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(unknown)
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Abstract (Italiano)

La diffusione delle tecnologie di nuova generaziorper il
sequenziamento del DNA ha rivoluzionato il mondollaericerca
biomedica.

La crescente capacita dhroughput in termini di basi sequenziate
nell’'unita di tempo, insieme ai costi sempre pidotti per base € stato |l
trend degli ultimi dieci anni ed ha portato al sequenmato di migliaia di
esseri viventi.

A oggi, siamo in grado di leggere l'intero genomauda persona base
per base, identificare quelle varianti genomiche plbssono, ad esempio,
spiegare una singola patologia genetica o che atamenin maniera
significativa il rischio di sviluppare un tumoreo$siamo suggerire quali
farmaci potrebbero rivelarsi piu efficaci dato itofilo genomico del
paziente e quali terapie anti tumorali potrebbeatire a causa di una
particolare combinazione di mutazioni, espressiedeevoluzione di geni
sequenziati a partire da particolari tessuti.

La “medicina personalizzata” o “medicina di preois”, che consiste
nella pratica medica ottimizzata per i dati clinecmolecolari del paziente,
ha tutte le carte in regola per essere applicatanrbito diagnostico,
prognostico e terapeutico, al patto che essa vesgpportata da
un’adeguata tecnologiadi Bioinformatica.

Questa tesi vuole essere un contributo in questridne affrontando
due importante sfide che ciascun laboratorio, feeenso di queste
tecnologie a scopo di ricerca o clinico, deve affase: lagestionee
I"interpretazionedei dati di sequenziamento, con particolare fosuke
varianti genomiche.

Nel Capitolo 1 sono discusse brevemente le motorazilell’attivita di
ricerca di questa tesi e sono riassunte le solusmtuppate.

Nel Capitolo 2 e presentato lo stato dell’arte aetkecnologia di
sequenziamento, le sue applicazioni ed il consdguempatto sulla
comunita scientifica negli ultimi anni. Sono quindirodotte le tematiche
della gestione e dell'interpretazione dei dati gai, e infine spiegati nel
dettaglio alcuni dei principali database per i dgg¢nomici ed algoritmi
adibiti al’annotazione e all'interpretazione dirianti genomiche.

Nel Capitolo 3 e discussa l'architettura del sisaeswiluppato per gestire
i campioni sequenziati e le relative varianti geingdme. Vengono presentate
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le principali tecnologie e le risorse utilizzate.ieWe poi descritta
I'interfaccia web sviluppata. Dopo aver discussteadigmitazioni di questo
sistema, si introduce e si descrive una nuova teithia per la
memorizzazione di varianti genomiche e le relatie®mponenti
tecnologiche. Sono infine discussi i risultati dist effettuati con tale
piattaforma.

Nel Capitolo 4 viene presentato I'algoritmo readizz per classificare le
varianti genomiche descrivendo componenti e risatdezzate. Vengono
discussi i risultati ottenuti in termini di confrin con altri algoritmi di
predizione e casi particolari dove I'algoritmo nrasit suo valore aggiunto.

Nel Capitolo 5 sono presentate le applicazioniichie del primo sistema
di gestione delle varianti genomiche. Per ciascaso¢ sono riportati il
background clinico, i metodi ed i risultati.

Nel Capitolo 6 sono presentate le conclusioni esiials sviluppi futuri.

L’attivita illustrata nel Capitolo 3, € frutto dellcollaborazione con Angelo
Nuzzo per il primo sistema di gestione delle vdriagenomiche e della
collaborazione con Matteo Gabetta, Daniele Seg&gdtore Rizzo e Riccardo
Bellazzi per il secondo sistema basato su NOSQb2.i

La parte metodologica dell’'algoritmo per la predie delle varianti

genomiche presentato nel Capitolo 4 €& stata impitatee in collaborazione
con Simone Marini.

Gli studi sperimentali presentati nel Capitolo 5Snsostati effettuati dal
Dipartimento di Genetica Medica dell’UniversitaRvia con la tecnologia di
sequenziamento (lllumina Genome Analyzer IIx) dRICCS Istituto

Nazionale Neurologico C.Mondino di Pavia.
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Abstract (English)

The advent of new generation sequencing techndogieas
revolutionized the scenario of omics-research.

Increasing throughput in terms of sequenced basdsr@ducing costs
per base have been the trends in the latest ters yavad allowed the
sequencing of thousands of living beings.

We are now able to read the whole genome of a peasasingle-base
resolution in a day, looking for the genomic vatgthat can explain his
particular disease or that can increase signiflgams risk of cancer. We
can suggest which drugs would be more efficienthenbasis on the patient
genomic profile and which cancer therapies may b# flue to his
particular expressions and mutations of the gemégsiticular tissues.
“Personalized medicine” or “precision medicine”, ialn is the medical
practice tailored on clinical and molecular patieldta, has now all the
potential to be applied into diagnostic, prognostia therapeutic patient
clinical course, in particular if supported by alidoBioinformatics
technology.

This thesis aims to be a contribution to this acéieent by dealing with
two important technological challenges that eacbeaech or diagnostic
molecular laboratory making use of new sequencexhiologies has to
face: themanagemenand theinterpretation of sequencing data, focusing
on genomic variants.

In Chapter 1 the motivations of the research agtiof this thesis are
briefly discussed along with the adopted soluticarsd their practical
applications.

In Chapter 2 the state of the art of the technolatpaling with
sequencing and its impact on the scientific comiyuthrough several
applications are described. Data management aedprgtation issues are
introduced. The most important genomic databasasam annotation and
prediction algorithm technologies are discussedels

In Chapter 3 the overall architecture of the systlaweloped to manage
sequenced samples and genomic variants is describé@ main
technologies and resources adopted are discusskethanwveb interface is
presented. Drawbacks of this system are highlightezlparadigm of a new
developed system is introduced and its underlyieghmologies are
described in details. Test results on this systesrfiaally discussed.
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In Chapter 4 the algorithm developed to classifynamric coding
variants is described by providing details aboatabmponents and used
data resources. Results in terms of comparisoriherexisting algorithms
and the cases in which our algorithm best perfaanesdiscussed.

In Chapter 5 the applications of the variants managnt system
developed in the thesis are presented. For eachcappn theclinical
background, methods and results are reported.

In Chapter 6 concluding remarks are presented atud challenges and
directions are discussed.

The activity illustrated in Chapter 3,was carrieat @ collaboration with
Angelo Nuzzo for the first developed genomic variaranagement system
and in collaboration with Matteo Gabetta, Daniekg&gni, Ettore Rizzo
and Riccardo Bellazzi for the second one, baseNa®QL and i2b2.

The methodological part of the algorithm for vatigmediction presented
in Chapter 4 was carried out in collaboration w#ilmone Marini.

The experimental studies presented in Chapter % warried out by the
Department of Molecular Medicine, University of RFavby using the
sequencing technology (lllumina Genome Analyzer) Ibf the IRCCS
National Neurological Institute C. Mondino in Payitaly.
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Chapter1

Introduction

New generation sequencing technologies are ablertmluce huge
amount of data related to the nucleotide sequeotcdee DNA molecule.

The latest sequencing machines can reach up toTwrabytes of
sequence data in a single run experiment makingiplaesto read the DNA,
in parallel, of hundreds of samples.

It is clear that a fundamental issue is to addtkssmanagement of such
large amount of data from a computational, storage accessibility point
of view.

Assuming we have the hardware and the softwareastructure to
process and reduce sequencing data into a humalableaformat (e.g.
genomic variants) we need to store them in suchag that would be
possible to answer to several questions posed byg#neticists. Herby
some examples:

- Which are the genomic variants of the sample A?

- Which are the genomic variants of the sample Aegene B?

- Does the sample A have the genomic variant C knawn
literature ?

- Which are the genomic variants of the sample Ahm gene B
that the samples D,E,F and G do not have?

- Which are the genomic variants of the sample A \aithallele
frequency below a given threshold respect toa setesubset of
samples?

By looking at these questions it is possible tawiethe main requirements
needed by the software systems that should betablenage and retrieve

genomic variants:

- A data model able to link genomic variants to samspl
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- A data model able to link variants to their genommntext
(e.g. genes)
- An accessible user interface allowing for data aotion

Intuitively, the system needs to integrate différgenomic data sources,
e.g. public omics-database and repositories, atehiate them with the
sequencing data of interest, in our case, genoari@nts.

Let’s consider another common task:

- Which are the genomic variants of the sample AenegB and
gene H that could affect the protein stability ?

By sequencing a whole human genome we have toJétea number of
variants in the order of millions. Even if we filteut intergenic or non-coding
variants, we deal with dozen of thousands varipatssample.

Considering that only a small number of variantshef human genome have
been linked with a known phenotypic trait [1] arhtt for a certain kind of
diseases only one or two variants can be fully antiglly explanatory, this
task is similar to looking for a needle in a hagkta

Our prior knowledge about biological pathways arehes involved in a
particular disease can help us to create a subggnes that may allow us in
going further with a deeper investigation, but tglly there is the need to
distinguish and weight those rare or unseen gengariants that can alter the
protein structure and function from those that db n

Despite the existence of several algorithms maadadle in the last years to
this end, more accurate, fast, exhaustive and sitéesolutions are needed.

1.1. Genomic Variants Management Systems

To store and manage genomic variants, a web-baségractive

framework was developed. Based on a J2EE archreciu relies on a
Relational Database Management System (RDBMS),ishetySQL.
Genomic variants are uploaded trough a web interi@ong samples and
experiments data. The data model of the RDBMS waif In order to
integrate several genomic resources allowing tickror “annotate” variants
with useful information such as mMRNA transcriptsengs and allele
frequencies from public variant databases.
An import data layer is able to import standaredilin the Variant Calling
Format (VCF) and additional modules that allow eonpute, at the importing
stage, several variant attributes related to iteogec position and type, such
as possible changes in the protein sequence.
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Other application modules are able to generatenzatio queries to web
resources, such as the University of Californiatd&&@ruz (UCSC) database or
variant prediction tools such as PolyPhen2 [2]anatdlonTaster [3]. Once
gueries are performed, results are stored intal#tabase and can be re-used
by further analysis.

Thanks to the web interface, the user can selecsulbset of samples for the
variant retrieval and another one to compute dgtmemates for each reported
variant (e.g. allele frequency in the subset). &adviitering criteria on the
variant attributes can be set in order to retrienly the subset of variants of
interest. Final results can be exported in a tdivaited plain text files.

Such developed system allowed to manage 437 seegiesamples and
33,799,523 genomic variants for a total amount38G&GB of data on a single
workstation with an Intel i3 CPU and 4GB of RAM.

The system allowed extracting and combining datéherfiltering criteria and
to finally end up with a candidate genomic varidists for each study. In
particular, for several disease studies (see Chdptet was possible to
determine the underlying genetic causes.

Despite the system was built to be light in ternfs GPU and RAM
requirements, it showed its drawbacks in terms ompmutational time
performances. Furthermore, the choice to integratgons of public genomic
databases in order to annotate genomic variants, io&roduce data
consistency issues when the same genomic datahases$o be up to date.

For these reasons, a completely different approeadt developed, both in
terms of workflow and technology.

The main idea was to consider the annotation task are-processing step
without involving database resources and to prepeaemeach possible variant
attribute at this stage working on a high-paraevironment. The public
genomic databases containing features tracks g@resented by text files,
compressed in a binary format and indexed by gemopasitions. The
annotation step is performed by querying the indesesources one-by-one
through genomic positions and variant type. Becaeseh variant is
independent from the others, the process can lbegaallelized on batches of
variants. Once this step is completed, data areoiteg into the NoSQL
database CouchDB in form of JSON files, where e#8N represents a
genomic variant with every pre-computed annotatiech variant attribute is
then indexed for a fast retrieval of the JSON doenimwvhen a single attribute
is queried on its values. Complex queries (on midtfields) are obtained by
the combination of each result set on a singlabate. Import and query
processes showed high performances in terms of w@tignal time if
compared to the relational database.

The system interfaces with the i2b2 [4] framewo#fa ad hoc software
module guarantees the communication between i2lRtla@ CouchDB in
order to execute the queries on the database arié wo an XML-structured
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messaging standard sent by HTTP both to build gaeand retrieve results.
On the i2b2 webclient, an ad-hoc plug-in, basedaovisual programming,
allows the user to build simple and complex queerd has the power to
couple patient result sets extracted by the i2b@nptype queries with the
genetic data stored in CouchDB.

The system was tested on 500 sequenced samplesl®6th Genome
Project [5]public resources resulting in about 0,800 genomic variants
for a total amount of 160 GB on a single AWS ECZXmae with 8 virtual
CPUs and 16 GB of RAM (for data query). Both impagtand querying
times were very promising; furthermore, the spat¢he possible queries
increased and the system usability improved respextprevious system
because of the coupling with the i2b2framework aida new intuitive
visual plug-in.

1.2. Genomic Variants Interpretation

In order to deal with the multitude of genomic \aanis identified by
second generation sequencing experiments and ignass each one a
score that correlates with the possible perturlmatn@uced in the codified
proteins, a software that aims to classify genovaicants was developed.

The main idea relies on the use of the known changeamino acid
sequences linked to several diseases, assuming dhah is fully
explanatory of the pathology and therefore causssang modification of
the protein behavior. The amino acid sequence @wmmgere represented
under a discrete form by using Pseudo Amino Acidesm@osition
(PseAAC) [6]. This allowed to train a Random Forp4tlassifier on the
aforementioned known genomic variants by using RseAAC values as
features.

The classification results were combined with twellvknown variant
prediction algorithms in order to improve accurace. PolyPhen-2 and
SIFT [8],which rely on different approaches.

The algorithm, we called PaPI, showed predictiorfqgrenances in terms
of accuracy significantly greater than the othensidered tools on three
different independent test sets and as an additjpmef of concept it was
run on several well-known pathogenic variants fdrickh both PolyPhen-2
and SIFT were discordant, giving back the rightssification for each
case.

In order to let PaPIl be accessible by the scientbmmunity, a web
service was developed. The web interface allow®agihg data about a
single genomic variant or a list up to thousandgh@&@m. Asynchronous
processes manage the requests that are put in yuspending on the
analysis type. Results, once ready, are sent baekrbail.
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The algorithm logic was implemented by Java, Ped &/eka [9] and
the web service by a J2EE architecture.
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Background

This Chapter introduces, in brief, the principlesldechnologies of new
generation sequencing systems and their impact loe s$cientific
community through their applications in the lasange

Several open issues about these technologies fhembioinformatics
point of view are discussed, highlighting those data management and
interpretation.

Last sections describe a) the genomic databasefaa been strategic
for the variant management system (VMS) developnse b) different
kind of variant prediction tools that have beeregrated into VMS and
used to the develop the variant prediction algamittiscussed in Chapter 4.

2.1. New Sequencing Technologies

Since their introduction in 2004 with the Roche 4pwosequencing
machine, the so-called “Next Generation Sequenc{N§3S) technologies
have been undergoing a tremendous development.

The Human Genome Project, carried out by the latttonal Human
Genome Consortium, needed more than ten years {2003) to sequence
the whole genome of a human being and cost abailtidn US dollars. In
2014 state-of-the-art instruments process a whelegome in less than a
week and for nominally less than ten thousand del&0].

