during their circulation through vessels ranging in 
diameter from the ventricular chamber and the aorta to capillary 
tortuosities, and accompanied by sequential adhesions to and releases from 
other blood cells and endothelial cells.  

 
In conclusion, DHSt is a pleiotropic syndrome caused by dominant 

PIEZO1 mutations. In particular, R2456H and R2488Q mutations in 
PIEZO1 likely alter mechanosensitive channel regulation, leading to 
increased cation transport in erythroid cells. Ongoing functional analysis 
should further elucidate the pathogenic mechanisms of all PIEZO1 
mutations found in simple and syndromic forms of DHSt. 
 

5.2. Improving molecular diagnosis in epilepsy by 

a dedicated high-throughput sequencing platform 

We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 
19 patients with different types of either isolated or syndromic epileptic 
disorders and in 15 controls to investigate whether a quick and cheap 
molecular diagnosis could be provided. The average number of 
nonsynonymous and splice site mutations per subject was similar in the two 
cohorts indicating that, even with relatively small targeted platforms, 
finding the disease gene is not an univocal process. Our diagnostic yield 
was 47% with nine cases in which we identified a very likely causative 
mutation. In most of them no interpretation would have been possible in 
absence of detailed phenotype and familial information. Seven out of 19 
patients had a phenotype suggesting the involvement of a specific gene. 
Disease-causing mutations were found in six of these cases. Among the 
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remaining patients, we could find a probably causative mutation only in 
three. None of the genes affected in the latter cases had been suspected a 
priori. Our protocol requires 8–10 weeks including the investigation of the 
parents with a cost per patient comparable to sequencing of 1–2 medium-
to-large-sized genes by conventional techniques. The platform we used, 
although providing much less information than whole-exome or whole 
genome sequencing, has the advantage that can also be run on ‘benchtop’ 
sequencers combining rapid turnaround times with higher manageability. 
 

5.2.1. Introduction 

Epilepsy is one of the most common neurological disorders in humans 
with a prevalence of 1% and a lifetime incidence of up to 3%[230]. 
Epilepsies present with a broad range of clinical features and their genetic 
causes remain unknown in the vast majority of cases, although several 
genes have been identified in rare Mendelian forms, either heritable or 
sporadic. Finding the disease genes can be challenging, as the same 
epileptic phenotype may be associated with several genes. A molecular 
diagnosis of epilepsy is important especially in a pediatric setting in order 
to (1) establish the recurrence risk in following pregnancies, (2) stop the 
diagnostic odyssey that is frequently restless for undiagnosed epilepsies, 
and (3) provide, at least in some cases, specific therapies. Recently, 
genomewide association studies revealed a few regions harboring high-
ranking candidate genes, although these studies still necessitate further 
replication efforts[231]. Genomic arrays had been more successfully, as 
they allowed identifying several possible pathogenic copy-number variants 
not present in controls in about 9% of the cases[232]. Presently, high-
throughput sequencing is becoming the most promising approach to 
improve molecular diagnosis of this condition, although the interpretation 
of the results is far from being a standardized process. Indeed, next-
generation sequencing (NGS) does not magically make diagnoses but 
typically provides a handful of possibilities requiring further studies on the 
function of each candidate gene. To overcome these problems, we 
composed a panel containing most epilepsy genes, covering several 
relevant phenotypes. With this NGS platform, we studied 19 index patients 
suffering from a range of seizures, either familial or sporadic. Although 
initially we performed a blind study trying to interpret the sequencing data 
without any knowledge of the clinical history, we then realized that no 
analysis was possible in absence of detailed phenotypes and familial 
information. This study allowed us to evaluate not only the diagnostic 
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capability of this approach but also the cost and the time required to report 
the final result to the family. 

5.2.2. Materials and Methods 

5.2.2.1. Patient Cohort 

The 19 index cases ranged from few days to 4 years of age at the time of 
the first clinical examination. Most of them have been then followed-up for 
several years. This cohort has been randomly selected from patients 
afferent to our epileptic center for children and adolescents. All available 
family members have been enrolled for segregation analysis. Informed 
consent was obtained from each family and clinical evaluation and genetic 
testing were carried out in accordance with the ethics approval granted 
(11017C-RC2011 IRCCS C. Mondino, Diagnosis and therapy of epileptic 
syndromes). 

Each patient has come along clinical diagnosis and history, presence of 
the epilepsy in relatives (family history), electroencephalograms, magnetic 
resonance findings, and administered antiepileptic drugs. In order to assess 
the diagnostic capability of our approach, we collected patients presenting 
with a wide range of epilepsy phenotypes: 11 are sporadic cases, whereas 
the remaining eight have a history of familial epilepsy. 

Patients have been subdivided in two groups: the first one, subcohort A, 
was constituted by seven patients whose clinical features were either 
strongly or more loosely suggestive for a syndrome associated with a 
specific gene; the second group, subcohort B, included 12 subjects with 
very different types of epilepsy, presumably heterogeneous in their genetic 
basis and not suggestive of any or a single specific gene. In both subgroups 
other clinical features such as language impairment, psychomotor delay, or 
autism spectrum disorder were present in several patients. Magnetic 
resonance abnormalities were detected in some of them. All cases had been 
previously analyzed by array comparative genomic hybridization and a few 
(6-A, 8-B(i), 8-B(ii)) by Sanger Sequencing for specific genes without any 
positive result. 

5.2.2.2. Control Cohort 

Control subjects (nine females and six males), ranging from 18 to 35 
years of age, were recruited among blood donors as controls for both this 
and a cardiovascular study. Besides, they were requested to answer a 
structured general medical questionnaire with specific emphasis on 
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neurological and cardiac symptoms, control subjects had to answer two 
specific questions: (1) have you ever suffered from epilepsy or seizures, 
and (2) have you become acquainted with any seizure disorders or EEG 
abnormalities present in some of your family members? Only those who 
answered negatively were recruited. 

5.2.2.3. Platform Design 

A custom-designed target enrichment library for 67 genes has been 
designed by using the Agilent eArray website 
(https://earray.chem.agilent.com/earray/). This library contains unique baits 
covering the exons, the UTRs, and the intron–exon junctions of the selected 
genes. The estimated base coverage of the library is 0.45Mb. The selection 
was made on the basis of the following criteria: (1) genes associated with 
idiopathic epilepsy; (2) genes associated with syndromic epilepsy; (3) 
genes associated with epilepsy and cerebral malformations excluding 
holoprosencephaly; (4) genes that appeared to be the best candidates for 
epilepsy in microdeletion syndromes. Selected genes are reported in Figure 
57. 

 

 
 

Figure 57.Epilepsy genes platform 

5.2.2.4. Sample Preparation 
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DNA (5 µg) extracted from peripheral blood by standard methods were 
diluted in 700 µl of nebulization buffer (Illumina, San Diego, CA, USA) 
and sheared using a nebulization technique (Invitrogen, Carlsbad, CA, 
USA), which breaks up DNA into pieces < 500 bp, through the application 
of 60–70 psi (pound force per square inch) of purified air for 4min. This 
process generates double-stranded DNA fragments containing 3’ or 5’ 
overhangs that were cleaned up using QIAquick spin columns (Qiagen, 
Hilden, Germany). A quality control step on the recovered DNA was then 
performed using Nanodrop 1000 to quantify the DNA by a 260-nm reading 
and Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) to check the size of 
the fragments.  

According to the Agilent SureSelectXT protocol, sheared DNA 
overhangs were end-repaired and then purified using the magnetic bead-
based Agencourt AMPure XP purification system (Beckman Coulter 
Genomics, Brea, CA, USA). Then we performed the adding of ‘A’ bases to 
the 3’ end of the DNA fragments and the ligation of indexing-specific 
paired-end adapters. 

After a few cycles of PCR amplification, 500 ng of DNA from the 
resulting libraries were hybridized to the bait set using the SureSelectXT 
MP Capture Library Kit (Design no. 5190-0312931—Agilent) at 65°C for 
24 h. Hybrids capture was performed according to the manufacturer’s 
protocol with Streptavidin-coated Dynal magnetic beads (Invitrogen). 
Captured samples were further purified through Agencourt AMPure XP 
beads and subjected to a PCR-based amplification reaction to add index 
tags (each is a sequence of six bases in length allowing to identify samples 
after pooling), accordingly to the Agilent SureSelectXT protocol. For each 
step of library preparation, all samples were quantified on a Bioanalyzer 
2100 (Agilent). We performed a multiplexed run on the Illumina Genome 
Analyzer IIx, where nine multiple samples were sequenced in a single lane 
of a flow cell; number of samples to be pooled has been calculated on the 
basis of the enriched target’s size, according to Agilent’s instructions. The 
sample libraries from nine individuals were denatured with NaOH and 
loaded on a single lane of a Illumina Flowcell v4 where DNA clusters were 
generated through a one-step workflow (according to Illumina protocol) on 
the Cluster Station using TruSeq PE Cluster Kit v5 (Illumina).  

One percent volume of a PhiX control library (Illumina) was used as 
internal control and loaded in each lane of the flowcell.  

The capture was considered successful if at least 99% of our target 
regions were covered by more than eight reads of high quality (that is a 
Phred-scaled mapping quality score of at least 20 for each). 

5.2.2.5. Annotation and interpretation of data 
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Sequences for each sample were generates by Illumina software 
CASAVA v1.8.1. Reads were filtered by quality relying on the standard 
Illumina quality filter test. Reads were aligned to the most recent version of 
human genome (GRCh37/hg19) using BWA software package v0.6.07 and 
filtered out for PCR duplicates by Samtools v0.1.18. Reads were realigned 
around inferred indels and their base qualities were recalibrated taking into 
account the context of alignment by the Genome Analysis Toolkit (GATK) 
v1.6 suite. SNPs and short indels were called using GATK 
UnifiedGenotyper module and the resulting variants were filtered using 
GATK Variant Filtration module and specific Perl scripts, as such variants 
were probably owing to alignment errors and, in general, they cannot be 
considered reliable variants. Several filtering constraints were also applied, 
such as minimum variant quality (50, Phred scaled), a minimum of five 
reads supporting variant, number of ambiguous mapped reads overlapping 
variant, neighborhood of each reliable indel or homopolymer excluding 
those single-nucleotide variations that overlap within.  

Variants annotation was performed on the resulting data set by in-house 
genomic database application (the RDBVMS system). Prediction tracks for 
each annotated variant were generated by automatic remote calling 
procedures to MutationTaster and Polyphen-2 (version 2.2.2).  

In order to identify potential causative mutations, we applied the so-
called discrete filtering approach. We first excluded synonymous out of 
target and UTR-overlapping variants. We then excluded the variants 
present in dbSNP135 and Exome Sequencing Project Databases (ESP) with 
a frequency higher than 1%. Moreover, we discarded variants reported in 
our in-house database (66 whole exomes) that were identified in at least 
two individuals without epilepsy or other neurological disorders. We then 
took into account only variants predicted to alter the protein structure or 
function by at least one of the three prediction tools we used (Mutation 
Taster, SIFT, Polyphen2) as well as variants for which all prediction tools 
failed. At the end, we excluded all variants occurring in at least three cases 
and/or at least two subjects of the control cohort.  

We prioritized the candidate alterations on the base of the expression 
and function of the altered gene, the type of mutation and its effect at 
protein level, presence of the variant in the Human Gene Mutation 
Database  (HGMD) or in the literature, the metabolic pathway involved, 
and obviously the clinical features of the patient/family. A manual 
inspection of the variants eliminated by the prediction tools filtering step 
allowed us to reconsider them on the base of possible correlations with the 
patients’ phenotype. For example, this permitted reconsidering a variant of 
ALDH7A1, which was then ascertained as causative.  
The entire protocol of data analyses is illustrated in the flowchart reported 
in Figure 58.  
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Figure 58.Flow chart representing the strategy adopted to analyze sequencing data. Discrete 

filtering, prioritization, and re-evaluation steps are highlighted inblue, orange and green, 

respectively. 

 
The final subset of mutations was confirmed by Sanger sequencing 

followed by segregation analysis in each family. Only a close collaboration 
with the specialist allowed us to find a specific genotype–phenotype 
correlation discarding those variants that were either pathogenic in 
recessive state in families where the condition segregated in a dominant 
manner or those that correlated to a neurological phenotype totally different 
from that of the patient. This point was taken with extreme caution, as it 
could not be excluded, a priori, that a novel mutation might cause a totally 
different phenotype with respect to the ones known to be associated with 
the same gene. Some of the remaining alterations, even if predicted 
damaging by at least one tool, have been discarded when they did not 
segregate with the epileptic phenotype in familial cases (i.e., MAGI2 in 
case 5-A that was inherited by the healthy mother, whereas KCNQ2 was 
considered causative because it was inherited by the affected father).  

 
We applied the same filtering strategies to the control cohort in order to 

perform a statistical test to assess whether the number of deleterious 
variants in cases was significantly higher than in controls. 
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5.2.2.6. Deleterious variants: Cases vs Controls 

To assess the significance of difference in the number of variants 
between patient and control cohorts we applied the non-parametric 
statistical hypothesis test of Wilcoxon-Mann-Whitney (WMW). 

The choice of this statistical test is justified by the assumption of 
independence of all observations (number of variants) in both the two 
cohorts and therefore by their discrete and ordinal nature.  

We performed the WMW test using R v.2.15.1 typing the following 
command: 

 
wilcox.test(Cases,Controls,correct=TRUE,conf.level=0.95) 

 

Where Cases and Controls are two arrays containing number of variants 
for patient and control groups respectively, continuity correction factor is 
applied and the significance level is set to 0,05. The test was performed in 
two-sided and one-sided way according to test the significance of 
difference in number of variants between cases and controls before and 
after discrete filtering respectively. 

Because of the discrete nature of our observations we applied ties 
correction for standard deviation (s1.1) to be sure that the presence of ex-
aequo observations was not affecting results. 

.      
 
 % = &' ± 0,5* − +,-,  ,     

 

(1.1) 

 +, = .� ∙ &.� + .� + 1* 2  , 
 

 

 -,
= 0 .� ∙ .�. ∙ &. − 1* ∙ 1.2 −  .12 −  � 3�2 − 3�12

4
��� 5    .   

 

 
- .�, .�are the number of patients and controls respectively 
- . = .� + .� 
- 7is the number of ties 
- 3is the number of observations with the same rank within each tie 

5.2.3. Results 



Clinical Applications 

 

 149

Targeted massive parallel sequencing of patient and control cohorts 
produced for each subject about 180Mb of sequence, which yielded an 
average coverage of about 400x at each targeted base. On average, 96% of 
target bases exceeded the 15x coverage threshold required for confident 
analysis, defined as 99% power to detect a variant. We compared the 
number of variants per subject between patients and controls using the non-
parametric statistical hypothesis test of WMW discussed in the previous 
section. We did not find any significant difference between the two cohorts 
after filtering (Pvalue = 0.4928). This might be owing to the limited 
number of subjects analyzed by this platform. Figure 59 reports all the 
variants remaining after the filtering and prioritization processes (ranging 
from one to three per subject). In bold are highlighted those variants 
considered as having the main effect on the patient’s phenotype. By this 
approach we were able to identify candidate SNVs, very likely causative of 
the epileptic phenotype, in nine out of 19 patients, six of which belong to 
subcohort A and three belonging to subcohort B previously discussed 
(seeFigure 60). In the remaining 10 cases, we could not find any potential 
causative alterations even after a careful re-evaluation by manual 
inspection of variants filtered out. Causative mutations were validated by 
Sanger sequencing (data not shown). All variants thereafter reported have 
been submitted to Leiden Open Variation Database 3.0[233]. 
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Figure 59.Selected variants after the filtering protocol. In bold are reported those variants that 

fulfill the criteria for disease-causing mutations: affected genes already associated withpatient’s 

phenotype, exhibit complete segregation with the disease, and are absent in healthy controls 
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Figure 60. Alignments loaded on IGV 2.1(Integrative Genomics Viewer) for every causative 

mutation reported in bold in Table 2. Chromosomal view has the covered 41bp delimitated in red, 

followed by genomic coordinates, relative coverage for single base pair, and alignments covering 