As a consequence, these technologies had an editnaoy impact on
scientific community and led to ever-growing invesnts by the major
biotech vendors: today, NGS market has a worth2% ®illion, poised to
reach $8.7 billion by 2020.
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Moore’s law states that for computer industry tlmnpute power doubles
every 24 months. Sequencing technologies haveangdoMoore’s law by far
(see

Figurel).

Cost per Genome

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 1.Sequencing technologies costs and Moore’law.
Source:http://www.genome.gov/sequencingcosts/

Sequencing instruments can be distinguished by ttm@lemented techniques
that include pyrosequencing, sequencing-by-ligatiand sequencing-by-
synthesis developed by the three leading biotechpamies Roche, Applied
Biosystems (now Life Technologies) and llluminespectively.

In the last five years, lllumina sequencing instems gained market
dominance with a NGS market share of 71% during3201

The Illumina success can be explained by the wadHd#red combination
between sequencing accuracy and reproducibilitg fihe market strategy of
product segmentation (and prices) that allowedhiegca wide gamma of
customers with different needs. Moreover, the lihets sequencer MiSeq
was the first new generation sequencer to be amdtbiby Food and Drug
Administration (FDA) for broad clinical use.

Nevertheless, sequencing technology is under amemits evolution, and the
recent introduction of a further new method basedingle molecule real time
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sequencing by Pacific Biosciences seems to be astaoile for the third
generation sequencing platforms in the next years.

Explain the principles of the different new sequegdechnologies is beyond
the scope of this thesis; therefore, only a brefatiption of the methodology
at the basis of the most used sequencing platforms]llumina’s ones, is
reported hereby.

Notably, the same sequencing technology was us#ukimpplication studies
discussed in Chaptét

2.1.1. lllumina Sequencing

lllumina (San Diego, CA) is an American company ttlstnce 1998
develops systems for the analysis of genetic vana@and biological
function. Very soon, lllumina began to offer micaoray based products
such as SNP genotyping, gene expression and prateailysis.

In 2007 it acquired the Solexa company that dewslop new genome
sequencing technology, the Solexa machine.

In seven years (2007-2014) lllumina developed sediffierent sequencing

platforms including their updated versions.

The state-of-the-art of lllumina sequencing prodware: MiSeq, NextSeq500,
HiSeq2500 and HiSeq X Ten ordered by increasingutiinput capacity in

terms of sequenced bases.

In Table 1, the evolution of lllumina technology ihe last seven years is
reported: costs and throughput trends confirm theesients of the previous
section.

Y ear 2007 2009 2011 2012 2014
MiSeq, )
Platform GA GAlIx . HiSeq2500 NS500, XT
HiSeq2000
Costs*
800K 16K -, 6K 5K 4K, 1K
%
Output
10 80 15, 200 600 129, 1800
(GB)

Table 1.Development of Illumina sequencing technology in the last seven years. GA= Genome
Analyzer; NS= NextSeq; XT=HiSeq X Ten; K=1x103; GB=billions of sequenced bases. *Costs to
sequencing a whole human genome.
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We can split the lllumina sequencing process inted main steps:

- DNA library preparation
- Sequencing run
- Base calling

Note that the first step is almost the same foryewéher sequencing platform.
The three steps are briefly described below andrEigrepresent an overview
of the whole process.

Library Preparation
DNA fragment library

DNA molecules Fragmentation and PCR

Sequencing Run lllumina platform

o

2 P .
Qo
8%
—_ — ) — ey
|
| | 1]
1base incorporation (cycle)
] Repeat N times..

g

flow-cell fix and local PCR

Base Calling

m N cycles.. reads (fastq)

Figure 2. Sequencing process - from DNA sample to sequence reads

2.1.1.1. DNA Fragment Library Preparation

Once extracted from tissue cells, the pool (sampl€)NA molecules is
broken into millions of pieces. Nebulization or gation methods [11]are
typically used for this aim. After fragmentationept DNA sample is
amplified by Polymerase Chain Reaction (PCR) teghai[12]. Finally,
only the fragments within a certain length range selected through gel
electrophoresis, a method able to order DNA fragmdyy their mass,
therefore, their length.
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The resulting sample consists of a “library” of DNragments ready to
be sequenced. Indeed, sequencing technologies, tbeenewest ones, are
not able to read consecutively a high number ofebadut only few
hundreds.

The library is fixed by ligation to a glass chipetso-called flow-cell, the core
of the sequencing machine. This is a microfluidevide with few distinct

micro channels or billions of nanowells, as in t@se of the last lllumina
technologies.

Once fragments are fixed on the flow cell surfaxgarticular in-loco PCR
replicates each fragment and generates clusteristhe certain number of the
very same fragment copies in its neighborhood. Whiisallow enhancing the

signal coming from each fragment/cluster in theuseging step.

2.1.1.2. Sequencing Run

The flow-cell with the DNA library fixed on it isnserted inside the
sequencing platform. Here the sequencing startpamteeds by cycles.
Each cycle corresponds to read a single DNA nuidediase for each DNA
fragment fixed on the flow-cell, in a parallel fas For this reason, new
generation sequencing systems are also called ivegsarallel” sequencing.

The DNA fragment is read by a technique called saqung-by-synthesis. In
brief, each fragment is literally copied by an eney the DNA polymerases,
capable to incorporate a DNA base that is compléangmo a given one.

The Illumina technology peculiarity is the capacity stop the DNA
polymerases at each incorporated base, througbstnef particular modified
nucleotide called “reversible chain terminatorshdato re-start DNA
polymerases incorporation for the next one in acgss called “single-
nucleotide addiction”.

This allows to hit by a laser the flow-cell surfaateeach cycle (corresponding
to a nucleotide incorporation) and to stimulate fherescence of the
modified nucleotide. In fact, each type of modifiegcleotide (A,C,G,T) has
a particular fluorophore that emits fluorescencthwai specific wave length.

By a Charge-Coupled Device (CCD) camera, four pastof the flow-cell at
each cycle are taken, corresponding to four appiiesis able to enhance the
fluorescence by its wave length.

For each picture, fluorescence dots are presendota represents the
fluorescence signal coming from a DNA fragment us

10
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The final result of the sequencing step is a nuntbesf flow-cell image
guadruplets, wherdl corresponds to the number of bases that are read f
each DNA fragment on the flow-cell.

2.1.1.3. Base Calling

Images produced in sequencing step are then armhlyzdhe Illumina
proprietary software installed on a workstation mected to the sequencing
machine. This software proceeds to:

a) filter the images background noise

b) enhance luminescence signal for each cluster

c) identify cluster positions

d) assign the most probable base for each clusteacdt eycle

The final result of this procedure, or “base calinis a multitude of
sequences with A,C,G or T characters, correspontiindpe DNA bases of
each DNA fragment on the flow-cell.

Together with the set of sequences, or “reads”gtraity for each sequenced
base is reported as well. This is computed by ediing the probability that
the base has been wrongly assigned, on the basie afifference with the
second probable base. Quality scores are finafjgrithmically related to the
base calling error probability by Phred scale [13].

DNA reads are stored in plain text files, which ¢@encompressed, following

the fastq standard format (see AppendixA.1for numtails).

2.2. Sequencing Applications

Sequencing platforms basically take DNA fragments imput and
generate nucleotide sequences in output.
Nonetheless, the range of the possible sequenpplgations is wide.

2.2.1. Same Data for Different Scopes

Each possible application differs from the othe@r$wo main aspects:

1. Library preparation
2. Secondary analysis

11
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In the previous section we briefly described saniideary preparation.
Actually, several steps were omitted on purposegritier to list only the
most common ones, shared by the major part of sexjug applications.
Next section discusses in more details one padicagpplication along with
its library preparation.

Secondary analysis typically refers to the wholéadanalysis process
afterwards the base calling step previously desdribintuitively, each
sequencing application has its own goals in teringemomic features to
detect, and requires ad-hoc data analysis.

Shendure and Aiden [14] listed twenty types of neneration

sequencing applications.

Figure 3 summarizes and stratifies them at thd lefvepecies, organism, cells
and biological mechanisms of the cell. While thdiest sequencing projects
aimed to assembly the genome of a particular spem& technologies
enables the study of biological systems at a fiseale: we can explore
genomic variations between individual members orpapulation scale;
highlight genetic and epigenetic differences betweamlls of a single
individual; provide insights into several cell pesses (Figure 3).

12
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Figure 3. NGS applications for species, individuals, organisms, cells and cell processes [14].

Briefly, next generation sequencing can be apple®dtudy the genomics,
transcriptomics and epigenomics of germ and sornoatis.

Figure 4shows several common applications belonginghese three main
categories and a hint for each is given below.

* Methylation sequencing
Used to determine methylation patterns that regalgene expression
[15], library preparation requires to trait DNA Wwithe bisulfate ion
(HSG) through which DNA comes under nucleotide modifimas in
specific genomic regions (CpG islands).

* ChlP sequencing
Used to identify DNA binding sites for proteins[16]ibrary

preparation requires to capture only the DNA pidu@sded to proteins
by the Chromatin Immunoprecipitation (ChiIP) teclugq

13
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*  Whole Genome Sequencing

Used to identify genomic variants ranging from d¢oemillions bases
in length, is the most exhaustive protocol applieab a genome and
library preparation is basically the one showe8&éction 2.1.1.1.

» Targeted Enrichment sequencing

Used to identify genomic variants ranging from emdwundreds bases
in length, library preparation requires to captardy the DNA pieces
belonging to regions of interest.

* RNA sequencing

The whole transcriptome is converted into cDNA dnd selecting
fragments by range size, a specific type of RNA bananalyzed:
MRNA sequencing aims to identify differentially egpsed transcripts,
splice-junctions and new transcripts [17]; micro/RNmMIRNA)
sequencing aims to identify differentially expresseiRNAS, predict
novel MiRNAs and mRNA targets[18].

Sample
(Germ/Somatic Cells)

Genomics

......... \

Epigenomics ! Transcriptomics

SizeFilter

[ ~-
1
Methyl- 1o
! i MRNA-Seq
Seq P
l l: n:-
- i| Custom- e h
LS | ; \
\: . :
Y '\" ....................... 1 miRNA-
| Y Seq
ChiP-Seq | 1 1
)

Figure 4.Main NGS applications. Seq=Sequencing; Methyl=Methylation;DPI=DNA-Proteins
Interactions; WX=Whole-Exome;WG=Whole-Genome.
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Among these applications, targeted enrichment sexjg is the only one
discussed in deep, because of the goal of thissthes

2.2.1.1. Targeted Enrichment DNA Sequencing

Whole genome sequencing is the gold standard tectetll possible
genomic variants in the genome, nevertheless g$sca not amortized by
sequenced sample quantities using the last techesige.g. HiSeq X Ten),
makes its routinely use really hard for the majartpof molecular
laboratories, which typically deal with a modestmhber of samples to
sequences (hundreds or less per year).

Therefore, in the last five years, cheaper target@idchment strategies
were widely adopted and successfully applied taaath range of genetic
context [19-22].

By applying targeted enrichment sequencing it issgze to chemically select
only those DNA fragments belonging to region oknesst (ROI). Typically,
ROls correspond to DNA regions whose sequencesig@andify for genes.

Whole-exome sequencing (WES) is the most exhausdingeted enrichment
strategy since it allows capturing all exons, thae genes, of the human
genome.

Even if the whole set of human genes correspondstahe 1% of the whole
human genome, coding genomic variations are mucle rikely to have
severe consequences than in the remaining 99%[22].

WES has been widely used to discover the genetisecaf Mendelian
diseases [23-26], but also to provide insights icwonplex traits[27-29]and
cancer as well[30-32].

An alternative to WES, even cheaper, is to sequentea reduced panel of
genes chosen a priori, basing on the genetic krumelef the trait of interest.
This strategy is actually the most used and apatetiby molecular clinical

laboratories, both for costs and practical use iagmbstic[33],since can be
ideally treated as an extension of the classic &asgquencing technique.
Benchtop sequencing instruments such as the lllanMiSeq are typically

used for such purpose.

In the last years, targeted gene panels were nedgsigplied with success to a
broad range of complex diseases [34-36]and to stathpmic variation even

at clone and sub-clone level of somatic cells cgnirom cancer tissues [37-
39].

15
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WES can be considered an extension of targetedsgeareel; therefore library
preparation and secondary analysis steps are éaénti

Library Preparation

The peculiarity of targeted enrichment library paegtion is the so-
called “capturing” step (Figure 5).

DNA fragment library
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Figure 5. Targeted Enrichment Library Preparation

The DNA library is mixed up with synthesized DNAagments (probes) able
to hybridize only those similar DNA fragments.

Probes have been previously biotinylated and, dumdtin affinity properties,
streptavidin beads bind only those coupled DNA rragts consisting of at
least one probe.

Beads and probes are therefore washed out andestlBBIA fragments are
ready to be sequenced.

Secondary Analysis
Once DNA reads have been produced by the sequeptatiprm, they
are processed by a quasi-standard data analysiscptovhose main steps

are reported below.

* Genome Reference Mapping
* Mapping Correction
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» Variant calling

Genome Reference Mapping

The Human Genome Project ended up in 2001 withfitee release of
the human genome reference assembly. In the lastyaext generation
sequencing platforms allowed to sequence many hugemomes and
allowed to refine the original assembly producingrenupdated and precise
versions of the human genome model as a DNA segudre most update
version at the time of this writing is the GRCh38eased on February
2014 by the Genome Reference Consortium[40].

Assembling sequencing reads is likely to build uphage and
complicated genomic puzzle. The use of a genonfereace can speed up
this process by positioning (mapping) each reathéomost likely portion
of the reference basing on its sequence similarity.

In the last years lots of next generation sequenamapping algorithms
were developed [41-46], applying heuristic methwaith the aim to reach a
good compromise between accuracy and time and/onpatational
performances, giving the high number (billionsye&ds to map.

In targeted enrichment protocols a pool of DNA &l sequenced randomly
only for the selected genomic regions: probes udeedhis aim are exactly

designed basing on the reference genome, there®mexpect the major part
of reads to map within these regions we defineg4tit Moreover we expect

them to redundantly map a target genomic locusngtiie presence of many
DNA molecules coming from different cells of thersasample, or given the
same artificially DNA replicas due to PCR at lirgreparation stage.

The number of reads that overlap the same targeirge locus is called
“coverage”. Its average across the whole targattigical indicator used to
assess experiment quality.

Mapped reads are stored in a plain-text standarddbcalled Sequence
Alignment Map (SAM)that is typically compressed bmary format and
indexed in the Binary Alignment Map (BAM)[47].

Mapping Correction

The heuristic reads mapping algorithms have sevdiraltations,
especially to correctly map reads over problemeggions of the genome
reference[48]. To overcome these issues they ameplemented with a
series of post-mapping steps such as PCR duplicatesval and more
accurate re-mapping over these problematic regiiah <9, 50].

Variant Calling
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Human beings share, on average, the 99.9% of themome[51].
Variant calling aims to identify the 0.1% of therhan genomic differences
among which can be included those linked to a trad disease.

Genomic differences, we call “variants”, are retht® the genomic
reference used for reads mapping. As previouslgudised, each genomic
target locus (base) is covered by a certain nurobewerlapping reads: we
expect to observe on the corresponding base “pilé@ same kind of
base, given the sequence similarity found by mapp#ctually, mapping
algorithms admit a certain degree of freedom inm&erof sequence
similarity, therefore is possible that each reatdhariants respect to the
reference. Variants can be of three kinds:

1. Single Nucleotide Variants (SNV)
2. Nucleotides Insertions
3. Nucleotides Deletions

Insertions and deletions are generally grouped mride term Deletion
Insertion Variations (DIV) or “indel” due to theadt that is possible to
observe, at a single genomic locus, a variant egensisting of an insertion
followed by a deletion or conversely.

A B C
coverage
track I |:|
reference | LACCA TTITTCCTAGCATCCCGATTAGCGCTAGCGAAAGTCTCA

A <
A

mapped -
reads

Figure 6.Example of variants along mapped reads. Mapped reads are represented in grey color in
case of base equality to the reference, a colored base is shown otherwise. A: SNV in heterozygous
state; B: SNV in homozygous state; C: a single base deletion.

Variant calling aims at scanning in an efficientywhe whole set of
mapped reads and calls a variant at a given gentooics when at least
one overlapping read hold a difference for it.
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Sequencing platform base caller error rate, po@lityuof sequenced bases
and mapping errors introduce noise that heavily i&uce variant calling
accuracy, resulting into high false positive &€, 53]. Therefore is not
advisable to rely on single read difference to eallariant, but is essential to
combine the information coming from the overall s#t mapped reads
covering a candidate variant locus.

Another point should be considered: genomic refegeis an arbitrary
mix of two haploid genomes, while the DNA fragment library is usually
derived by a diploid one. This requires determinitige so-called
“genotype” for a genomic locus: given the variaite s variant calling
should be able to assess which is the most reliablabination of two
alleles. An allele can be a single base or an indel

Several variant calling algorithms have been dgwedo and can be
divided by methodology: heuristic methods[54, 55probabilistic
frameworks[47, 49, 56], supervised [57]and unsuped machine
learning[58]. Nonetheless scientific community aggehat the optimum
variant caller does not exist yet and only ensershiategies reach the best
accuracy[59].

Identified variants can be stored in a plain-téahdard format called Variant
Calling Format (VCF)[60], see AppendixA.1lfor moretails.

2.3. Challenges in NGS bioinformatics

Next generation sequencing technologies challengeanformatics in
different aspects including: i) computational resms and tools for data
processing ii) data archival and retrieval solusioni) analysis and
interpretation of NGS data.

2.3.1. Computational resources and tools for data processing

The huge amount of genomic data requires apprepamputational
resources and tools for data processing. High Pedoce Computing
(HPC) based on physical or virtualized computerstdus along with high
parallelized methods have been successfully appiiediGS bioinformatics
[61-64]although originally developed to manage hwgeb data on high
parallelized environments [65]. Such systems alkmwprocess genomic
data in a reasonable time (e.g. few hours for alevlggnome analysis).
Recently, an ad-hoc developed processor aims tdahdur reduce

! positive event = presence of a truly variant
Haploidy/diploidy = One/Two sets of chromosomes
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computational time to less than 20 minutes for aolhgenome with a
single hardware and software integrated optimized ¢66]. The challenge
here is to reduce computational processing time aeldted costs.
Computational time should be lower than sequencimge to avoid
bottlenecks. Costs should respect the actual ceitiice of 1000$ per
genome (comprehensive of sequencing costs as well).

2.3.2. Data archival and retrieval solutions

Managing data of this magnitude requires a wellrdef policy, but
assessment of data storage needs is complicat¢lebyariability of data
formats [67] despite the use of standards such/dd Bnd VCF: secondary
analysis varies for each kind of application amat, many genomic data
types, a standard format does not exist yet. Maggometadata regarding
NGS experiments, samples, tissues, analysis pristatmuld be archived
as well, in order to ensure results reproducihilByoring and retrieving in
an efficient way this multitude and different tyjpé data requires both
hardware and software dedicated solutions. Ovetasiefew years several
online, control accessed NGS repositories have beeveloped [68-
70]especially by national or international consamif research institutions
due to the big efforts and resources needed to geatizese petabytes of
data.

In order to reduce data of orders of magnitude cméd think to store
and retrieve only a certain subset of processed N&&, such as secondary
analysis results that for some applications, inclgdargeted enrichment,
are the identified genomic variants.

Recently, several public and commercial solutio$e ao store and
guery genomic variants have been developed[71744. challenge here is
to develop efficient genomic variant managementesys in terms of costs
and computational time, able to integrate genomit @inical data plus the
results from software-based genetic analyses tlaat be helpful to
determine which variant candidates are more likelypoe causative of the
disease of interest.

2.3.3. Analysis and interpretation of NGS data

The analysis and interpretation of secondary amahgsults, also called
tertiary analysis, aims to unravel the identifieehgmic variation and, in
case of whole genome/exome sequencing, interpeetlaigpe amount of
genetic variants by determining those that arelyike contribute to the
phenotypic trait under study. Filtering and anniotatare two important
steps in this sense: filtering consists in remowagants that fit a specific
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genetic model (e.g. inheritance patterns), whilectation looks up all

possible information about variants to fit the lbigical process [75].

Annotation step typically searches into the exgthiological knowledge

and uses methods able to infer variant potentidhqggenic effects to

prioritize the whole set of variants[76]. The clealje here is to develop
annotation-prediction tools able to accurately idgndisease-related
genomic variants both when phenotypic traits arevkmand when they are
not.

The analysis and interpretation of the genomic ataon cannot be
disjointed from the genomic variant managementeys(VMS): the latter
should be able to integrate the whole set of genorariants per genome,
individual phenotypic traits, variant annotatiortalgprediction tools results
and filtering procedures.

2.4. Genomic Databases

Sequencing and many other high throughput baseéarels projects
have generated an explosive growth in biologicabdehich diversity and
complexity revealed them as one of the Big Datarssa [77]. As a
consequence, the number of genomic databases, amstare and publicly
share this amount of genomic measures and findigiggsy up within their
users and User Services (see Figure 7).
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Human genomic databases can be catalogued bycitweient (see Table
2), but drawing precise borderlines between themoistrivial. Moreover,
the sheer volume of the raw sequence data in tbdéBrent repositories
has led to attempts to reorganize this informatidn smaller, specialized
databases such as genome browsers [78-80].

In the next sections, one of the main genome brmsvaed several NGS
genomic variant resources will be discussed in noeteil.

Category Brief Description Examples
Collect, annotate, release and The Sequence Read
wdentde | S SR Sk b
sequence data both for - ata Ban
Sequences assembled genomes and raw of Japan
Databases short reads coming from NGS European Genome-
platforms. phenome Archive (EGA)
Collect, annotate, release and
’ ; ' HMDDv2.0
RNA exchange microRNA, non- ncRNAVs database
Sequences coding RNA, transfer RNA an RNAJUNGIi
Databases other sequencing-derived q unction
transcriptome features. eepBase
Protein Provide resources for protein UniProt
sequences, functional, feature .
Sequences annotations and literature- INCB}IDProtem database
Databases based evidence attribuitions. nterPro
Databases for annotated 3D
protein structure models PDBe
Structure ivi i
derlylng from computational SWISS-MODEL
Databases predictions, X-ray R "
crystallography, NMR epository
spectroscopy etc.
. Integrated databases that ;
S BioCarta
Metabolic establish links due to KEGG
and interactions or relationships Reactome
Signaling between genes, higher-level BioGrid
Pathways systemic functions of the cell, '0, r
organism and ecosystem. String
Databases for gene-specific Ensemble
information. Contain all
Human annotations (nomenclature, Entrez Gene
. ENCODE
Genomes map location, gene products, G Bank
expression etc.) that are enesan
constantly updated. UCSC Genome Browser
Resources of sequences data
genomic variants, dbGaP
Human polymorphisms related to OMIM
human diseases. In this dbSNP
G_enes and category general 1000 Genomes Project
Diseases polymorphisms databases are HapMap
included (e.g. 1000 Genomes PharmaGKB
Project)

Table 2.Some molecular biology databases categories and examples [81]
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2.4.1. UCSC Genome Browser

Genomic variants can be represented at the genmfacence mapping
level, which is the format for variant calling aisclssed in Section 2.2.1.1.
It is therefore straightforward to abstract vargaahd, in general, genomic
annotations by simply considering them as intervafsthe genomic
reference. This is the principle on which genomrovisers have been
developed, with the aim to visualize and browseirengenomes with
annotated data from multiple diverse resources.

The University of California Santa Cruz (UCSC) GemBrowser is a
web-based platform that repacks genome and genetaion data sets
from GenBank and other databases in order to peosidjenomic context
for individual genome features, such as genesswadie loci [82].

The user can search for a specific region of a gensuch as a gene,
and the sequence plus annotation data are displgrggrhically as ‘tracks’
aligned to the genomic reference and grouped byeshaharacteristics
such as gene predictions, comparative genomicsguiatory elements (see
Figure 8).
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Figure 8.A snapshot from UCSC Genome Browser. For a given genomic region genes, mRNA,
evolutionary conservation and variation tracks are displayed and mapped to the genomic
reference.

Other annotation tracks include expression, epigesmeand tissue
differentiation, phenotype and disease associataia and text-mined data
from publications.

The UCSC Genome Browser also offers advanced relsezapabilities
such as the UCSC Table Browser [83], built on tbp bf the Genome
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Browser Database. It consists of MySQL relationatathases, each
containing sequence and annotation data for a genassembly. Tables
within each database can be based on genomicsstgrteoordinates or be
referenced by internal ids. The whole databaseissétee downloadable
within SQL scripts to build up table structures andexes.

2.4.1.1. The UCSC Binning Scheme

The UCSC Genome Browser holds annotation data atimguto several
Terabytes of tables in the MySQL database [84].

The database has been built under a “read-mostlyygse and the user
gueries mainly consist of range queries over genamtervals identified
by three attributes: chromosome, genomic start stog positions in the
chromosome.

In order to efficiently retrieve the whole set oihatation data that map over a
requested genomic interval, a suitable binning sehkas been implemented
[85].

Let us suppose to perform a query on a Table \wigthaim to retrieve all data
within a genomic interval. The resulting range ryugould be something
similar to:

select * from Table where chrom="chr1’ and
chromStart<20000 and chromEnd>10000

To speed up the data retrieval it is possible dexheach queried field; this
solution works for table with up to dozen of thauds rows. For larger tables
with millions of rows, performances decrease eveveitry to split tables by
chromosomes.

The binning scheme splits each chromosome intoeoutive equal-size
intervals, called ‘bins’. By changing the bin size can obtain a hierarchical
bin structure (see Figure 9)where each bin is enatee.

chromosome
binnin !
g
2 3 4 5
levels
6 | 718 ]9 [10]11]12[13]14]15]16[17[18[19]20]21
A B C=

Figure 9.A simplified version of the binning scheme.
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In the Genome Browser five different size of bire arsed: 128Kb, 1Mb,
8Mb, 64Mb and 512Mb.

Each genomic feature (or annotation) reports thall@st genomic bin in
which it fits. Looking at Figure 9, features A, BA&C are associated to bin
1,4 and 20 respectively. When the browser needsctess features in a
region, it must look in bins of all different size® access all the features
that overlap or are enclosed by range B, the browsiks into bins 1, 4,
14, 15, 16 and 17.

Because bins are pre-computed, it is possible ¢acptculate the smallest
fitting bin, given the genomic coordinates of theature to store in the
database. When a range query is performed, all pingsible bins of
different size are pre-selected basing on the rajgey coordinates.
Therefore, the previous query becomes:

select * from Table where chrom="chrl’ and
chromStart<20000 and chromEnd>10000 and (bin=1 or b in=2
or bin=10 or bin=74 or bin=586)

Even if the query appears more complex than befiorejns much faster
thanks to the reduced searching space.

Binning scheme combined to B-tree index (by indgxime bin field within
the database) finally provides a crude approxinmatma R-tree [86] that,
notably, is implemented into MySQL as an index scbeActually, when
the UCSC Genome Browser has been firstly implenteriRetrees were not
supported yet into the MySQL engine and later apisnto use the engine
built-in R-trees failed [87].

2.4.2. Human Genomic Variant Resources

In the last three decades, high throughput singlecleotide
polymorphisni (SNP) genotyping has produced a great amount @f iha
terms of genomic polymorphisms.

Efforts to catalogue these data at population lekedulted into the

International HapMap Consortium [88] that aimedtold linkage maps and
identify chromosomal regions where genetic variamse shared [89].These
variations have been the core around which genoide association studies
(GWAS) were built.

The advent of sequencing technologies, allowed expy the wide
range of human variations, including rare variatas,

3 A genomic variant for which one of the allele lafsequency greater than 5% in the
reference population
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Hereby are briefly described the main genomic véri@sources based on
NGS data. In addition to merely cataloguing humanation, these databases
serve many purposes such as estimating linkagejudidg®ium in a given
population or reducing the number of variants ueeaksociation tests.

2.4.2.1. The Single Nucleotide Polymorphism database

The Single Nucleotide Polymorphism Database (dbShIR)free public
resource of genomic variation developed by the dNeti Center for
Biotechnology Information (NCBI) and the Nationaluian Genome
Research Institute (NHGRI).

Published in 2001 [90], it pursues the challenggupl to catalogue
every found nucleotide sequence variations throdifferent experimental
settings, including next generation sequencing.piests name that quotes
only polymorphisms, in fact, there is no requiretnenassumption about
minimum allele frequencies or functional neutralifgr the genomic
variants in the database: it includes both humaeakie-causing clinical
mutations and neutral polymorphisms as well. Mosrpgenomic locus is
cross-linked with other information resources su@s GenBank,
LocusLink, the human genome sequence and PubMed.

DbSNP collects genomic variations through submrssiérom public
and private sources that have to follow a speciéita format protocol (e.qg.
organism, population, observed alleles, 5’ andI&King sequences, gene
name etc.). An accession number (ss#) is assignedath submitted
variation. A reference SNP (refSNP) cluster ID Jre#ll is also assigned
to each unique variation in an organism refereraxgqe.
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Figure 10. The dbSNP build cycle. Inspired by The NCBI Handbook,
http://lgmb.fmrp.usp.br/cbab/NCBIHandBook/ch5d1.pdf

When a new version of dbSNP is going to be releageddbSNP build
cycle begins (see Figure 10).

Newly submitted variants (#ss) plus the whole sethe refSNPs are
mapped into the reference genome sequence. Mapadatased to merge
(cluster) submissions into existing refSNP clusterdo create new ones.
New refSNPs are annotated trough genomic resoufees RefSeq and
Entrez) and the release content is delivered irede formats on the
dbSNP FTP site.

Working with dbSNP data, some issues should bentake account.
Firstly, refSNP are based on the current genomenasy because of the
mapping process and therefore are subjected touploates of the same
reference: each time there is a new version ofjie®mic assembly refSNPs
must be update or reclustered and it is not raat¢ different refSNPs are
clustered together and both assigned only one fef#IN(generally the one
with lower number). As a consequence, refSNP isargitble id over different
dbSNP versions.

Secondly, a refSNP points to a genomic locus, btitte an univocal variant
(respect to the genomic reference): e.g. rs1800®0dapped to the chrX at
the genomic position ‘18644526’ on the GRCh38 asdgnby exploring
dbSNP (v.142) it is associated to three differeiitles (G/C/A) and the
reference allele is ‘A’; indeed, this refSNP hotds variants with respect to
the reference: from A to G (A>G) and from A to C@).
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Thirdly, refSNPs can be reported on the plus orusistrand of the DNA and
the strand orientation can be challenging to tlsearchers when it comes to
consistency and comparing variant sets, especiathen misleading the
“forward” and “reverse” terms are used [91]. Thieriina TOP/BOT strand
convention has been introduced, for example toes@C and A/T allele
ambiguities [92].