101 bp in average. At the bottom of every image the reference sequence and the corresponding 

amino-acid sequence are visible. 
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5.2.3.1. Subcohort A 

Case 1-A, a female, showed a de novo transition in exon 3 of the DCX 
gene (NM_000555.3) leading to a nonsense mutation. The reading frame 
was interrupted by a premature stop codon possibly leading to nonsense-
mediated decay (NMD) of the mRNA as suggested by the prediction tools 
(Polyphen2, Mutation Taster, and SIFT). Leger et al has reported the same 
mutation[234]. A paternally inherited SHANK3 mutation, considered 
probably damaging by Polyphen2, was also present. Case 2-A showed two 
mutations both in ALDH7A1 gene, one inherited from the father and the 
other one from the mother. The paternal allele had a transition reported in 
ESP (MAF 0.0077%) and HGMD (CM087549). The maternal allele had a 
mutation occurring in intron 16, 5 bp upstream to the previous exon. This 
mutation was present in ESP (MAF 0.0231%) in heterozygosis and was 
also reported in HGMD (CS091873). The intronic variant was predicted to 
alter the splicing by skipping of exon 16. Case 3-A had a maternally 
inherited missense mutation at GPR98 gene that was predicted as damaging 
by one prediction tool. Case 4-A, showed a de novo splice site mutation in 
the SCN1A gene. A heterozygous missense mutation of POLG, was also 
detected both in the patient and in his normal father. This alteration was 
given as damaging by prediction tools. Case 5-A showed a 1-bp deletion, in 
the KCNQ2 gene creating a frameshift with a premature stop 15 codons 
downstream. The mutation was inherited from the father who suffered from 
the same type of epilepsy. A missense mutation in MAGI2, predicted as 
damaging and inherited from her normal mother was also present. Case 6-A 
showed a de novo missense substitution in the KCNQ2 gene. Other two 
heterozygous missense mutations were detected in GPR98 and TBC1D24, 
both inherited from the normal father. Case 7-A had two missense 
mutations at SCN1A and SCN1B, both predicted as damaging. SCN1A 
mutation was de novo, whereas SNC1B alteration was inherited from the 
father. 

5.2.3.2. Subcohort B 

Case 9-B showed a 1-bp exonic duplication in the GABRG2 gene. This 
duplication creates a frameshift starting at codon Ala118 with the new 
reading frame ending in a stop five codons downstream. The mRNA was 
predicted as target for NMD by MutationTaster. The same duplication was 
found in the father who suffered from the same condition. A mutation of 
RELN, predicted as damaging and inherited from her normal mother was 
also detected. Case 10-B had a heterozygous missense mutation in the 
GRIN2A gene inherited from his mother who showed an overlapping 
phenotype. This transversion occurred in a highly conserved nucleotide. A 
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missense mutation in the RELN gene, predicted damaging by 
MutationTaster, resulted to be inherited from the normal father. Case 13-B 
showed a maternally inherited missense transition in the SCN2A gene, 
affecting a highly conserved nucleotide and predicted to be damaging by 
SIFT and Mutation Taster but not by Polyphen2. Case 16-B had two 
missense mutations at GPR98 and GRIN2A, both predicted to be damaging 
by at least one prediction tool. Both GRIN2A and GPR98 mutations were 
inherited from the normal father. Case 19-B had a predicted damaging 
missense mutation at SCN9A, inherited from the mother. Cases 8-B, 11-B, 
12-B, 14-B, 15-B, 17-B, and 18-B did not show any possible causative 
mutation. 

5.2.3.3. Control Cohort Variants 

The examination of the 22 variants found in controls after discrete 
filtering revealed that only 4 of these, all heterozygous, were potentially 
disease causing. In particular, we found a missense substitution 
p.(Gly216Ala) (c.647G4C) in CHRNA4 gene (NM_000744) in one case 
and a heterozygous missense mutation p.(Gly1602Ser) (c.4804G4A) in 
FLNA gene (NM_001110556) in a female subject. A third control subject 
had a mutation of UBE3A (NM_000462) (c.1735G4A, p.(Val579Met)) and 
a second mutation of SCN1B (NM_199037) (c.178C4T, p.(Arg60Cys)). 