2.4.2.2. The 1000 Genomes Project

Launched in 2008, the 1000 Genomes Project is darnational
research effort to characterize the human genomaesee variation with
the aim to provide a foundation for investigatirng trelationship between
genotype and phenotype [5].

Scheduled in three sequential phases, it has tla tgosequence and
characterize more than 2500 “healthy” individuaétamging to 26 different
ethnicity groups around the world. At the time loistwriting, a first release
of the phase 3 is available containing over 79iomllvariant sites from the
whole genome sequencing of 2504 individuals.

The 1000 Genomes Project (1000GP) resources isldadable via two
the mirrored EBI and NCBI FTP sites and data candbectly viewed
through the dedicated 1000 GP web browser.

Genomic variants for each individual, identified the combination of
several variant callers, are reported by the VCkn&d (see 2.2.1.1) and
comprise SNVs, indels and structural variations g5Yhat, in this case,
group deletions, insertions or copy number varidots genomic region
encompassing generally more than 50 bases.

2.4.2.3. The Exome Sequencing Project

The NHLBI GO Exome Sequencing Project (ESP) is @bfuithe biggest
integrated resource of whole exome sequencing (W& comprising, in
the last version (ES6500), genomic variations fr@8B03 samples
belonging to African-Americans and European-Amangathnicity groups.

Made up by the cooperation of several USA researsfitutions, it aims
to discover and characterize novel genes and metrhancontributing to
heart, lung and blood disorders [93].

Genomic variants with data aggregates are freesadde through the
Exome Variant Server: data can be viewed by thegirsted data browser
or can be downloaded directly via HTTP. Individuariants and other
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related genomic data are publicly accessible omydbGap, a controlled
access resource for research purpose [69].

2.4.2.4. The Ensemble Variant Database

Ensembl is a joint project between EMBL-EBI and iWellcome Trust
Sanger Institute that aims to develop a softwastesy able to produce and
maintain automatic annotations on eukaryotic gersoribe Ensemble core
database has been developed for the latter purpose.

The Ensembl Variant Database [72] is based on My$#3l engine and
has been developed specifically to deal with gepioty and sequencing
data (see Figure 11 for a simplified version of tfa#abase schema). Data
are accessible through the Ensemble Applicatiorgfara Interface (API)
written in Perl [95] and allows to connect to thequested database and
represent database entities as Perl objects.

Variation data, such as a SNV or DIV is definedusyng its upstream
and downstream flanking sequences ad at least anant allele. Flanking
sequences are aligned to one or more positions hef teference
genomeVariation, flanking_sequencesnd allele tables (see Figure 11)
represent a variant independently from the genosserably, while the
variation_featureholds reference genome variant mapping information.
This data division has been made in order to updatgvariation_feature
table in case of genome assembly update.
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Figure 11.A simplified schema of the Ensemble Variant Database. Variants are stored into the
Variation Table in the top center of the figure. Connections to the Ensembl core database are

Ensemble variant database has been initially dpeelavith the aim to collect
genotyping data from different resources such &\iband HapMap and
therefore it has several annotation data in comwitmsuch databases (e.g.

flanking sequences) deriving from the experimentathods.

Sequencing data are represented as variationg alitim some sequence read
information (ead_coverageable) regarding alignment position of reads,

coverage levels and differences between alignnamsthe genomic

reference.

2.4.3. Variant Annotation Tools
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Sequencing pipelines regarding WES or WGS appboatend up with a
plethora of differences between the sequenced genamd the genomic
reference used to map sequencing reads.

In 2.2.1.1the standard format (VCF) used to repregenomic variants has
been introduced. Despite VCF has been designed rtoupg every
information regarding variants, it is limited toetsequencing context and it
reports data such as reads coverage, quality an#ifig sequences. VCF it
has not been designed and standardized to holdi@dgi data regarding
knowledge on functional genomic region to whichaaiant could overlap
or the variant allele frequency in a specific pabliesource (such as
dbSNP).

In order to deal with the integration of differegg¢nomic data sources and
enrich variants with the related content, seveaalant annotation software
have been developed in the last years[96-100]. Nb&t the Ensembl

Variant Database supports annotation as well, beimkgd to the Ensembl

core database containing genomic annotations. Hewen the last years

the trend was to separate genomic annotation ateseg level from variant

annotation. The first relies on genomic databaseh s UCSC, RefSeq
and Ensembl. The second uses data from the gendat@bases, but

previously manipulated (a priori or on the fly)soch a way to guarantee a
fast data retrieval in the variant annotation pesceData pre-processing
became the key word and this concept will be reméik Chapter 3.

Hereby two public open-source and most common wseint annotation

tools are showed in detail. The first (VEP) is lthea a genomic structured
database while the second (ANNOVAR) relies on iretkyre-computed

files of genomic data tracks.

2.4.3.1. Variant Effect Predictor (VEP)

The Variant Effect Predictor (VEP) [96] has beenltbon the Ensembl
Variant Database. It consists of an API extensibrihe aforementioned
Ensembl API. Written in Perl, it allows matchingngenic annotation from
the Ensembl Variant Database with a given list afiants. Variants are
represented by their genomic coordinates and all¢heis allowing the API
to query transcript related data (tabl@nscript_variationin Figure 11) and
to match the variants with their possible overlagpiranscripts. The latter
step permits determining if a variant falls witham exon: in this case, a
new codon is derived for the variant allele. Moregvthe API assesses
whether a variant falls into a splice-site, int@niegulatory, untranslated
genomic region.
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VEP can be run in a standalone fashion; howeverdépendency on
Ensembl database limits its portability.

2.4.3.2. Annotate Variation Software (ANNOVAR)

ANNOVAR (ANNOtate VARiation) is a standalone softwea tool
written in Perl with portability as a main goal. fact, it is not based on
structured database but it simply consists of twoapgonents: i) several
Perl scripts constituting the “business logic” andndexed plain text files
with the pre-computed genomic annotations.

ANNOVAR can be accessed only by command line, mgkirdesirable
for programmatic usability.

The workflow consists of two steps: preparation tbé input file and
variant annotation by genes, regions or other wsia

Variants are represented by genomic coordinateégreece and variant
allele. ANNOVAR provides accessory scripts able cmnvert different

variant format (such as VCF) to its predefined and supports both SNVs
and DIVs.

Gene-annotation starts from converted variants soah annotated mRNA
sequences in order to match a variant within amesplice site, intron,

untranslated region or outside a gene. The searcbepds by genomic
interval, in a similar way to UCSC Genome Browssrsaown in 2.4.1.1:
genomic bin are pre-computed for each mRNA traps@nd are stored in
the file as a column field. The mRNA file contaig@nomic coordinates for
each transcript, such as exon intervals and relaBading frames.

In the gene-annotation step, the mRNA file (12MB)loaded in RAM.

When a variant has to be annotated, the overlaplpimgdentifiers for the

corresponding chromosome are computed starting thenvariant genomic
coordinates. The in-memory structure of the mRNA iin the form of key-

value (hash) is queried by keys that are chromoshime (Figure 12).
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Gene-annotation:

Chr | Start Stop Ref | Obs

16 50729867 | 50729867 | - C

|

Pre-processing: AnnotationFile {(e.g. hg19 RefGene)

; ; i Features coordinates...
1. Compute overlappingbins by mRNA id

genomlc coordlnates b. 112 NM 005300 chrX + 41548225 41556530
ins 1063  NM 005286 chr20 - 62737182 62733184

256 790 NR_026775 chré + 26824771 26991753

216 NM_007188 chr7  + 150725508 150744863

972 171 NM_206883  chrT - 102993176 103086624
5678 1962 HNM 206880 chrs + 180581942 18058289

806 NM_ 206876 chr2 + 28374613 29025806
1575 HR_ 024233 chrll + 129872518 12987538
. . 1305 NR 024182 chrl4 + 94463615 94473898
2' SearCh n haSh for eaCh bln' E 1452 HM 0173901 chrl2 + 113659259 11373638
blrl + ch romosome 74 NM 017900 chrl - 1309109 1310818 1309180
2239 NM 018000 chr2 - 216807313 21687834

943 NM_019056 chrX 47001614 47004609

. 869 NM 174931 chr2 + 37311593 37323738

3' OVEI’|appInngNA 602 NM_ 144616 chrlg - 2252249 2256422 2252327
tra nscnpts 115 NM 144612 chrils - 44057216 442363936
B15 NM_002363 chrX + 30261847 30270155
- 52842745 52860178

988 NM_ 001512 chré

972 NM 022162 chrle + 50731049

Hash key: bin + chromosome

Figure 12.ANNOVAR gene-annotation workflow

Once the mRNA of the corresponding variant has hdentified, mMRNA
features coordinates are checked in order to astignvariant into the
coding, intron, splicing or untranslated gene regio

In case of exonic variants, the annotated mMRNA srqges are scanned in
order to report the amino acid change given byvilm@ant as well as stop-
gain or stop-loss mutations.

In such similar way, ANNOVAR annotate variants agghiseveral variant
pre-computed resources such as 1000GP and ESP.

2.5. Genomic Data Interpretation in NGS

Human DNA sequencing allows to identify a number ggnomic
variants that can vary from dozen to up 5 millier gample depending on
the sequencing target (several genes, whole exortteeavhole genome).

The majority of these variants is frequent in thapgation because it
consists in the natural genetic variation that basn cumulated during
centuries, modulated by natural selection and ftbesecontributed to
evolution. These variants are typically called “pabrphisms”. Another
part of these variants results to be more rare gn@gopopulation or private
for an individual. The variants belonging to thiarp are often called
“mutations”. Mutations can be distinguished betwdlnse that give a
selective advantage and therefore will help theieaorganism to survive
and will be transmitted to the progenies (becomihgrefore common
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variants in future generations) and those mutattbas hinder survival and
are under negative selection thus tend to be etitethfrom the population.

Polymorphisms consist therefore in the genetic bemknd of a
population. A single polymorphism can explain omypart a given human
phenotype such as a common (or complex) diseasaiar

Genome wide association studies (GWAS) has beeeldeed in the
last ten years in order to exploit common disedbesugh the genotyping
of millions of polymorphisms along the human genorsenotyping is
different from sequencing and it briefly consistdoi “reading” only a
predefined set of genomic regions that are randaidyributed along the
human genome.

GWAS have identified genetic risk factors for commutiseases such as
type Il diabetes, schizophrenia and many others ludicg
pharmacogenetics traits[101, 102]. However, it ttabe noted that, for the
largest part, these identified genetic loci colhesly accounted for only a
small fraction of the observed heritability of tin@estigated traits [103].
Complex diseases are the results of a combinatibngenetic and
environmental factors and each can contribute & dhsceptibility to the
phenotype. Polymorphisms are rarely directly asged to the disease,
rather they can be a sort of flag indicating thesence of the causal
variants through linkage disequilibrium (the nomatam allele association
of two or more genomic loci given the biased DNAambination) or
synthetic association (see Figure 13).
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Figure 13. Each rare variant shown cause disease and they occur commonly on the haplotype
containing a certain allele of the polymorphism. The signal credited to the common variant is
weaker than the real effects of the causal variants. In the case shown, moreover, the causal variants
do not lie in the Linkage Disequilibrium block of the common variant [104].

In order to identify risk loci for a given trait, \BAS typically need
hundreds of genotyped individuals sharing the sahenotype in order to
hold the statistical power that leads to significaasults in terms of
genotype-phenotype association. However sample feizehese kind of
genetic studies depend upon the expected allefgiérecy in the population
and the expected risk incurred by that allele.

Common Disease Common Variants hypothesis (CDC\4test that
common disorders are influenced by common variamtthe population
with low or moderate penetrance, that is a polyrhamm contributes
(together with environmental or other genetic fag}do the risk by a small
amount, thus the prevalence of the disease andiltbke frequency are
slightly correlated. Also, in case of complex dses showing heritability,
a polymorphism with a low penetrance must be spraawss multiple
genetic factors.
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The Rare Disease Rare Variants hypothesis (RDR¥)ead, applies for
those diseases that are typically rare, monogenmq heritable in

Mendelian fashion and caused by rare variants gh lpenetrance and
effect size, thus the allele frequency and theatisegprevalence are in high
or perfect correlation.

Figure 14 shows the relationship between diseds¢erk variants effect

size and their frequency among a population: wH&AS applies on the

lower right, sequencing covers a broader range iansuitable to detect
both rare variants causing Mendelian diseases am@ mommon variants
with moderate effect size.

Effect size Por
("’% o,}a/
6 4 T,
sy, ’70%
’?C)v'
Effect size : : . K
R + Mendelian diseases
Ll = family-based approach
ssporadic diseases
Effect size ! srare variants
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* common diseases
* common variants
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« small effect size
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Figure 14.Disease-related variants on the basis of the effect sizes and allele frequencies in the
population [105].

Whole genome sequencing is the most comprehensiny $o exploit the
role of rare and common variants in disease; howewetil sequencing
costs will be more affordable in order to sequettcusands of samples
with a given phenotype and perform whole genome@ation studies,
alternative approaches such as family-based anderagttrait [104]
experiment designs have to be taken into consigeran order to identify
genetic causes at the base of complex diseases.

Family-based strategy consists to sequence affestdviduals which
belong to the same family, possibly the most digyarelated ones in order
to limit the number of shared and possibly causatiariants.
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The extreme-trait strategy consists to sequencelative small set of
affected individuals with extreme phenotype trait¢éer the phenotype
distribution. In this way, the variants that cohtrie to the trait will be
enriched in frequency in such a population subBkts strategy, however,
supposes to have detailed phenotype data for adlmarage of individuals
in order to generate this extreme sample selection.

Both rare and common disease sample sequencingcafpphs needan a
priori weight for the identified variants, in ordeéo further distinguish
between putative functional variants that can batee to the disease and
those variants that constitute natural genetic gemknd or that can be
related to other secondary traits.

Especially in case of whole exome sequencing whkeemajor part of
variants belong to the protein-coding region of ¢femes, variant weighting
can be performed by applying several steps [10&3 (Sgure 15):

- Apply a priori knowledge on gene mapping respect the
reference genome

- Perform discrete-filtering step based on allelgj@irency among a
reference population or control samples (under aesumption
that the control set contains no alleles from iilinals with the
phenotype being studied)

- Rank and prioritize variants based on the involeeding region,
gualitative changes to the primary protein sequeaceservation
of modified DNA bases (or amino acids in case ait@in-coding
variants),normal gene variability in order to avdlibse genes
with highest and noisy mutational rate, protein duonal
domains and variant matching against well phencagsociated
variants in literature.

Once obtained the reduced variant candidate hgieemental evidence of
pathogenicity by functional studies has typicathyoe assessed.

Gene expression by RT-PCR, in vitro splicing assaysanimal models
phenotype replication are common examples of sugictional studies.
Family co-segregation is another important featufer variant
interpretation despite there exist cases (e.g. asecof incomplete
penetrance) for which establishing the inheritapa¢tern is far from be
straightforward [106].

A common practice requires also to confirm ideetificandidate mutations
with higher accurate experimental methods suchaag& sequencing.
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Figure 15.Stepwise interpretation for genetic variants[106].

2.5.1. In-silico Prioritization of Genomic Variants

Identifying diseases related variants could betinedty easy in case each
of the following rules holds:

- overlapping within a known and well mapped proteading
region

- rare or unseen in a reference population or cogr@lps

- causing an important and easily interpretable chaegencoded
protein such as the introduction of a prematurep steodon
(nonsense) or a translational reading frame sHifan{eshift
indels)

- related genes have a known function and have besinstudied
or, better, have been previously related to theesdivease

Unfortunately this ideal pattern does not alwaysdhior rare Mendelian
diseases and (even more rarely) for complex onesevimore common and
mild-effect variants can concur to the phenotyp@raviously discussed.

Additionally, within whole exome or genome sequagcdata, there is the
need to distinguish between disease-causing orceded variants and the
overwhelming amount of potentially functional varia present in any
individual genome, but not pathogenic for the dsseander study.
MacArthur et al[107]considering only loss of function (LoF) vartan
(nonsense, frameshift indels, large deletion remg\the first gene exon or
more than 50% of the protein-coding sequence trg$estimated that a
healthy individual with European ancestry carrid96- LoF variants with
the 20% in an homozygous state. This list was dgager (about double)
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previous to filtering variants by several critesiach as annotation errors or
frameshift indels close to 5 end of genes not higtonserved or not
known to be functionally important and thereforesukting in likely
tolerated truncating variants.

Other insights came up by analyzing properties lté telative genes
mapped to this variant list. In fact LoF variantssulted significantly
enriched for:

- less evolutionarily conserved genes comprehensifetheir
promoter region

- genes having more closely related paralogs (gemailyfa
members) with a greater sequence identity thanrateees

- genes showing lower connectivity in protein-protameraction
and gene interaction networks

while they resulted significantly depleted for gernimplicated in protein-
binding, transcriptional regulation and anatomavelopment.

Thus, it is straightforward to integrate both vatievel and gene-level
prior knowledge in order to carefully and correcdlsess sequence variants
in human diseases and to void false positive assm#sof pathogenicity
that could contaminate published results, and tbeze impede the
translation of genomic research findings into thinical diagnostic
setting[108].

Informatics evidence for variant pathogenicity asseent can be done at
gene level, variant level or both.

Prioritization at gene level leverages existing \Whexdlge on genes,
proteins, diseases and phenotypes.

Given a candidate gene list and a disease or pyeadtaits of interests the
goal is to end up with the ranked gene list acagdito the
phenotype/disease under study.

We can distinguish between two main kinds of generpization
algorithms: those that exclusively use bio-ontoésgio mine and report
known and new associations between genes and diseasd those based
on “data fusion”, that consist in integrate disparand heterogeneous data
sources and match similarities between a givennftrg) gene list and a
candidate (test)one.

Ontologies are knowledge databases in which theornmdtion is

represented as a graph: terms are the nodes grettesprecise taxonomy,
while edge are relationships between terms. TheeG@ntology (GO)
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[109], Disease Ontology (DO)[110] and the Human rtigpe Ontology
(HPO) [111]are examples of knowledge databases usedgene
prioritization.

Recently, several tools that exploit one or moretlugse ontologies to
prioritize variants have been developed [112-115].

Phevor starts from HPO terms describing the indigldraits and comes up
with a phenotype-linked gene list that further s with other ontologies
such as GO and DO. In the ontology search proceseath gene is
assigned a score depending on relationships weélptienotype, GO terms
and diseases: generally, more often a gene oraitalgqy comes up within
the search, the higher it scores.

Other methods [113] makes use of semantic simyldrétween HPO terms
annotated to genes and those used to describe dawvidunal. Similarity
between two terms is a function of their specificind semantic relation:
specificity tends to penalize those HPO terms wah high gene
connectivity while semantic relation consider timaikarity of two terms by
the specificity of their most informative commoncastor.

Endeavour [116] and ToppGene [117] are examplesdata fusion
applications to gene prioritization. Functional atation (by GO), gene
expression, sequence similarity, transcriptionaltifeo protein domain,
gene network and, in case of ToppGene, mouse pyemotlata are
integrated to rank a list of candidate (test) gemreshe base of similarities
with given training genes.

As shown in Figure 16, steps for gene prioritizatjgroceed in a similar
way: a training gene set is used to gather infoimnatbout diseases,
pathways and the other kinds of data; a test gehécsrresponding to the
candidate gene list) follows the same searchinggs® and for each data
record (corresponding to a data source type) ganesanked accordingly
to the data similarity with the training gene lisinally data fusion here
consist to merge ranks obtained from the separati# sburces into a single
ranking. The different tools differ on statistieglproaches used to compare
similarities between training and test attributesties (ToppGene uses a
combination of Fuzzy Measure and Pearson Correlatihile Endeavour
uses Fisher’s omnibus analysis and Pearson Caoelas well),plus data
sources used.

However, both ontologies and data fusion based gpneritization
methods suppose that phenotypes and/or diseadseahdividuals under
study have been well defined or that a list of knogenes related to the
trait of interest exists. If ontologies based methoan help with the second
issue ending up with a list of gene similarities fomctional annotation
(such as Phevor does) the choice of using phenotgpes can be
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controversial [113]. Moreover, these methods do care about genomic
variants that have led to the candidate gene lidting.

Step 1
Data source
I h Trammg m [-
Select known Repeat this A BCDEFGHIJ K
(training) genes procedure
for all data y
Extract from each  sources (A—K) As_sgmbla characteristics of the

data source information training sets for all data sources

specific for known genes
Step 2

Test for similarity with
characteristics of the training sets

< i I

Select candidate
(test) genes

Obtain rank (1—n) of each
prioritization per data
source (A—K)

Step 3

Fuse data by
order statistics

Obtain one overall rank (1—n)

Figure 16. Typical steps in gene prioritization by data fusion [116]

Variant prioritization consists in assessing theiarg pathogenicity by
using specific attributes at nucleotide and prots#guence level where a
genomic variant occurs.

Recently, methods that combine gene and varianbripgation level

approaches has been developed [118].Moreover, sheeavailability of
publicly genome datasets increases with the numbfkersequenced
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individuals, statistical frameworks to prioritizeerges basing on their
observed/expected mutational rate have shown thigity especially in the
identification of rare inherited disease genes [1112D].

In this thesis we further focus on variant prigdtiion methods, also called
“variant prediction” algorithms.

2.5.2. Variant Prediction Algorithms

Human genomic variants can be first classified los hasis of genomic
region to which they overlap.
Coding variants may cause changes to the primaugtsire of the peptide
encoded by the relative gene, therefore are theé amenable to functional
interpretation and, as a consequence, are the shatied.
Non-coding variants constitute the major part oé timdividual human
genomic variation [5] and are likely to contributgth low effect size to
complex traits as confirmed by GWAS. Moreover, saldarge-effect
regulatory variants (e.g. in promoter and enhanegions) have been
confirmed to be the cause of several Mendelianadiss.

Predicting the deleteriousness of coding variastasisociated to predicting
whether they alter protein stability, structure amdprotein function. We
can distinguish between two main coding variant dmt®r classes:
structure-based and sequence-based methods [121].

Structure-based methods [122, 123] rely on energynction-based
approaches and require protein three-dimensiomattsire as input to end
up with accurate results. Because of their highpatational demand, their
application to the big amount of sequencing dataigasible.
Sequence-based methods typically use sequence bgymokequence
evolutionary conservation, structural informatioxg(esurface accessibility,
hydrogen bonding). They can be further divided inb@se adopting a
“first-principle” approach and trained classifief§6]. First-principle
approaches make predictions basing on a definelddpcal property (e.g.
evolutionary conservation) while trained classsiere based on heuristic
associations of many potentially relevant attrilsutbat significantly can
discriminate between true positive and negativetamses. Trained
classifiers methods are generally more accuratechatbe biased by the
training data; however, they have the advantagebdotunable. First
principle approaches are more interpretable, b kmited to their
assumption and do not model all the possibly releVactors.

A gold standard algorithm in variant prediction da®ot exist yet and the
scientific community is in agreement that the comabion of the diverse
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approaches is actually the most accurate soluti@d]| despite the optimal
ensemble model has not been univocally identified.

Many variant prediction methods basing on homolegguence alignment
[8, 125-127], sequence conservation [124, 128-13djd protein
structural/functional parameters [2, 3, 132, 13®}d1been developed.
Four algorithms, encompassing aforementioned caiegjoare hereby
discussed in more detail, selected for their sgjiateole in this thesis.

2.5.2.1. PolyPhen-2

PolyPhen-2 is an algorithm that aims to predict twea a single
nucleotide variants leading to an amino acid stilsbin (missense or non-
synonymous variant) can affect or not the encodetep functionality.

It is based on the multiple sequence alignment (MPAradigm and
makes use of protein 3D structure attributes too.
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Figure 17. PolyPhen-2 workflow[2]

Given a single nucleotide variant (SNV), it is madponto available
mapped MRNA transcripts: PolyPhen2 makes use of QWGBRNA

transcripts tracks by UCSC Table browser for varrmapping.

Depending on the reading frame of the mRNA tramécrihe nucleotide
sequence flanking the SNV (25 base pair for eacippsen) [134] is

translated into amino acids.

The amino acid sequences are search via BLAST+][IB& database of
sequence protein (the UniProt UniRef100 and Swist3RPn order to match
homologous sequences(both orthologs and paralotipsami identity match
between 10-94%) and are aligned by MAFFT [136], @tiple sequence
aligner software. The obtained MSA is then improvied alignment
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refining (LEON [137])and clusters of similar seqeen are identified by
Secator algorithm [138]in order to distinguish beem subfamilies. Protein
subfamilies are frequently representative of sdtprotein with related
functions and/or domain organization and therefordy the compact
cluster, which includes the analyzed sequenceyribér processed.
Position-specific independent counts (PSIC) sofewft39] is used to
assign weights to the amino acids respect to thé M&d obtain the so-
called profile matrix, which elements represent lingarithmic ratio of the
likelihood of a given amino acid occurring at a tparar site to the
likelihood of this amino acid occurring at any sitemputed by using prior
probabilities from the amino acid substitution matBLOSUM62 [140].
PSIC for the wild, mutated amino acid and their ®@Slifference are
computed.

At the protein and nucleotide sequence level, PodyP2 considers also:
whether the nucleotide variant overlaps to CpGnd$aand is a transition
(A<->G, C<->T) or a transversion (A<->C, G<->T,AX<->(0);
whether the variant is inside a Pfam [141]domain.

PolyPhen2 takes into account protein 3D structamraimeters related to the
amino acid change. It first maps with BLAST the lgmad sequence to a
database of protein structure, in particular PDB2]J1 considering at least
sequences with 50% identity. Then, it obtains d$triad parameters by
mapping the amino acid residue of the PDB recotd IDSSP database
[143] and calculates many parameters, includingnivenalized accessible
surface area of amino acid residue, the changecdessible surface area
propensity for buried residues, the change in tesigide chain volume and
B-factors (a measure of the local mobility resigtinom crystallography).

A complete list of PolyPhen-2 features is repoitedable 3.

Features Type Values
PSIC score for the wild type | sequence (-1,1)
amino acid

PSIC difference between wild| sequence (-3.27,4.57)
and mutated

Number of residues observed| sequence (1,432)

at the position of the MSA

Congruency of the mutant sequence (0,95.5)
allele to the multiple alignment

Sequence identity with the sequence (1.56,95.5)
closest homologue deviating

from wild type

Pfam domain hit sequence Yes,No
Variant transition/transversior]  sequence No,
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in CpG island Transition,
Transversion

Change in residue side chain| structure (-167,167)

volume

Normalized accessible surfacestructure (0,1.55)

area of amino acid residue

Crystallographic beta-factor structure (-1.85,5.17

Change in accessible surfacstructure (-1.83,2.89

area propensity for burie

residues

Table 3.PolyPhen-2 features and relative range values.

Sequence and structure related features are uséwhitoa Naive Bayes
classifier coupled with entropy-based discretizatld4], chosen because
of the heterogeneous feature set (discrete andnuants values as shown
in Table 3) and the presence of missing values (ehgn PDB structure is
not available or lack of homologous sequences).

Being the Naive Bayes classifier a supervised agpgrpit requires data for
training and for testing.

PolyPhen-2 has been trained on UniProt databasehirpositive class
while negative variants (that is supposed neutradye compiled from
differences in homologous protein sequences ofetyoelated mammalian
species. The Naive Bayes classifier has been ttzané tested by 5-fold-
cross-validation consisting in split the datasetive parts, four for training
and one for test, repeating it 5 times with différparts used for test.

Actually, two versions of PolyPhen-2 exists, based the learnt
classification model on two different filtered datat: HumDiv, with 3155
Mendelian disease related variants extracted fromPkdt database as
positive instances and 6321 differences betweenanuproteins and their
closely related mammalian homologs that were carsidl neutral
(negative instances); HumVar, with 13032 human alsecausing variants
(comprehensive of Mendelian diseases but not oaly) 8946 human
missense variants without annotated disease data.

Results on test set showed that for a false pesirae of 20%, PolyPhen-2
achieved true positive prediction rates of 92%tfe HumDiv and 73% for
the HumVar dataset (see Figure 18).

A reason for the lower accuracy on HumVar is thet telative variant
database may contain mildly deleterious alleles tiaae been classified as
non-damaging. Therefore, it is recommended to usenVar to predict
variants in Mendelian diseases in order to clesglyarate high from low or
null effect size variants.
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Figure 18.ROC curves of PolyPhen-2 on HumVar and HumDiv datasets. Comparison with the first
version of PolyPhen is shown as well[2].

2.5.2.2. SIFT

Sorting Tolerant From Intolerant (SIFT) is a mudtep algorithm based
on protein homology sequence similarities like Plgn-2 but it holds
critical differences on how it retrieves homologosgequences and
calculates the weights associated to amino acidstgubons in the
resulting MSA, moreover it does not make use aicttiral properties and
uses empirical cutoff for classification ratherriHaarning.

Given a sequence query representing the mutatadipr&IFT searches
a protein database (SwissProt) using PSI-BLAST aetects similar
sequences iteratively until conservation in thesssaed regions decreases.
PSI-BLAST, in fact, performs the multiple sequeradggnment and SIFT
clusters aligned regions in case of sequence igyegtieater than 90%.
Then, a consensus sequence is made for each gyodpolbsing the most
frequent residue for each position. The MOTIF aiigon [145] is used to
search conserved regions which are then groupesthegif they are >90%
identical and a consensus sequence is made for eaterved group.
Conserved regions of the query sequence and segsiewdh >90%
identity constitutes the “seed” to which additiosaquences will be added.
The seed is given again to PSI-BLAST to search gmitre consensus
sequences that were excluded from the seed. Thehiieis added to the
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MSA and conservation for each conserved sequena&sign is computed
by the following formula:

20

R, =log, 20 — Pca 108 Dcq

a=1

wherep,, is the frequency at which amino a@dppears in position. The
total conservation is calculated ¥sR.. If this conservation score is
greater than or equal to the conservation of tleel sthe best hit is added to
the MSA and the seed is rebuilt. This step repeatd the conservation
score does not decrease.

1. query sequence

>FASTA header
'RRLAPMD| HEEp

2. PSI-BLAST searches for
l similar sequences in

SwissProt and perform Multiple
Sequence Alignment (MSA).
—_— MOTIF searches for conserved regions
in MSA and the initial seed is created

3. Adds conserved
sequences to the l
seed until

conservation does
not decrease

5. Prediction based on empirical cutoff.

4. Calculates normalized probabilities l
for all possible substitutions
at each position from

the alignment

Probability
< cutoff

Tolerated

5. SIFT makes
predictions

Yes

Deleterious

Figure 19. Sift workflow. Image adapted from [146].