5.2.4. Discussion 

We used a NGS-based approach to test 67 epilepsy genes in 19 patients 
with different types of epilepsy. Patients had been stratified in two groups 
according to their neurological phenotypes. In the group A, including seven 
patients whose clinical features were rather suggestive for a specific 
syndrome, we detected a likely causative mutation in six (cases 1-A, 2-A, 
4-A, 5-A, 6-A, 7-A). In the group B, including 12 patients with a 
phenotype not distinctive for any specific gene, we have been able to find a 
plausible causative mutations only in three (cases 9-B, 10-B, 13-B), 
whereas the remaining cases were either negative (seven cases) or had 
mutations whose role was unclear (cases 16-B and 19-B). These results 
were not unexpected and emphasize the restriction of this approach is a 
lack of knowledge about the functional role of most variants, resulting in a 
large number of variants of uncertain significance. For this reason, the 
diagnostic yield of 47% (9/19) is quite high. The 12 cases who had at least 
one mutation are discussed below. Patient 1-A had a typical clinical picture 
of Lennox–Gastaut syndrome and magnetic resonance imaging showed a 
very large double cortex overlapping with the subcortical band heterotopias 
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syndrome. The de novo truncating mutation of DCX fits very well with her 
double cortex. The mutation of SHANK3 was inherited from her normal 
father. SHANK3 alterations are causative of Phelan- McDermid syndrome 
[235] and are characterized by complete penetrance. Thus, we assumed that 
this missense mutation was likely benign. Patient 2-A showed neonatal 
seizures and multifocal epileptiform discharges at EEG, which became 
normalized with pyridoxine. Presently the patient is 14 years old and the 
treatment with pyridoxine allowed a complete control of seizures with a 
normal psychomotor development. She had a compound heterozygous 
mutation for ALDH7A1. The intronic mutation would have been lost if we 
had disregarded all SNPs reported in public databases, whereas we have 
taken into consideration all the SNPs with a MAF<1%. Actually, both 
mutations have already been described in patients with pyridoxine-
dependent epilepsy [236]. The finding that her epileptic crisis ceased after 
pyridoxine treatment indeed demonstrated the causality of the ALDH7A1 
mutations. Patient 3-A, who was also affected by pyridoxine-dependent 
epilepsy, had normal IQ No mutations were detected in the candidate 
ALDH7A1 gene, whereas a missense mutation was present in GPR98 
inherited from the normal mother. Alterations of GPR98 have been 
associated with familial febrile seizures and autosomal recessive or digenic 
dominant Usher syndrome. However, the clinical phenotype of the patient 
was completely different from these conditions. Our findings suggest that 
pyridoxine-dependent seizure does not only rely on ALDH7A1 mutations. 
Patient 4-A had a clinical diagnosis of Dravet syndrome, so the de novo 
splice site mutation of SCN1A fitted well with his phenotype. The 
heterozygous mutation in POLG was considered not associated with his 
condition because it was also present in the healthy father, whereas 
dominant POLG mutations are associated with adult onset progressive 
external ophthalmoplegia [237]. Patient 5-A had neonatal generalized 
tonic-clonic seizures, occurring on the second day of life, not responsive to 
any therapy. Seizures ceased spontaneously at the 25th day of life. Her 
father, who was found to carry the same mutation, had the same neonatal 
condition also ending at the 25th day of life. The frameshift mutation at 
KCNQ2 well correlated with the phenotype [238]. The mutation in MAGI2, 
inherited from the healthy mother, was not considered disease causing, 
although it was predicted as probably damaging. Haploinsufficiency for 
MAGI2 has been associated with hypsarrhythmia [239], a condition 
different from the one we observed in this family. Patient 6-A showed 
neonatal seizures since his 3rd day of life that ceased 1 month later. He 
then suffered from sporadic seizures episodes persisting until now (8 years 
old). He also presented a severe pervasive developmental disorder. The 
family history was negative. He had a de novo missense mutation of 
KCNQ2. This type of mutation has been reported in several patients with 
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early onset epileptic encephalopathy[240] in contrast to frameshift or 
nonsense mutations that are more frequently found among patients with 
BFNS. Patient 7-A was affected by generalized epilepsy with febrile 
seizures plus (GEFSP) and had normal IQ. Our investigations revealed a de 
novo missense mutation of SCN1A and a missense mutation of SCN1B 
inherited by the father. The two mutations could explain her phenotype as 
GEFSP is extremely heterogeneous, and both SCN1A and SCN1B are 
among the genes associated with this condition[241]. Patient 9-B, during 
her first year of life suffered from numerous febrile seizures that 
diminished later on. She had a frameshift mutation at GABRG2 present 
also in her father who suffered from febrile seizure until 5 years of age. In 
fact, mutations of GABRG2, either missense or truncating, cause a 
spectrum of seizure disorders, ranging from early-onset isolated febrile 
seizures to GEFSP, type 3, which represents the most severe 
phenotype[242]. The type of febrile seizures present in this patient and in 
her father fits well with the milder phenotype. The heterozygous mutation 
of RELN has not been considered as causal of her phenotype because only 
recessive mutations of this gene are associated with a pathogenic condition 
characterized by lissencephaly not present in our patient who has a normal 
psychomotor development. Patient 10-B showed a typical clinical and 
EEG’s picture of benign childhood epilepsy with centrotemporal spikes. 
We detected a missense mutation at GRIN2A that was also present in his 
mother and aunt (the sister of the mother) showing the same clinical and 
EEG’s picture with remission of seizures in adolescence and borderline 
cognitive level. Our patient did not have overt seizures until the age of 7 
years when rolandic epilepsy appeared. A series of mutations of this gene 
have been described in subjects/families with a phenotype overlapping that 
of our patient including learning disabilities. Patient 13-B had a missense 
mutation of SCN2A inherited from her mother. Mutations of this gene are 
associated with noteworthy clinical variability ranging from familial benign 
seizures to generalized epilepsy with febrile seizures or epileptic 
encephalopathy. The patient presented only febrile seizures, whereas her 
mother had benign generalized epilepsy with absences. Patient 16-B had an 
epileptic encephalopathy with severe cognitive impairment. The two 
missense mutations highlighted in GPR98 and GRIN2A did not seem 
related to his phenotype. As he was born from healthy consanguineous 
parents, an autosomal recessive condition has to be taken into 
consideration. Finally, patient 19-B had a missense mutation of SCN9A 
predicted as damaging. However, mutations of this gene are usually 
associated with febrile seizure, GEFSP, and Dravet syndrome, whereas the 
patient’s phenotype was suggestive of an epileptic encephalopathy strongly 
resembling West syndrome with hypsarrhythmia, spasm, and psychomotor 
regression. Both his parents were healthy.  
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Our targeted platform was thought with the aim to provide a quick and 
cheap molecular diagnosis to most patients with an epileptic disorder. 
When we built the platform, we thought we could identify the causative 
mutation independently from any clinical information. In this sense we 
required the specialist to select the cases in a totally random way and 
without giving us any information about their phenotype and family 
history. The only request was to exclude cases with holoprosencephaly for 
which we have a dedicated NGS platform. Actually, the finding of multiple 
candidate mutations made clear that the culprit gene could be highlighted 
only by knowing in detail both the patient’s phenotype and the family 
history. Moreover, predicted damaging mutations had been detected in the 
healthy controls as well. Eventually, in 9 of 19 patients we identified a very 
likely causative mutation (Figure 59) with most of them detected in cohort 
A including patients whose phenotype indeed suggested the involvement of 
a specific gene. Among the 12 patients owing to cohort B, affected by 
different types of epilepsy not suggestive for any or a single specific gene, 
we could find the most likely causative mutation only in three and in all of 
them (cases 9-B, 10-B, 13-B) the alteration could be hardly suspected a 
priori.  

The absence of any mutation in seven patients (cases 8-B, 11-B, 12-B, 
14-B, 15-B, 17-B, 18-B) indicated that alterations in many other genes not 
present in our platform are associated with epilepsy, stressing the high 
genetic heterogeneity of this disorder.  

The analysis of the control cohort revealed four potentially damaging 
mutations in three healthy individuals. None of these variants were 
previously reported in HGMD. One female subject had a FLNA mutation 
predicted to be damaging. We could not define whether this was a benign 
variant rather than a really damaging mutation with incomplete penetrance 
as reported for females with mutation of this gene and cardiac valvular 
dysplasia (OMIM #314400). The interpretation of the CHRNA4 mutation 
was also difficult as alterations of this gene can cause either nocturnal 
frontal lobe epilepsy type 1, although with incomplete penetrance, or 
nightmares and other sleep disorders that are often undiagnosed. Variants 
in SCN1B and UBE3A were identified in the same subject. As in the case 
of FLNA, the SCN1B mutation could be either neutral or pathological with 
incomplete penetrance, whereas the UBE3A mutation could be either a 
benign variant or disease causing but inherited from the father.  

To conclude, we were unable to interpret some of the genetic lesions we 
met in the control cohort, further stressing that our knowledge of genetic 
variants is presently limited, increasing the risk of false-positive and false-
negative information. If these lesions were indeed pathogenic, we should 
consider the hypothesis that common disease traits such as epilepsy are the 
result of different genetic components. In fact, the observation of 
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deleterious mutations in 237 ion-channel genes with the same prevalence in 
individuals with epilepsy and control subjects suggested that, at least for 
these genes, the personal risk assessment in epilepsy depends more on the 
combination of the variants rather than specific deleterious variants[243]. 
The lack of enrichment of protein-disrupting ion-channel mutations in 
individuals with epilepsy has been confirmed by Heinzen et al[244]. These 
authors also demonstrated that single epilepsy-susceptibile variants 
identified by exome sequencing in patients with idiopathic generalized 
epilepsy (juvenile myoclonic epilepsy and absence epilepsy), although rare, 
were possibly real risk factors, each of them accounting for only a small 
fraction of individuals with epilepsy. This burden of data makes evident the 
complex architecture of epilepsy with genetic heterogeneity much higher 
than expected. It is conceivable that in the near future the collection of 
clinical history, EEG, and imaging will be combined with the analysis of 
NGS-dedicated platforms. The negative cases will be analyzed for whole 
exome if not for whole genome. The advantages of this approach are 
evident both in the immediate (consulting for risk of recurrence) and in the 
long run when specifically targeted treatments will be adopted.  

We have been able to conclude the analysis of nine patients (the number 
of patients we pool in a single lane), including the enlargement of the 
investigation to parents, in 8–10 weeks with a cost per patient comparable 
to sequencing 1–2 medium-to-large-sized genes by conventional 
techniques, a result overlapping that reported by Lemke et al[35]. Our 
results suggest that using a single platform to sequence all or most of the 
epilepsy genes may increase the diagnostic yield. This is particularly true in 
absence of clinical signs suggestive for involvement of a specific gene like 
in three patients of our cohort. Obviously novel mutations require that their 
causative role is further confirmed by segregation or functional analyses. 
On the contrary, smaller platforms containing a limited number of genes 
may reduce the efficacy of the NGS-based approach, as epilepsy is 
extremely heterogeneous both under the genetic and phenotypic point of 
view. Our platform, as well as the one already described by Lemke et al, 
has the advantage that can also be run on ‘benchtop’ sequencers, which 
forego high yields in exchange for low capital costs, small physical 
footprints, and more rapid turnaround times, making them far more 
attractive to smaller biomedical laboratories. 
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5.3. Lower motor neuron disease with respiratory 

failure caused by a novel MAPT mutation 

Lower motor neuron diseases (LMNDs) are a group of heterogeneous 
clinical presentations accounting for approximately 10% of all motor 
neuron disorders. Various names have been used for different forms of 
LMND, such as progressive muscular atrophy (PMA), distal muscular 
atrophy, and segmental distal/proximal spinal muscular atrophy. PMA is 
diagnosed clinically by the presence of progressive generalized muscular 
involvement and proven anterior horn cell degeneration at postmortem 
examination. PMA differs from amyotrophic lateral sclerosis (ALS), in 
which both upper and lower motor neurons are clinically involved. 
Progression may be rapid or display a gradual deterioration, with PMA 
showing a longer survival compared with ALS. The underlying genetic 
defects are heterogeneous [245]. Mutations in the microtubule (MT)-
associated protein tau (MAPT) gene have been reported in 
neurodegenerative disorders with abnormal tau protein accumulation, such 
as frontotemporal dementia with parkinsonism linked to chromosome 17 
(FTDP-17), progressive supranuclear palsy, corticobasal degeneration, and 
late onset Parkinson disease dementia [246]. MAPT involvement in the 
etiology of motor neuron degeneration was derived from the observation of 
tau pathology in subjects with ALS/Parkinson-dementia complex from 
Guam, New Guinea, and the Kii peninsula of Japan[247]. Nevertheless, 
MAPT mutations have not yet been linked to a pure motor neuron disease 
phenotype. 

Hereby we describe the identification of a novel MAPT mutation 
underlying adult-onset autosomal dominant LMND with prominent 
respiratory insufficiency, proximal weakness of the upper limbs, and no 
signs of frontotemporal lobar degeneration or semantic dementia in a large 
Italian family. 

5.3.1. Methods 

5.3.1.1. Linkage Analysis 

DNA samples were obtained from 10 subjects (IV_17, 18, 19, 20,21, 22, 
23, 24, 25,26, and 29). Genome-wide genotyping of samples IV_17, 18, 
20,21,22, and 26 was performed using Affimetrix GeneCHip Human 
Mapping 250K Array. Nonparametric linkage and parametric analyses were 
performes using ALLEGRO software [248]. Twenty-five short tandem 
repeats (STR) markers were also genotyped by PCR.Haplotypes were 
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reconstructed by ALLEGRO and displayed using HaploPainter 
(http://haplopainter.sourceforge.net). 

5.3.1.2. Exome capture and sequencing 

A total of 5 µgof genomic DNA from 3 affected (IV_17, 18, and 21) and 
one unaffected (IV_23) family members underwent exome analysis using 
the SureSelect Human All Exon Kit (Agilent Santa Clara, CA). Samples 
were processed according to the Illumina protocol, following 
manufacturer’s instructions. Sequencing was performed on the Illumina 
Genome Analyzer IIx platform as paired-end 100-base pair reads. An 
exome capture was considered successful if >80% of the target regions 
covered with a high-quality genotype.   

5.3.1.3. Bioinformatics analysis of exome data 

Reads were aligned to the GRCh37/hg19 genomic reference using BWA 
(v.0.5.9). Mapped reads were filtered for PCR duplicates using SAMtools 
(v.0.1.18), locally realigned around inferred insertions and deletions and 
their base qualities recalibrated in the context alignment using GATK (v. 
1.4-21). Variant calls were obtained by GATK (Unified Genotyper) as well. 

5.3.2. Results and Clinical findings 

Five of the family members (IV_20, 21, 17, 18, and 26) presented 
common sympthoms: progressive proximal weakness (mainly affecting 
upper limbs) with weak tendon jerks, no bulbar or pyramid signs, early 
development of restrictive respiratory insufficiency with the need of 
mechanical ventilation, and no dementia. 

Patient IV_20 was 55 years old when she presented with lumbar 
backhache and difficulties staying upright. Progressive weackness of the 
proximal upper limbs and dyspnea with restrictive lung disease appeared a 
few months later. The patient needed noninvasive ventilation at age of 67, 
and from the age of 71, she could not walk and required a wheelchair. The 
patient started therapy with 550 mg riluzole twice daily, in the hypothesis 
of a motor neuron disease. At the age of 70, she developed mild anxiety, 
partly due to the respiratory distress and the use of noninvasive ventilation. 
She had no frontal release signs. The patient died of respiratory failure at 
the age of 72. 

Patient IV_21 presented at 65 years of age with lumbar backache. One 
year later, she developed dyspnea and progressive restrictive respiratory 



Clinical Applications 

 

 160

insufficiency, which required noninvasive ventilation. She died at 72 years 
of age of respiratory failure and underwent autopsy. 

Five cousins (subjects IV_17, 18, 26, 27, and 28) had similar symptoms 
such as lumbar backache, leg cramps, fatigue, mild dyspnea, and proximal 
upper and lower limb weakness. None of them had psychiatric symptoms. 
Neuropsychologic examination in patients IV_17 and IV_18 was normal. 

Two other cousins (subject IV_27 and IV_28) and uncle (subject III_10) 
of the probands died after short history of fatigue and dyspnea. Their 
clinical records have been collected. Patients IV_27 and IV_28 presented 
with bradykinesia and camptocormia and were initially diagnosed 
elsewhere with Parkinson disease, which was intriguing because of the 
known association of parkinsonism with motor neuron disease as part of 
the FTDP-17 and Guam syndromes. However, there was no mention of 
levodopa response, and whether the anterior flexion of the trunk without 
resting tremor and muscular rigidity was due to Parkinsonism or to axial 
muscle weakness remains unclear. 

5.3.2.1. Genetic studies 

Using a core pedigree (IV_17, 18, 20, 21, 22, and 26) a genome-wide 
linkage analysis revealed a nonparametric linkage LOS score of 1.88 and 
parametric LOD score of 1.78 on chromosome 17q21 (Figure 61B). STR 
haplotype analysis confirmed this finding (Figure 61C) and defined an 8-
Mb candidate region.  
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Figure 61. A. Pedigree of the family. Arrows indicate probands IV_20 and IV_21. (B) Multipoint 

linkage analysis of the genome-wide scan. The peak on chromosome 17 is indicated by the arrow. 

(C) Parametric multipoint linkage analysis with short tandem repeats on chromosome 17. (D) 

Scheme of the human tau protein encoded by MAPT. The electropherogram of the c.1043A>G 

mutation in exon 12 resulting into the p.D348G amino acid substitution. (E) ClustalW multiple 

sequence alignment of the tau region containing the mutated residue in the family.  