After the selection of the most conserved sequeincks the MSA, the
alignment is converted into a position-specific ma(PSSM)[147], a_x20
matrix whereL is the length of the protein sequence. Each elérokthe
matrix p., is the probability of amino acich at position ¢ of the
proteinp.,is a function of the residue frequency into the M8Athat

position and thegseudo-countgL48]for the same residue, a method used to

correct profile scores taking into account the faloat the observed
sequences are an incomplete sample of the fubfsetiated sequences.
Finally, eachp., is normalized with respect to the may{) for that
position and an empirical cutoff of 0.05 has be&osen to discriminate
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between damaging (<0.05) and tolerated (>0.05) wnidipg on the observed
amino acid substitution.

2.5.2.3. MutationTaster

MutationTaster is a variant prediction algorithmlealio score both
human protein-coding and non-coding variants.
Basing on different genomic variant databases (OMHWGMD, ClinVar,
HapMap, 1000GP) and using results from differegoathms, it collects
features on nucleotide/protein sequence consemnaootein structural
properties, splicing sites, polyadenylation signaksgulatory regions and
Kozak consensus sequences to train a Naive Bawssiftér on known
datasets of damaging and tolerated variants oéwdfft types.

splicing-sites

> utr intron |' |' 3" utr

N

M

Checking for conservation Checking for
and protein-structural polyadenilation signals
mapping properties (without_aee)
(simple_aee or complex_aee)

Checking for variants Checking for splicing site
Altering Kozak alterations
consensus sequences (without_aee)

(without_aee)

+ Variant Databases
(OMIM, HGMD, 1000GP,HapMap)

Figure 20.MutationTaster capabilities based on diverse variant types. On the top a gene is
represented by its introns (lines), coding exons (larger rectangles) and untranslated regions
(smaller rectangles).

Conservation of residues or nucleotide sequencensputed analyzing
the MSA of the sequence query and homologous segseorf ten different
species both at nucleotide (Iy2sed149]) and protein level (bylastp.

MutationTaster then classifies the conservation thtee classes (identical,
partly conserved or not conserved) on the basiamino acid sequence
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similarity or in two classes (conserved or not @med) for the nucleotide
sequence one. Moreover, MutationTaster also uses éwolutionary
conservation scores computed on the multiple aligmis of 46 vertebrate
species, phyloP [129] and phastCons [150].

Protein structure features are retrieved by seagcm SwissProt database
the mapped properties to the protein of interest aheck whether the
analyzed variant overlaps some (directly affectpay influence others in
case e.g., of frameshift or splicing-site alterasio(indirectly affect).
Despite it has not been exactly clarified by thdhats which protein
features have been used to train the Naive Baygssifler, MutationTaster
reports the directly or indirectly affected featsirguch as helix and beta
strands, domains, binding sites, active sites etc.

Variants overlapping splice sites (intron-exon lBg] are processed by
NNSplice[151] a splice site predictor algorithm that usesimal networks
on dinucleotide frequencies to identify gene stuues. 60 bases around the
variant are used to compare wild-type and mutatequences. Upon
NNSpliceresults the variant is classified on the basistofprobability to
alter existing splice site in positive/negative wdyn additional splice site
is activated or the splice site completely lost.

MutationTaster also analyze consensus sequencamtianslated gene
regions (5'utr and 3'utr), respectively checking etier the variant
overlaps a Kozak consensus sequence (gccRccAUG@uriRme) typically
positioned upstream the start codon (AUG) and pdyglation signal
(PAS) regions consisting of two type of examers [ARA or ATTAAA)
by polyadq algorithm. Both features play an important rolgointhe
corresponding mMRNA expression.

Finally, MutationTaster implements several rolesoirder to limit false

positives and negative rates by checking if vagahave been already
known to be disease-causing or a potential polymmsms by querying

variant disease databases such as HGMD, ClinVar]MDkInd natural

background variant databases such as 1000GP ardapagespectively.

The implemented Naive Bayes classifier has beemedaon diverse
datasets, known disease and neutral variants fr&aMB and 1000GP
(with allele frequency threshold to assume neutrpliiltered upon three
variant types: intronic or synonymous varianistijout_aeemodel), amino
acid substitutionssfmple _aeemodel), coding variants such as frameshifts,
introducing or disrupting a stop codaco(nplex_aeenodel).
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2.5.2.4. GERP++

Non-coding variants are difficult to interpret, esmlly when they
overlap with not-annotated genomic regions such splce sites or
regulatory elements. The effort to annotate allctional elements in the
human genome such as the ENCODE project[152] iseumdntinuous
development and evolutionary conservation by compag genomics is a
central component in the pursuit of this goal. Seme conservation, in
fact, is a peculiarity of regions under negativeesgon that are reasonably
supposed to have a biological function.

Genomic Evolutionary Rate Profiling (GERP++) [12853]is an MSA
based algorithm that estimates evolutionary rafesagh single alignment
column and compares the inferred rates with a ttescribing the null
model, in order to define significance thresholdgaiast a neutral
background of substitution rate of the species urmmsideration. The
identified constrained elements are then scoredrdaty to the “rejected
substitutions” (RS) deficit.

MSA is built up by the multiple alignment of 34 maralian species by the
use of TBA algorithm [154].

Giving the MSA and a phylogenetic tree of the spedn the alignment
(see Figure 21B), GERP++ estimates the neutral foat¢he entire tree in
terms of neutral divergence among closely relapeties and extrapolates
rate estimates over the entire branch length tbeeing this step, if an
alignment contains gap in a given position, theegponding species is not
considered into the computation of the neutral.rate

Subsequently, constrained elements at each postiiothe MSA are
calculated in terms of RS score, that is the défifiele between the expected
and observed evolutionary rate at each positiore dlbserved value is the
maximum likelihood estimate of the alignment columexpected
substitution count, and likelihood is maximized lwitespect to all branch
lengths in the topology of the tree. The expectealgionary rate for each
column is obtained by pruning the tree in orderetoninate gaps and
summing the residual branch lengths. Finally, caised elements are
identified by a threshold on the observed/expectate allowing the
merging of few diverse positions exhibiting a ratower than threshold
(Figure 21A). The RS is the sum of the individuiaé glifferences between
observed and expected rates of these merged elenkenally, a p-value is
assigned to each RS score, representing the ptaipaidia random neutral
segment of equal length having an equal or higls€ore.
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Figure 21. GERP++ workflow overview[153]
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Chapter 3

Sequencing data management

This Chapter describes the Variant Management Byst€VMS)
developed in the thesis. VMS has the aim to orgasequenced samples
along with related genomic variants resulting freeguencing pipelines.

In particular, paragraph 3.1lpresents the systemedam a relational
database approach developed for such purpose,ilbesadts technological
components and discusses about results and lion&tiApplication results
of this system are shown in Chapter 5.

Paragraph 3.2deals with the system based on No&@ibdse, describes its
paradigm, related technologies, performances anddudirections.

3.1. A Relational Database for Genomic Variants
and Annotations

In Chapter 2 the issue of management and intefpoataf sequencing
data has been introduced, focusing on genomic wiarialhe plethora of
data produced by NGS is not straightforwardly iptetable and needs to
be integrated with genomic and disease knowledgerder to correctly
link genotype to phenotype features.

Genomic databases constitute this knowledge, beir thata are not
ready to use in the most part of cases: indeed b to be accessed,
processed and linked with target data objects, genomic variants.
Organizing genomic variants along with their antiotss is a requirement
in order to learn from collected data and to proce® variants
interpretation.
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We have therefore developed a VMS with the aim timres genomic
variants collected from sequenced samples in skwx@eriments, using
different targeting enrichment platforms.

Variants come in VCF format, are imported into thgstem and are
annotated for genomic knowledge such as mRNA tmrguis¢ genes,
proteins, amino acid consequences, polymorphisnts @dgisease variant
databases (see Figure 22). Once sample variants been annotated, the
system allows choosing the cohort of samples toasséhe target (cases)
and the cohort of samples to use as controls, fuchvaggregate data on
variants are computed on the fly. The system qeeatata by applying user-
filtering criteria on variant annotations such amsiro acidic change type
(non-synonymous, stop-causing), population varidrgquency and/or
variant attributes such as reads coverage andtguBkesulting variants can
be further processed by variant prediction tooisgshsas PolyPhen-2 and
MutationTaster, and results are stored withoutrtbeds to re-process the
same variant entities resulting from other analysis

The system relies on the MySQL Relational Datalldaaagement System
(RDBMS) database for variant and genomic annotasimmage and J2EE
technologies for business logic and user interf&de.therefore name the
system as RDBVMS (Relational Database Variant Managnt System).
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Figure 22.The RDBVMS general workflow.

3.1.1. Data Tier

The MySQL relational database management systens.p). has been
chosen in order to store genomic variants and atioois. The choice has
been leaded by the flexibility, scalability, transan and indexes support
that MySQL offers. MylISAM and InnoDB storage engneave been used
both depending on reads/writes expected ratio dbles and the needs of
constrains. Figure 23 represents a simplified wersof the database
schema.
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Figure 23.RDBVMS: the simplified Database Schema

The core of the database concerning genomic variannhade of four main
tables:sample coordinate markerandmutation

* samplecontains data about the sequenced sample and ticyar
the internal id, the sample code, gender and thepkagroup which
describe the NGS application used (e.g. exome spexific gene
panel). The sample id univocally identifies the roWwthe sample
table.

» coordinaterepresents genomic variant by their reference aslsem
chromosome and absolute 1-based chromosome position
corresponding to the variant starting point. Theordmnate id
univocally identifies a row of theoordinatetable.

* markertable reports genomic variants for each sampleadant is
identified by its coordinate id, reference and ratk nucleotide
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bases in a VCF-like format. Each marker holds data that
particular variant for the specific sample in terafggenotype, total
reads coverage, coverage of the reference/alteesgsh quality,
filter annotations and other data coming from th€FVfile. The
coordinate id, reference/altered bases and the Isampunivocally
identify a row of themarkertable.

* mutation instead, is a variant abstraction and store atis¢h
annotation data that depend on the variant wittentranscript and
not on the specific sample. Therefore mRNA tramd¢crcoding
region, amino acid change, pathogenic probabiliteesd other
genomic annotation data are memorized within eaaW. rThe
coordinate id, reference/altered bases and the miRdAscript id
univocally identify a row of thenutationtable.

Coordinates have been separated from marker (andtion) in order to
make these tables independent from genome asseamuly in case of
genomic reference update, only coordinates havueetohanged by using a
mapping algorithm such as liftOver [84].

The mutationtable is filled during data import: business ti@ngonents
annotate each variant using both data stored id#t@base and requests to
web services over HTTP.

B-tree indexes have been set on those tables afdk fthat are generally
gueried, in order to speed up data retrieval.

3.1.2. Business and Presentation Tiers

The VMS has been developed as a J2EE-complianicapipin. The Java
servlet technology has been chosen: it runs inthéeWeb Server (in our
case Apache Tomcat), receives the HTTP request ttembrowser and
generates dynamic content through Java Server PA@%) components
providing HTTP response back to the browser (sgerei 24).

Servlet technology is convenient in case of seimaggnsive applications,
such as those accessing a database, that is ceir Sasvlets are managed
by the Servlet Container that is Tomcat and thienwfand mapping can be
configured through a specific xml file, the web Apgtion deployment
descriptor (web.xml). A Main Servlet has been cguafed in order to
manage every request from the Servlet Container, the user HTTP
requests. In order to manage authentication fonestgd resources, a Filter
has been configured: it preprocesses the requeshéoMain Servlet and
check whether a specific session attribute has bewmlized (i.e. the
username) and it eventually address to the loggegar authentication.
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Main Servlet is used in combination with JSPs atadinPOld Java Objects
(POJOs). The first are used to manage the dynaomteat of web pages,
the seconds belonging to the business tier, toopmarfoperations such as
guerying database and manipulate data.

HTTP Client HTTP request HTTP Server
PresentationTier

¢ =
G|

HTTP response

”
|

Apache ’
(Web Browser) (Web Server)
web.xml
HttpServlet
Request/Response Map URLto
—————————————— : <xml> Servlet Class
Data Tier !
i JDBC
— ] I Servlets |
‘ i ” (Main, Filter)
DB | Connection
el | pool ISP
1
i
4

Business Tier

Figure 24.RDBVMS architecture

The Main Servlet has been coded in order to:

* load configuration parameters: a configuration fiess been used in
order to store those parameters needed to thensyabel that may
change in time, e.g. URL and credentials of the RQISdatabase,
local directories used as file repositories forath@ise dumps.

» dispatch the user requests to POJOs and JSPsethiketSnteracts
with the Servlet Container through predefined otgefor request
and response (HttpServletRequest and HttpServipttese) and
methods to manage HTTP GET and POST requests. Eaglest
hold a parameter (command) that is the code usdtidyerviet to
perform an action, such as instantiate a POJO,itsathethods and,
finally, invoke JSPs (see AppendixAQervletNGS.java

* initialize a connection pool to the database: irdeorto limit
database connections creation and manage thenmrectoon pool
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logic has been implemented. The connection poolnigalized
within the Main Servlet and a new connection isated or pulled
from the pool when a POJO asks for a connectiatheodatabase in
order to perform a query (see AppendixAZnnectionPool.java

POJOs have been used in different ways such asgsepting data objects
grabbed from the database, processing data duraig ohnporting and
presentation phases, performing requests over Haié updating data
tables. Figure 25 depicts the simplified UML cladsagram of the
application: LoginFilter is between the Servlet Container and the Main
Servlet (calledServletNG¥$ and it manages authentication to the requested
resources (e.g. JSP§)BAnalizeis the Java class used to perform the major
part of CRUD (Create, Read, Update and Delete) aimers on the
database and makes use of POJOs representing skatabtties, such as
Sample Coordinate Marker andMutation.

==lava Class=»
(& LoginFilter
it. bicinfo. ngs. fitter
==lava Class=» ==lava Class=»
(® ConnectionPool (® Servletlgs
it. bicin fo. ngs. util it bioinfo.ngs . serviet
=zJava Class=>
(2 DBAnalize
<<lava Clags=> it. biginfo.ngs . serviet
(® ReadVcfCallable
it bioinfo.ngs. util <<Java Class=> <«Java Class=>
(® sample (® Marker
it bioinfio. ngs il it. bicin fio. ngs. util

«=Java Class=>
(2 ReadVcf

it bizinfo.ngs. util

==Java Clags=>
(3 Coordinate

it. biinfo. ngs. util

==Java Clags=>
(& Mutation

it. bioin fio. ngs. util

«=Java Class=>
(2 PredictionTools

it bicinfo. ngs. util

==Java Clazs==

(2 PredictionsRunnable
it. bioinfo. ngs. util

Figure 25.RDBVMS: the simplified UML diagram of classes

3.1.3. Data Workflow

Genomic variants follow a specific workflow. The emsimports and
retrieves sample variants interacting with the wabrface. In Figure 26the
main VMS variant annotations are reported, distigiging between those
that are performed on the fly during data impor data retrieval.
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VCF | & Sample data

importing
import Coordinate chr, position

VCF oo Marker ref, alt, coverage, qual,

filters etc..
mRNA transcript,
RefSeq, amino acid change,
UCSC import Mutation coding region (intron,
knownGene exon..), dbSNP id and
frequencies
Marker retrieval Variantfrequency in
selected controls
HTTP GET retrieval Prediction tools results

Figure 26. Overview of the RDBVMS annotations distinguishing those computed during data
import and retrieval.