 
Whole-exome analysis was performed on affected subjects IV_17, 

IV_18, and IV_21 and one unaffected (IV_23) member of the family. We 
focused on heterozygous variants in exons, in and near (20 bases from 
exons) splice site junctions, in 5’ and 3’ untranslated regions, and that 
segregated with the disease among the 4 sequenced individuals. After 
filtering out variants found in uncorrelated samples from an internal 
exome-sequencing database and the ESP database, only 2 variants in 2 
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genes remained, both single-nucleotide substitutions affecting sperm 
associated antigen 5 (SPAG5) and MAPT, which are found within the 8-
Mb linked region on chromosome 17. The MAPT variant 
(NM_005919.5:c.1043A>G) involves exon 12, resulting in the p.D348G 
change at protein level (NP_005901.2). Sanger sequencing of MAPT in 
affected patients (IV_17, 18, 20, 21, 22, and 26) confirmed the same 
heterozygous mutation (Figure 61D) and its autosomal dominant pattern of 
inheritance. 

The transition was not detected in more than 500 controls. The affected 
residue, located in the fourth repeat domain (R4), is highly conserved 
among higher eukaryotes (Figure 61E) but not among other repeat domain 
in the human tau sequence (Figure 61F). 

5.3.2.2. Transcript analysis 

The expression of MAPT exons 2,3 4A and 10 is temporally and 
spatially regulated. In particular, the inclusion of exon 10 leads to the 
production of isoforms containing 4 MT-binding repeats (4R-tau), whereas 
its exclusion leads to the synthesis of 3.repeat isoforms (3R-tau). Similar 
levels of 3R and 4R isoforms are detected physiologically in normal adult 
human cerebral cortex. However, this ratio is often altered in the cortex 
patients with MAPT mutation. Therefore, the possible effects of the 
c.1043A>G MAPT mutation at the transcript level has been checked. Total 
MAPT expression has been assessed by quantitative reverse transcription-
PCR analysis in postmortem samples from patient IV_21 including cervical 
spinal cord. There was no a significant difference between patient and 
control MAPT RNA levels, with the exception of the frontal lobe of patient 
IV_21, which had less MAPT transcript (ratio 0.58 ± 0.09). The levels of 
expression of 4R:3R isoforms were estimated as well, by using specific 
probes designed to detect the 2 distinct isoforms. The data were normalized 
to housekeeping gene 18S and total MAPT. We failed to detect any 
difference between samples from IV_20 and controls. Conventional reverse 
transcription-PCR analysis confirmed these findings. 

Taken together, these findings argue against a transcriptional effect of 
the c.1043A>G mutation on expression of MAPT transcript, as previously 
observed for other mutations in exon 12[249]. Moreover, no quantitative or 
quantitative alteration in MAPT transcript was observed in the spinal cord, 
making it an unlikely cause of the selective involvement of the spinal cord 
observed in our patients.  

5.3.2.3. Immunocytochemical analysis in NSC34 cell models 
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One of the physiologic roles of tau within the cell is thought to be the 
stabilization of microtubules (MTs). Therefore, has been explored whether 
the mutation p.D348G mutation impairs tau stability and affects its function 
on MT assembly and organization. A differentiation protocol was used in 
NSC-34 motoneuron-like cells to achieve a motoneuron phenotype and to 
promote neurite elongation. The established cell models underwent 
confocal immunocytochemical analysis using antibodies directed against 
tau and acetylated tubulin (Figure 62). 

In some cells, MT bundles were observed after tau transfection and this 
phenomenon was more evident for mutated tau protein than for wild-type 
moiety. Cells overexpressing mutated tau isoforms displayed a consistent 
reduction in neurite length and arborization. A disturbance in MT stability 
and organization was also confirmed when evaluating the acetylated 
tubulin signal, which was decreased in transfected cells expressing mutated 
tau (Figure 62A). Confocal analysis showed that mutated tau caused a 
reorganization of the MTs and the creation of thick MT bundles, which 
appeared as swirls around the nucleus. These cells consistently displayed a 
poor MT network with few, short axons compared with nontransfected cells 
or cells expressing wild-type tau (Figure 62B). 

Despite these findings, the colocalization of tau and acetylated tubulin 
was preserved, suggesting that the p.D348G mutation does not impair the 
binding of tau to MTs. This concept has been further confirmed by 
biochemical studies (Western blot analysis).  
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Figure 62. Immunocytochemical studies. (A) NSC34 cells were stably transfected with vector 

overexpressing complementary DNA containing wild-type (WT) and mutated (D348G) tau open 

reading frames. Confocal microscope immunocytochemical analysis was performed using 

antibodies directed against human tau (5A6). Microtubule networks were detected by 

immunolabeling with antibodies against acetylated tubulin. No difference was observed in the 

subcellular localization of tau protein. Impaired axonal elongation was more evident in the 

presence of mutated tau protein. (B) Double-immunofluorescence staining of tau transfectants. 

Cells were labeled with antibodies to tau (red) and acetylated tubulin (green). Cells overexpressing 

D348G tau exhibited short neurites, but colocalization of tau and acetylated tubulin signals (orange 

and yellow color) was observed for both WT and mutant transfectans, suggesting that the D348G 

mutation does not likely impair tau binding to microtubules.  

5.3.3. Discussion 

MAPT mutations have been described in different neurodegenerative 
diseases, including FTDP-17, progressive supraneuclear palsy, and 
corticobasal degeneration. In some of the cases described so far, MAPT 
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mutations generated neurodegenerative disease phenotypes in which the 
spinal cord was clinically and/or neuropathologically involved, as in the 
case of the disinhibition-dementia-parkinsonism-amyotrophy complex 
[250]. 
Degeneration of spinal motor neurons with tau inclusions but without 
amyotrophy has been described in patients with FTDP-17 affected by the 
MAPT p.N279K mutation [251]. Similarly, a MAPT p.L317M mutation in 
exon 11 has been found to cause a phenotype characterized by dysarthria, 
tremor, amyotrophy, and frontal signs. Some of the patients developed 
levodopa-resistant Parkinsonism and supranuclear palsy, whereas others 
displayed corticobasal degeneration. Notably, histologic examination of the 
cervical spinal cords from these patients revealed degeneration of the spinal 
motor neurons and tau inclusions. 
The suggestion that tauopathy may be involved in motor neuron pathology 
was supported by transgenic models. Mice expressing human P301L tau 
exhibit a motor phenotype with evidence of motor neuron loss, and 
transgenic mice expressing human tau in both neurons and glia also 
displayed axonal degeneration at the spinal cord level [252]. 

 
The family we examined clearly proves the link between MAPT 

mutation and tau pathology in motor neuron pathology. The phenotype 
associated with the novel p.D348G mutation described here resembles that 
of PMA, including the involvement of the lower motor neuron of the 
proximal limbs and trunk, subsequent respiratory failure, and absence of 
dementia and pyramidal and bulbar signs. A low degree of clinical 
variability was observed among affected family members. 

Patient IV_20 presented a slow disease course (12 years), whereas the 
course was slightly faster (5-7 years) in the case of his sister and cousins 
(IV_21, IV_27, and IV_28). 

None of these patients developed cognitive deficits, not even patient 
IV_20, who had the longest disease course. This point represents a novelty 
in the framework phenotype associated with mutations in MAPT, in which 
the frontotemporal deficits have so far been reported as hallmarks. 

Only one patient (III_10) would have developed delirium at the last 
disease stage. Unfortunately, whether this suggests phenotypic 
heterogeneity or was due to unknown comorbidities remains to be 
elucidated because detailed clinical and instrumental data were not 
available. 