3.1.3.1. Data Import

Variants are imported into the system through thebwnterface (see
Figure 27). VCF file format is the accepted staddand can process the
specific fields produced by both GATK Unified Geyper [49] and
another variant caller, MuTect [155]. The usersfilhe form relative to the
sequenced sample and the NGS experiment to whimdlongs and uploads
the related VCF file.

On back end the request is managed by 8ervletNGS which
instantiates the objects and calls the related ousthto parse the file
(ReadVCEFE see Figure 25). Each variant in the VCF filehent annotated
with several genomic data by querying and procgsspecific tables
content: the UCSC table of known genes is querigdjdgnomic intervals
related to the transcriptional regions. Exons cowtks are scanned in
order to classify the variant as an “exonic”, “mmic”, “splice-site” or
untranslated “utr” one. In case of an exonic vdriatme amino acid
sequence of the related mRNA transcript is pullads¢_cdstable, see
Figure 23)and the amino acid change is calculatedthe basis of the
variant allele. The variant is therefore associdtethe relative dbSNP-id,
in case it exists, and relative frequencies. Soh8NP database tables
have been dumped into the VMS database in orddinkothe right id to
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each variant depending on the reference and ateeaikele reported in the
VCF file, while views regarding dbSNP allele freqoees have been
elaborated in order to associate the variant altelethe minor allele
frequencies in the general population. Notably,case of G/C and A/T
allele ambiguities, the lllumina TOP/BOT strand eention[92] has been
implemented in order to be sure to refer to the esa@riant allele strand
reported in dbSNP. Not always the TOP/BOT informiatis available, and
in such a case, the warning of possible ambiggityeported as additionally
fields in the final report.

NGSDB Web Site - Hi ivan - logout
B ! eation

EXPLORE
« Experiments T@L
| Hlumina |
« Samples T
- Mutations [Hiseq2500 v =
Aty pescrption 1. Add experiment
8 exomes with Epilepsy
NEW Date
otaiosriz s
« Experiment \f\fYE‘rjMfDQ .
. Sample ‘ Add Expeniment |
« Mutations i
- Analysis
MY
MANAGE Code
b 2. Add sample
Sample Group
Status ]
| exome v
Jobs ——
Add Sample |
ULt Vef File
* DBESnp [ Sceglifils | 100001-14 vef vef
ESE Reference build "
gt v 3. Upload variants
DbSnp FTP Vef Source
Software | Unified Genotyper like v |
Theses —_————— 7
| Upload |
EXPLORE | [MS TS
[monitor] [1/1] Active: 1, Completed: 0, Task: 2, isShutdown: false, isTerminated: false
. Experiments
id_sample||file_size {Bytes)| status
gi=amples 448 188408 Running|
+ Mutations 448 188408 Running
« Analysis
- 4. Monit i
. onitor running processes
« Experiment
« Sample
- Mutations

Figure 27.RDBVMS - Data import web interface

While VCF related data are stored in thdarker table, genomic
annotations are stored into tihutation one. The latter contains variant
abstractions, therefore rows in this table do nepahd on samples: a
variant is processed for annotation only if itsrespondent variant object
does not exist in th®utation table, in order to speed up the import phase
and avoid SQL exceptions of duplicates keys.
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Data import has been coded in an asynchronous mvpleimenting the Java
Callable interface (see Figure 25 andReadVCFCallable.java in
AppendixA.2) and pulling the object into an Exeauidth a single thread.
Therefore, the user can upload several VCF filesascade and monitoring
the importing process for each sample.

3.1.3.2. Data Retrieval

Data retrieval allows the user to download genowadants belonging
to a selected sample cohort and respecting sewptnal filtering criteria.
The user first chooses all the samples to incladdé analysis by selecting
them on the assigned sample group or individuallgen, the samples
cohort to be used as cases (for which the genomiiants are retrieved)
and as controls can be chosen. Subsequently,ifidiecriteria based on
genomic annotation (e.g. exonic region and dbSNRjuency) and per
sample variant attributes (e.g. coverage, quatity) be selected in order to
reduce the space of genomic variants to retrieveé famther analyze.
During the retrieval of genomic variants, two maoperations are
performed on the fly:

* Variant frequencies calculated among the controlshoc:
depending on the samples control cohort for thecifipeanalysis,
dedicated Java classes retrieve, for each sampke-cariant, the
number of controls samples that share the sameantafrows of
Marker table) along with data related to the matched d$eamp
variants (markers) such as the genotype and cogeilagthe final
report, for each variant reported in at least omen@e-case,
aggregate values computed on the sample cohor\aiéable, e.g.
variant frequency, heterozygosity/homozygosity sate

» Variant functional predictions: PolyPhen-2 and MitaTaster (see
2.5.2) are run in order to assess the variant gaihcity of the
resulting variants. A predefined Java clagse(ictionTools see
Figure 25)has been coded in order to run variaediptions by
directly making requests over HTTP (POST method) the
correspondent web services, using th&pache commons
HttpClien{156] libraries. Data are first processed in ortterespect
the requested format (e.g. mMRNA transcript conw#rs), sent over
HTTP to the web services and retrieved using HTTET Gnethod.
Results are saved into the database and linkeaketdlatation table:
in fact, only those variants lacking a stored pcadn follow this
procedure. Java classes in multithread mode hae& loeded in
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order to run requests in a parallel fashion anc&dpe the retrieval
of prediction results (seeFigure 25 &mddictionsRunnable.java
inAppendixA.2).
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Figure 28.RDBVMS - Data Retrieval Workflow by web interface
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The final report consists in a list of genomic aatis extracted from the
database and enriched by the aforementioned datéh Ew is univocally
identified by the sample code, variant coordinated the mRNA transcript
to which it overlaps. The report can be exporte@ &ab-delimited text file
along with genomic annotations and variant freqienon dbSNP, ESP
and the control cohort. Finally, the exported fiten be optionally
processed in order to aggregate sample genotypearants, resulting in a
multi-sample variant file, easy to be managed amthér analyzed by a
spreadsheet software such as Microsoft Excel (gpaé¢28).

3.1.4. Results and Discussion

The developed RDBVMS has been used to perform aéease-control
studies by extracting the related filtered list @énomic variants. This
procedure allowed the researchers to test theiotimgsis on the basis of
the annotated variants in the final report. In jgaittar, the genetic causes of
different rare and complex diseases have been ggglgtarting from the
RDBVMS output. Some successful case studies hawn bieported in
Chapter 5.

The system allowed to store genomic variant datad®f sequenced
samples divided between whole-exome (123) and ganel! applications
(314).A total of 33,799,523 genomic variants hawerb collected along
with data on genotypes and metrics for each saniptpire 29reports row
counts for each main table of the database regpette schema in Figure
23.

~] sample_group ¥ "] sample v ] experiment v
T L— 437 et 28

_| coordinate ¥

| polyphen v
6,935,044 —l_ i
] marker v | mutation v
33,799,523 | — 14,473,777
_] mutationtaster v

292,804

Figure 29.RDBVMS - Row counts for each genomic-variant related table
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In terms of memory, the database occupies 293GBaod disk drive and it
has been configured within both the presentatioth lmsiness tiers on a
single workstation with an Intel i3 CPU and 4GB RAM

The system, in fact, has been originally developedrder to be light in

terms of CPU and RAM consuming, by limiting the rluam of processes to
be managed in multi-threading mode both during datport and data
retrieval.

Despite the efficacy showed by the RDBVMS to gieéable results in
terms of variant annotation and retrieval, the eystdrawbacks rely on
performances in terms of computational times aedifflility. Actually, the
system imports, in average, a single sample varmmaB8.6 ms: considering
that a whole exome sample holds up to 60K raw geamariants, that is
without applying any filter, the system needs, werage, about 1 hour to
import an entire whole exome variant set as weltoasetrieve its filtered
controls-matched genomic variants with the actualadamount on the
database.

For flexibility we refer, in our case, to the capgof the system to adapt
data and data structure to a changeable environnmenérms of data
updates and new requisites, respectively. Publinogec data are in
continuous evolution and for certain databasesh(sas UCSC genome
browser) updates are done daily. New insights amogec variants, genes
and diseases come up at an impressive rate, edpemaadays, with high

throughput technologies widespread all over theldvorherefore it is not

uncommon that researchers ask for the most updatengic variant

annotations in order to increase their power incakery and check the
existing literature for newly disease-related geaed variants.

The developed RDBVMS is not much flexible in thiense, thus its
genomic data sources and the elaborated genomianvannotations are
integrated into the database itself (e.g. tMatation table). Therefore,

efforts are needed to update the database anditdaimadata consistency;
moreover, the insertion of new data fields is adrading due to the intrinsic
rigidity of the relational database schema.

Another limitation of the developed system is theki of phenotype data
related to the individuals to which the samplesobgl While managing
case-control studies can be relatively easy in lialmased approaches
where only few samples have to be analyzed andptiesence of few
individuals can allow to manually select samplesbt included in the
analysis, it is not the case with large sample cshavhere a selection
criteria based on a standardized phenotype terogyolvould be strategic.
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3.2. A NoSQL Database for Genomic Variants and
Annotations

The knowhow on genomic data annotation and integraacquired
during the RDBVMS development, joined with the esipeced issues with
its use, the development of efficient genomic aatioh algorithms [97,
157] and the spread of a new generation of flexdatabases, leaded us to
a radical change of strategy in genomic variant agament.

We developed, therefore, a new VMS with the maimalgof high
performances in terms of computational time, fldkyp of the data
structure and, last but not least, the integratbphenotype and genotype
data.

The newly VMS consists of different interacting nutes (see Figure 30).

* The genomic annotator We chose ANNOVAR (see 2.4.3.2) to
annotate genomic variants coming from VCF files.

» The genomic variants databaselVNe chose CouchDB [158], a
NoSQL database that allows for data structure [flidixy.

* Thephenotype databas&/e chose i2b2 platform[4, 159] in order to
guery patients phenotype data and in the meanwbilenterface
with genomic variants database.

Briefly, genomic variants in VCF format are firstogessed by ANNOVAR

and, subsequently, a plain text file with variaatgl genomic annotations is
produced. The file is further processed in ordeb&imported into the

CouchDB NoSQL database, where genomic variants stoged as

documents within all relative annotations. An ad:-h2b2 software module
has been developed in order to communicate both @duchDB and the

i2b2 core. Moreover another plugin has been dew#ofo provide an

interface to build genotype query on a selectedodobf patients (see
Figure 30).

My contribution to this project has been limited ttee conception of the
idea, the design of the software and the genontia danotation.
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Figure 30.NoSQL-VMS + i2b2 workflow overview

3.2.1. NoSQL databases

NoSQL stands for “Not only SQL” and it is a moverhébegun early
2009) promoting a new generation of open-sourcaldetes especially
suited for Big Data and therefore used by big commgs such as Google,
Amazon, Facebook and many others, to manage thedrwdmelming
amount of data. NoSQL solutions are all characegriby the following
peculiarities:
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non-relational a NoSQL database is not based on the
traditional structure of data tables where all théated fields
(columns) is constrained to a specific type and, tire
meanwhile, tables have to be normalized in ordeetuce data
duplication. NoSQL database tends to be schema-des®
adopt semi-structured schema, allowing data dugdicaand
heterogeneity.

distributed NoSQL databases are designed to workon
distributed environments. Therefore, the databases dot rely
on a single machine, but conversely, it holds dhialicates
and/or replicates among a net of interconnectedhmas (or
nodes) in a cluster environment.

horizontally scalablerelational databases scale “vertically”, by
adding hardware resources to the high performaaoeeswhen
needed. Conversely, NoSQL scales “horizontally”,daling a
new node in the distributed database and with nmachondata
availability.

BASE differently from relational database, adopting #hCID
(Atomicity, Consistency, Isolation, Durability) sef properties
in transactions, NoSQL database are Basically Abdd, Soft
state and Eventually consistent (BASE) in orderatthieve
much higher performance and scalability with thadaoff of
consistency, guaranteed only with a reasonableydela

In the last years many NoSQL databases (about 1@k been
developed[160], each one with its peculiaritiest banerally classifiable
under several categories. Among them:

Document storethe principal component is the “document”, an
object that encapsulates data in some standardafofemg.
XML, YAML, JSON). Two examples: CouchDB, MongoDB.

Column store basing on rows and columns with limited
constrains, their scalability model is splittingtborows and
columns over multiple nodes. Rows are similar t@udoents
and can be collected into groups (table or famjliebwo
examples: HBase, Cassandra.
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» Key Value/Tuble storébased on data dictionary, where to each
unique and indexed key is associated only one yaiyecally
consisting of a collection of elements (bins)[16ITwo
examples: DynamoDB, Riak.

» Graph databasebased on graph models, data consist of nodes

and relationship between nodes. Data are not ciielpigt
“navigated” along the graph in order to match dqteeries.
Two examples: OrientDB, Neo4j.

3.2.1.1. CouchDBOverview

CouchDB [158] is an open source Apache projectes@08. Written in
Erlang [162], is a NoSQL document-based databas&guJavaScript
Object Notation (JSON) as the standard format fmcusnents, a RESTful
programming interface and Javascript as the queamguage combined to
the MapReduce paradigm.

JSON is an open standard format used to transrtat@gects consisting

of attribute-value pairs. A value can be one of thaditional data type
(number, Boolean) or an object such as a String,aaay or another
document.
In CouchDB, a univocal id must be assigned to ed8N document.
Generally the best choice is to use the ones gestetay CouchDB itself,
that is the Universally (or Globally) Unique Idefigr (UUID) consisting in
randomly assigned numbers with a low collision ioibty. Hereby an
example of JSON document is reported.