All affected patients developed respiratory insufficiency, early in the 
disease course in some cases. Some other cases have reported a similar 
involvement, despite the age at disease onset being different. 
A homozygous APT S352L mutation in exon 12 has been reported to cause 
autosomal recessive restrictive respiratory failure during youth in 2 
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siblings[253]. However, we can exclude that this phenotype is due to 
mutations within a specific tau protein domain, because other mutations 
affecting surrounding residues often result in frontotemporal lobar 
degeneration without spinal cord involvement. 
Most of the described MAPT mutations, especially those in intron 10, 
pN279K, and p.S305N, have been shown to induce a preponderance of tau 
protein isoforms 4 MT-binding repeats, which alters kinase anterograde 
transport because tau competes with the kinases at the MT-binding site. 
Other exonic mutations located within the MT-binding repeats decrease tau 
binding to MTs, causing destabilization and resulting in faulty axonal 
transport [254]. The p.D348G mutation does not alter the expression of the 
3R and 4R isoforms or the ability of tau to bind MTs, which suggests that 
the mutation causes degeneration via different mechanism. We speculate 
that mutated tau escapes natural proteasome degradation and consequently 
accumulates in neurons, leading to neurotoxicity. The neuropathologic 
findings in our patient seem to support this hypothesis. 

The discovery of a new MAPT mutation causing autosomal dominant 
motor neuron disease associated with tau pathology represents a new 
finding for the etiology and pathogenesis of these neurodegenerative 
diseases and offers new possible diagnostic and therapeutic approaches for 
a category of presently incurable diseases. Moreover, the reported mutation 
broadens the spectrum of phenotypes associated with MAPT alterations, 
suggesting that patients with autosomal dominant LMDs with respiratory 
involvement should also be screened for MAPT mutations.  
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Chapter 6 

6 Conclusions and Future Works 

The aim of the work described in this thesis consisted in the design and 
in the development of innovative strategies and technologies dedicated to 
manage and interpret the overwhelming amount of data produced by high 
throughput sequencing platforms, particularly focusing on genomic 
variants. 

 
It has been discussed how new generation sequencing is revolutionizing 

the Genomic research empowering clinical diagnostics and other aspects of 
medical care. Nonetheless, we highlighted how these technologies would 
be useless if not supported by Bioinformatics, dedicated to analyze 
sequencing data, manage and support genomic data interpretation. 

 
With these goals in mind, we have developed a system written in Java 

and based on a MySQL database to annotate, store and extract genomic 
variants coming from targeted enrichment sequencing experiments. 
This system allowed us to manage hundreds of sequenced samples and 
millions of related variants. By using its web client interface, we extracted 
subsets of interesting annotated genomic variants ready to be further 
analyzed for each sequencing project. One of the most important features 
of the developed system has been its capacity to perform case-control 
studies by reporting cases genomic variants and matched controls data 
aggregates on the fly.  
We have discussed how the limitations of the system in terms of 
computational performances and flexibility jointly with the introduction of 
new developed technologies leaded us to change our strategy and bet on a 
new approach to the problem. 
Therefore a new system to manage both genotype and phenotype of the 
sequenced individuals has been developed. Based on CouchDB, a NoSQL 
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database, we showed how it allows annotating, storing and retrieving 
millions of genomic variants and significantly reduced computational times 
if compared to the previous system. Moreover, we showed how the 
integration into the i2b2 framework allows first to select the patient cohort 
of interest by the available phenotypic data and then to retrieve related 
genomic variants, creating the bases for phenotype-genotype correlation 
studies. 
Future directions comprehend the extension of the developed NoSQL 
system in order to set up the update procedures that guarantee the 
continuous state-of the art of the genomic variant annotations. The system 
flexibility makes this effort more straightforward respect to a relational 
database application. Another point would be the enhancing of the 
developed i2b2 plug-in and cell, allowing for knowledge-base queries, such 
as pathways, protein-protein interactions, list of known-disease genes or by 
implementing those discussed ontologies-based search algorithms for gene 
prioritization. The latter point, giving the inbound phenotype data from 
i2b2, should be straightforward at least for phenotype-ontologies based 
gene prioritization tools such as Phevor [112] or Extasy [118].    
 

We also dealt with one of the most important problem in genomic 
variant interpretation, which is the in-silico prediction of genomic variant 
pathogenicity inferred by their probability to alter protein stability and/or 
function. 
We discussed how the outcome of existing variant prediction tools is one of 
the massively used parameters to discern, among the plethora of 
sequencing variants, potential disease-related variants from neutral ones. 
We therefore developed PaPI, a new algorithm that applies machine 
learning  algorithms with features derived from differences into the pseudo 
amino acid composition (PseAAC) of known disease and neutral protein 
variants. The algorithm is able to classify unseen genomic variants into 
damaging or tolerated class within a confidence score. We demonstrated 
that PaPI results in higher accuracy with respect to the state-of-art variant 
prediction tools, and in higher coverage, encompassing in fact every 
genomic variant and type. Moreover it is suitable to assert the true variants 
pathogenicity of those variants altering amino acid patterns such as in 
binding and methylation sites. We also developed a free web accessible 
application (http://papi.unipv.it) able to predict thousands of variants in 
runtime. 
We argue that PaPI could be further improved and/or specialized by e.g. 
tuning some parameters we omitted in development phase such as the 
amino acid snippet length where PseAAC is computed. Also, the inclusion 
of other amino acid properties such as charge or side chain mass into the 
PseAAC should be tested. Being PaPI a machine learning method, one can 
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also thing to specialize it to predict mutation within a particular gene or 
selected genes, assuming to have a consistent number of known 
observations. This should lead to an improved accuracy for the particular 
case respect to the general model we made available for the community.  
 

We finally reported some successful clinical applications in which 
sequencing data analysis procedures joined with the developed relational-
based variant management system allowed the geneticists to investigate the 
genetic causes of heterogeneous diseases such as dehydrated hereditary 
stomatocytosis, epilepsy and lower motor neuron disease. 
However, as highlighted in these works, the solely identification of 
possible disease-related candidate genomic variants is not enough to assess 
variant pathogenicity and should be complemented by a rich phenotype 
patient data collection and experimental evidences that may varies case by 
case. 
We argue that the new developed variant management system integrated 
within the i2b2 framework will contribute to the first point, while PaPI can 
be used to better filter the list of possible disease-related genomic variants, 
but not avoiding the need of experimental evidence, especially in case of 
variants unreported in the scientific literature [255]. 
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Appendix A 

A.1 Data Format 
 

Hereby several genomic data formats discussed in the thesis are 
reported. 

 

Fastq 
 
Fastq is a standard format to store DNA sequencing reads and their 

quality scores in Phred [13] scale. Qualities are encoded in ASCII code 
starting from the 33rd character and ranging 40 possible values. 
A fastq file uses 4 lines to represent a single read:  
 

- the header representing the ID of the read 
- the sequence, a string of 5 possible characters: A,C,G,T and N 
- a comment line (beginning with “+” symbol)  
- the quality scores, one for each base, ASCII coded    

 

 
Figure A 1. an example of two reads in Fastq format. 

 

Variant Calling Format (VCF) 
 
VCF is a text file format introduce by 1000 Genome Project to store 

genomic variants belonging to one or more samples. The most recent 
version is the 4.2. 

It comprises meta-informations, a header and a body with a line for each 
variant. Each line contains information about genomic variant position on 
the reference genome, eventually variant caller filters, base coverage 
information and genotypes on reported samples. 
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Figure A 2. An example of VCF file 

Meta-informationis in a key=value format and includes the description 
of the attributes that describe a variant.  

Each line is tab-delimited and holds all variant data. Variant is 
univocally identified by the first five fields consisting of chromosome 
(CHR), relative position (POS), a dbSNP id (ID), reference base (REF) and 
comma-separated alternative bases (ALT). QUAL is a number correlated to 
variant quality. FILTER is a free text field with short name of the applied 
filter usually explained by meta-information. INFO can contains 
severaldata aggregates by samples: variant coverage, allele 
frequencies,number of samples holding variant. Variant sequence context, 
presence in variant databases and other optional annotations are usually 
defined in this field as well. FORMAT indicates how the following 
genotype fields are formatted and meta-information explain format 
abbreviations. Genotype fields having as the header the sample ids usually 
hold data on genotype by a numbered codification:0=REF, 1=first allele in 
ALT, 2 second allele in ALT etc. Genotype can be phased “|” or not “/”. 
Other genotype field components can be coverage for each allele and 
genotype quality. 
 

 

A.2 Code Snippets 
 
Herby diverse code snippets and related /*comments*/ are reported.  
 

RDBMS-VMS 
 
ServletNGS.java 

import javax.servlet.http.*; 
. 
. 
public class ServletNgs extends HttpServlet{  
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/*Properties file with infos on database,directorie s 
etc.*/ 
 private final static String PROPERTIES_FILE = 
"/conf/ngs.properties"; 
. 
. 
/*”cmd” is the HttpServletRequest parameter used to  call 
the a specific method of the ServletNGS class*/ 
 
private final static String COMMAND = "cmd"; 
 
private ConnectionPool connPool=null; 
. 
. 
 
/* Method “init” that is called only once at Servle t 
initialization. It load properties and initialize t he 
Connection Pool to the database*/ 
 
public void init(ServletConfig config) throws 
ServletException { 
  super.init(config); 
  URL url = 
getClass().getResource(PROPERTIES_FILE); 
  Properties properties = new Properties(); 
   
  try{ 
   connPool=ConnectionPool.getConnectionPool(); 
   }catch (ConnectionPoolException c){ 
    System.out.println(c); 
   } 
   
  try { 
   properties.load(url.openStream()); 
  } catch (IOException e) { 
   throw new ServletException(e.getMessage()); 
  } 
. 
. 
/* Method “doPost” tells the ServletNGS what to do in 
case of HTTP POST requests. It search for the COMMA ND 
parameter to which is associated a specific method. */ 
 
protected void doPost(HttpServletRequest request, 
HttpServletResponse response)  
 throws ServletException,IOException{ 
 
int command; 
  try { 
   command = 
Integer.parseInt(request.getParameter(COMMAND)); 
  } catch (NumberFormatException ex) { 
   command = 1; 
  } 
   
  switch (command) { 
 

case 1: 
   try {readMarkers(request, response); 
   } 
  catch (SQLException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } 
  break; 
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  . 
  . 
  case 12: 
   try {chooseCaseAndControls(request, 
response); 
   }catch (ConnectionPoolException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } 
  break; 
  . 
  . 
} 
 
/*the method “readMarkers” calls the method 
“getMarker()”of the DBAnalize class which returns a n 
iterable object that will be forwarded to the 
“markers.jsp” page as an attribute*/ 
 
private void readMarkers(HttpServletRequest request , 
HttpServletResponse response) 
throws ServletException, IOException, SQLException { 
 
 request.setAttribute("list", ((new 
DBAnalize(connPool)).getMarker()).iterator()); 
 RequestDispatcher 
rd=getServletContext().getRequestDispatcher("/marke rs.js
p"); 
 rd.forward(request, response); 
} 
. 
. 
 

ConnectionPool.java 
 

import java.net.URL; 
import java.sql.*; 
. 
. 
public class ConnectionPool { 
 
  /* The variable managing the only instance of 
ConnectionPool*/ 
 
private static ConnectionPool connectionPool = null ;   
 
 
/* queue of free connections */ 
 
private Vector freeConnections; 
 
/* database driver */ 

 
private String dbDriver;        
 
/* ConnectionPool constructor*/ 
 
  private ConnectionPool() throws 
ConnectionPoolException { 
    freeConnections = new Vector();  
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/* Method that load parameters containing database infos 
such as driver*/  
 
    loadParameters();   
 
/* Method that load database drivers*/  
 
    loadDriver();                     
  } 
. 
. 
 
/*invoke the constructor and return this class*/ 
 
public static synchronized ConnectionPool 
getConnectionPool()  
  throws ConnectionPoolException { 
    if(connectionPool == null) { 
      connectionPool = new ConnectionPool(); 
    } 
    return connectionPool; 
  } 
. 
. 
private void loadParameters() {..} 
. 
. 
private void loadDriver() {..} 
. 
. 
/*The method “getConnection” returns a free connect ion 
by pulling it from the queue of the free connection s or, 
in case of no available connections, it creates a n ew 
one*/ 
 
public synchronized Connection getConnection()  
  throws ConnectionPoolException { 
    Connection con; 
 
    if(freeConnections.size() > 0) {       
      con = (Connection)freeConnections.firstElemen t();   
      freeConnections.removeElementAt(0);                      
try { 
        if(con.isClosed()) {                     
con = getConnection();  
        } 
      } 
      catch(SQLException e) {            
        con = getConnection(); 
      } 
    } 
    else {                                 
      con = newConnection();             
    } 
    return con;                            
  } 
. 
. 
 
/*”newConnection” builds up a new connection to the  
database*/ 
 
private Connection newConnection() throws 
ConnectionPoolException { 
    Connection con = null; 
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    try { 
      con = DriverManager.getConnection( 
   dbUrl, 
   dbLogin, 
   dbPassword);  // crea la connessione 
    } 
    catch(SQLException e) {                            
throw new ConnectionPoolException();           
 } 
    return con;                                   
  } 
. 
. 
 
 

ReadVCFCallable.java 

import java.util.concurrent.Callable; 
. 
. 
/*The class ReadVcfCallable implements the Callable  
interface for concurrent programming. SerlvletNGS p ush 
this object into a ThreadPoolExecutor with a core p ool 
size equal to one*/ 
 
public class ReadVcfCallable implements Callable { 
  
 private InputStream is; 
 private String id_sample; 
 private String build; 
 
/*the ReadVcf class implements methods to parse and  
manipulate the VCF file*/ 
 
 private ReadVcf read; 
 private ConnectionPool connPool; 
  
/*constructor*/ 
 
  public ReadVcfCallable(InputStream ais, String 
aid_sample, String abuild,ReadVcf read,ConnectionPo ol 
aconnPool) { 
   is=ais; 
   id_sample=aid_sample; 
   build=abuild; 
   this.read=read; 
   connPool=aconnPool; 
   
  } 
  
 
/*override of he call() method*/ 
  
public boolean call() { 
   try{ 
   
/* parse the VCF by a ReadVCF method*/   
    
    
read.parseMutationVCF(is,id_sample,build,connPool);  
   
. 
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. 

. 
    
   } 
   
   return 1; 
   
  } 
  
  
} 
 

PredictionsRunnable.java 

import java.util.concurrent.Runnable; 
 
/*This class implements the Runnable interface. 
ServletNGS instanciates two objects (one per predic tion 
tools differentiated by the passed integer code)and  
start two threads in parallel*/ 
 
public class PredictionsRunnable implements Runnabl e { 
 
    private ConnectionPool conn; 
    private int code; 
    private Vector mutations; 
    private static final int DELAY = 100; 
. 
. 
    public PredictionsRunnable(ConnectionPool 
conn,Vector mutations,SharedData data, int code) { 
   this.mutations=mutations; 
   this.conn=conn; 

this.data=data; 
   this.code=code 
     } 
. 
. 
public void run() { 
       try { 
  
    switch (code){ 
 
/* MutationTaster */ 
   case 0: 
    try { 
   
/* calls the method that send the data via HTTP POS T to 
MutationTaster web service and retrieve results thr ough 
HTTP GET method. Insert the results into the databa se*/
    
     
    Vector mutOupDate1=new 
PredictionTools().MutationTasterPrediction(conn,mut ation
s,dir); 
     boolean 
data.MutationTasterUpdate(mutOupDate1); 
. 
. 
} 
   break; 
  
   /*PolyPhen-2*/ 
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   case 1: 
     
    try { 
 
Vector mutOupDate2=new 
PredictionTools().PolyphenPrediction(conn,mutations );
  
     boolean 
data.PolyphenUpdate(mutOupDate2); 
. 
. 
break; 
   
   
    } 
Thread.sleep(DELAY);                      
  
       } 
. 
. 

} 