{

"couchdb": "Welcome",
"uuid": "dca7f93eb1b5d7998ac468a002bcde44",
"version": "1.6.1",
"vendor"; {
"version": "1.6.1",
"name": "The Apache Software Foundation"

}
}

CouchDB items are associated to a Uniform Resoldeatifier (URI)
accessible via HTTP. CRUD operations on the dawlae performed
using a RESTful API, therefore all HTTP methods @0 GET, PUT,
DELETE) can be used. This allows using programmamguages such as

cURL to interact with CouchDB, but also REST clerdre available for
many coding languages such as Java, Python and. Ruby
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The simplest query to CouchDB is to request a sirdgicument by its
UUID and associated URI. E.g. to request by cUR& phevious document
stored into the “couch” database accessible athosaon 5984 port:

curl =X GET
http://localhost:5984/couch/dca7f93eb1b5d7998ac468a 002bc
ded4

and the relative JSON file is sent back to cliddbwever it assumes to
know exactly the document id; therefore it woulditmg@ractical to use.
Documents in CouchDB can be organized into grogpfied “views”. A
view is designed by JavaScript to specify attribuabie constraints
corresponding to the query requirement and by imgleting themap and
reducefunctions in the MapReduce styMap functions are called once on
each document: the document can be skipped (ibé&sdnot respect the
constrain) or can be transformedn(i into one or more view rows as
key/value pairs. All the constraints of thmeap functions have to refer
exclusively to the document attributes. View row® andexed, that is
inserted into a B-tree storage engine and sortekelyy to look up by key
or key range is therefore extremely efficient, periing in logarithmic
time. E.g. to create a view of CouchDB documenspeeting the previous
example format, one can codamap function on the document “version”
attribute by the following JavaScript lines:

function(doc) {
var version;
if(doc.version){
version= doc.version;

emit(version,null);

}

The map function takes the document as the argumenteandsthe view
row for each document consisting in the versiothaskey and a null value
in this case. The document UUID comes by defaulhwhe key-value pair
and a name has to be assigned to the view YergionView, which rows
will be sorted by version values, ready to be ceetriNote that keys can be
a combination of two or more document attributesutting in sorted view
rows following the order of attributes-values e$tdted into theemit
function. Once the view has been created one catifynib by accessing to
its design document (a JSON file as well), modife tJavaScript code
corresponding to the view and re-upload it to CdBh resulting in the
view re-computation. For example, one can retrievery raw of the
versionView saved into theversionD design document, by the following
command:
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curl =X GET
http://localhost:5984/couch/_design/versionD/_view/ versi
onView

and a JSON document containing the list of docusmddUIDs with
associated key-values are sent back to the cliemtgquery the view for a
certain value, instead, should be passed an addltiparameter, e.g.
adding to the URI the “?key=(value)” string:

curl =X GET
http://localhost:5984/couch/_design/versionD/_view/ versi
onView?key="1.6.1"

and only documents respecting this constraint an¢ lsack.
Range queries, by using the “?startkey=(valueS&artjikey=(valueEnd)”
format are supported as well.

Reduce functions can be optionally used in combonatwith map
functions in order to report data aggregates gmuypddy row keys (it
navigates the relative B-tree), such as countiegnitimber of rows within a
viewor to calculate averages on related valuesebiethereducefunction
reporting the number of view rows:

function(keys,values) {
return(values.length)

}

If combined with themap function of the previous example, the following
query

curl =X GET
http://localhost:5984/couch/_design/versionD/_view/ versi
onView?startkey="1.6.1"&endkey="1.6.2"

reports the number of documents having version éetwl.6.1 and 1.6.2.
Because map functions are applied to each document in isolation
computation can be high parallelized within andoasrnodes where the
database is distributed.

3.2.2. The i2b2 Platform

Informatics for Integrating Biology and Beside (ks an NIH-funded
National Center for Biomedical Computing based attfers HealthCare
System in Boston, MA USA.

The i2b2 Center effort has been focused on devetppgin open source
scalable informatics framework designed to brid¢jeical research data
and the data bases arising from basic researclh @si@enomics):in such
way the understanding of genetics underlie diseas®s the design of
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targeted therapies for individual patients woulddpeeded up by a solid,
fast and easy query able integrated data resource.

The i2b2 platform nowadays is used worldwide in ynaospitals and it is
supported by an active developers community as. well

Built on multiple (hive)server-side software module(cells) that

communicate through their integrated XML-based welvices (see Figure
31), the i2b2 platform consists of several core aptional cells. Each cell
either hold data or business tier. For the purpafsthis thesis, only two

i2b2 core cells are briefly discussed below.

key [JJizbz core can [T]izez2 Optional Cell [ WaorkbenchiPlug-in
[ wzhy Cliert []cRE Plug-in

Natural Patient %’F -
Language { Counts

' Processing Plug-in i2b2 Hive

" Analysis
Plug-in

. Computing
Plug-in

" Analyzer
Plug-in

Figure 31.i2b2 Hive and accessory modules

The Clinical Research Chart (CRC) is the i2b2 t®lbugh which clinical
data of patients are accessed and relies on asshma” data warehouse
[163] with a central “fact” table representing obssions about patients,
recorded by a specific observer regarding a specdncept (e.g. a lab test
outcome or a reported phenotype) [164]. The corscapg coded and can be
related to heterogeneous data. In other wordsnaegi is represented as a
row rather than a column into the data model, follg the entity-
attribute-value (EAV) model [165]. Because conceptsall patients are
stored into the fact table, indexing on the latesults into efficient cross-
patients queries.

The Ontology Management (ONT) cell manages i2b2 abatary

definitions (ontologies) and contains informatiorboat relationships
between concepts for the entire hive. The contdoN®cabulary holds
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categories organized as a hierarchical structutk velationships between
terms. The other i2b2 cells accesses to the ONdrdier to give semantic
meaning to the data, e.g. the CRC associates eachof the main fact
table to an ontology term in order to support degaieval through the
ONT.

The i2b2 web client (see Figure 32) allows perfargnad hoc queries in
order to find patient set respecting constraintsedaon ontology terms.
The ontology is represented as a tree structurdtaridrms can be dragged
and dropped to the query tool. The latter implementenn-diagram-like
logic: terms into the same panel are OR’d togetkenversely, terms in
different panels are logically AND’d. When querydgecuted, web client
send the request to the CRC and query results lav@rs into the Query
History panel. The query result is the patientg@atresponding to defined
constraints and can be filtered again (by draggifigom the Query History
panel to the Query Tool again) or passed to i2bh2ghs for further
analysis. Plug-ins are software modules, accesdiple¢he i2b2 Analysis
Tool web client interface, especially dedicatedmalysis methods.

QUERY TOOL

= Fem 2005858

Q

0 ; )| e e e 0 s B e |
@z QUERY HISTORY e

il SoTFENISHET

Figure 32.i2b2 web client

3.2.3. Data Annotation

ANNOVAR, described previously in the thesis, hagmehosen for its
portability and performances in computational time.

Annotation procedure, as well as the other steps,deen implemented
by creating a Java application able to manage thats flow.
First VCF files are converted to the ANNOVAR formand subsequently
the annotation step is launched by using takle_annovarPerl script
which requires several input parameters in orddut@ data output format
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(CSV files) and annotation steps. ANNOVAR uses geitoindexed files
within the pointed resource path where it expectsfihd the mapped
resource files within its scripts: the resourcehpet passed as an input.
Figure 33depicts the simplified UML class diagrafrttee Java application
that manages the annotation step.

<<Java Class>>
(® PopulateCouch

worg.labmedinf 0.i2b2.ngs . engine. dataprocessing

<<Java Class>> =<zJava Class>>
(®VCF2Annovar (® NGSElementFactory
org.labmedinf 0.i2b2.ngs. engine.datap ing.steps org.labmedinfo.i2b2.ngs. engine. dataprocessing. steps
<<Java Class>> <zJava Class==
(® Convert2Annovar (NGS_Element
org.labmedinf 0.i2b2.ngs.engine. dataprocessing. scripts org. labmedinf .i2b2_ngs. engine. obj ironment

==Java Class==
(3 TableAnnovar

org.labmedinf 0.i2b2.ngs. engine.datap ing.scripts

<zJava Class>» <=Java Class>>
(& Mutation (& Environment

org.labmedinfo.iZb2.ngs. engine. obj ironment org.labmedinf 0.i2b2.ngs. engine.objecteny ironment
a func: Siring o platform: Fatform
o exonicFunc: String o id_patient: String
a chr: String o id_project: Siring
o ref: Siring o id_experiment String
o gbs: String o date_sample: integer[]
o refGenome: Siring o date_experiment: integer]]
o genes: List<Gene> o minZ onelengthB2: integer

Figure 33.Simplified UML class diagram of the Java application that manages annotation and
import steps. (1) Annotation: PopulateCouch class calls VCF2Annovar methods to both convert the
VCF file into the ANNOVAR format and run the annotation script table_annovar wrapped into the
TableAnnovar class. (2) Import: PopulateCouch class call NGS_Element methods to parse the
ANNOVAR output, generate the JSON files and load them into the database. The Mutation and
Environment classes hold the attributes of the JSON documents (partially showed).

In order to speed up the overall process, VCF fdes split in batches,
running an ANNOVAR instances for each. The impadsepsfollows the
same schema. This procedure has been implementetthheinAmazon
AWSCloud [166] allowing the use of different virluanachines (EC2
instances)running in a parallel fashion (seeFidi#re
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Figure 34.The import within annotation steps to CouchDB database. Orange squares represents
EC2 Amazon instances.

3.2.4. Data Import

In order to be imported in CouchDB, first data hawebe converted in
JSON format. In the import step, each row of the@caated variant file
(ANNOVAR output) is therefore transformed into a QI$ having
predefined attributes (see Table 4) and identibydan UUID. Data are
sent to CouchDB database through the Java applicéiiat makes use of

the LightCouch Java API [167] to convert the Jabgeots into CouchDB
REST methods.

Field Name Type  Description
chr String Chromosome
ref String Reference
obs String  Variant
function String Variant function
refGenome String  Genome assembly
start Integer  Mutation start position
end Integer  Mutation end position
gene name String Gene symbol (refSeq)
segDup Double  Sequence identity score for the
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segmental duplication region
where variant is located in

AVSIFT Double  Whole-exome SIFT scores for
non-synonymous variants
exonicFunc String Exonic variant function
exonic_hgvs_transcript ~ String Variant in hgvs format on

transcript

exonic_hgvs_protein String  Variant in hgvs format on
protein
exonic_exon Integer  Exon number where variant is
a located in
gt String Genotype
vcf line String Original VCF line
1kgp_freq Double  Variant frequency for 1IKGP
1kgp_version String  1KGP version
dbSNP_id String  dbSNP identification id
dbSNP_version String  dbSNP version
dbESP_freq Double Variant frequency for ESP
dbESP_version String ESP version
dbClinvVar String ClinVar accession number
dbClinVar_version String ClinVar version
LJB_phyloP_score Double  Evolutionary conservational
score by phyloP
LIJB_SIFT_score Double  SIFT scores for non-

synonymous variants

LJB_PolyPhen2_ HDIV_score Double

PolyPhen2 scores for non-
synonymous variants (hdiv
model)

LJB_PolyPhen2_HDIV_pred String

PolyPhen2 class for non-
synonymous variants (hdiv
model)

LJB_mutationTaster_score Double

MutationTaster scores for non-
synonymous variants

LJB_mutationTaster_pred String

MutationTaster class for non-
synonymous variants

LJB_GERP

Double

Evolutionary conservational
score by GERP

LJB_PolyPhen2_HVAR_scoreDouble

PolyPhen2 scores for non-
synonymous variants (hvar
model)

LJB_PolyPhen2_HVAR_pred String

PolyPhen2 class for non-
synonymous variants (hvar
model)

LJB_mutationAssessor_scoreDouble

MutationAssessor scores for
non-synonymous variants
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LIB_mutationAssessor_pred String MutationAssessor class for
non-synonymous variants

LJB_fathm_score Double  FATHM scores for non-
synonymous variants

LJB_siPhy_score Double  Evolutionary conservational
score by Siphy

LIJB_ LRT_score Double  LRT scores for non-
synonymous variants

LIJB_LRT_pred String LRT class for non-
synonymous variants

LJB_version String dbNSFP version

Table 4.Genomic variant attributes stored in CouchDB

Along with genomic variants, an identification sdmgode has to be
inserted into the JSON as well, corresponding t® b2 patient code:
generally, sample codes are within the VCF filetuatly, both single and
multi-sample VCF files are supported.

Together to JSON files (one for each sample-vayjadsignsdocuments
defining views are imported into CouchDB as well. We previously
described how CouchDB stores data, and how quariere-computed as
lists of key-values pointing documents by thmap and reduce functions
resulting inviews In our case we chose to pre-compute views foheac
JSON attribute(i.e. genomic annotation) in ordeh&ve lists of documents
grouped and indexed (B-tree storage engine) bygdheesponding values.
The rationale is that the user can choose the etbstombination of
annotation fields to filter patients’ genomic vanis. The logical AND/OR
operations are managed by the application softtteecommunicates with
CouchDB and works on UUIDS of the returned listeloEuments.

3.2.4.1. A View for Fast Genomic Interval Queries

One of the most useful and stressed query in Gersroonsists in
retrieve the genomic features overlapping a giviemmosome interval. In
section 2.4.1.1 we have showed how the UCSC Germoeser binning
scheme allows combining pre-defined genomic regitmss) as attributes
of the genomic features and B-tree indexes to guaeaa fast retrieval by
range queries.

We wanted to replicate a similar approach in Cough2nabling
genomic interval queries across all the stored ggasample variants.
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Each chromosome has been divided into a predefstcof hierarchical

bins (tree) depending on the specific chromosomgtte The value 0 or 1
has been assigned to each bin, depending on beenigft or right child bin

within the tree, respectively (with the exceptiointlee root bin, coded by
0). The ordered combination of Os and 1s is thengasd to each genomic
features, thus allowing navigating the binning tfeem the root to the

smallest bin entirely containing the genomic featuin Figure 35, for

example, for the genomic feature A, the smallestt@iming bin is the one
reached by navigating the tree in the following w@ed numbers):

0,0,1,0,0. Feature B, instead, is contained in® @il bin and despite it
could be contained, giving its dimension, into aaler bin, it overlaps to

lower level bin borders, therefore it is assignedhte higher level one.

chr
A — u- B

0,0,1,0,0 00111 0,1

Q = Search Space:

Upper overlapping bins T g 0
Smallest containing bin =——3 0,0,1
0,0,10-0,0,1,1
Lower overlapping bins 0,0,1,0,0 _ 0’0,1’0’1 _ 0,0,1,1,0

Figure 35.Binning scheme representation implemented in CouchDB

The smallest bin containing each genomic variarntomsputed, giving its
genomic coordinates, and stored as an attributeerdSON file as an array
of Os and 1s.

It is therefore possible to writeraapfunction in CouchDB to pre-compute
a view having as row keys the following elementsthis order:sample
chromosomeand bin. CouchDB will store the sorted keys into the Betre
for the logarithmic search.
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Given an interval query, the smallest containing ilsi calculated and range
gueries on the created view retrieve all the gewof@atures mapping on
the computed bin and its pre-calculated overlapmings. For example, in
Figure 35 the interval query Q is entirely containeto the 0,0,1 bin. We
can pre-calculate the search space consistingeobterlapping bins both
for the upper part of the binning tree (parent piasd those in the lower
one (child bins). The view is therefore searchedthe genomic features
(documents associated to the view keys) withingH#as.

Actually, this query would give back genomic feasiroverlapping to the
search binning space, but not necessarily to therval search of interest
(that is a sub-segment of its smallest containimg).bFor example, as
reported in Figure 35, the result of the query Quldoreport also the
unwanted genomic feature U: in fact, despite itraps to one of the
searched bin, it does not overlap to Q. Therefdherotwo queries (views)
are performed in order to remove the non-overlagpm@fements: the first
add thestart position of the genomic feature to the view keganiple
chromosomeg bin, starfjwhile the second add thstop position. In the
showed example, genomic feature U would be remdvexh the query
result set because its start position is greatan P stop one.

3.2.5. Data Retrieval

In order to build, perform and show query resultsyo software
components have been developed and integratedheti2b2 framework:
an i2b2 cell, called NoSQL-NGS, and an i2b2 plugeialled BigQ-NGS.

Figure 36 shows the overall system and the aforéioreed interacting
components.
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Cell BigQ-NGS
Plugin

CouchDB

Figure 36.System overview showing interacting components, from data import to data query.

First, the user, thanks to the i2b2 webclient, penfs a query on the i2b2
CRC by setting constraints on Ontology terms anidgushe Query Tool
(see 3.2.2). Once the patient cohort has beerevetli the user selects the
BigQ-NGS plug-in and builds up the query in thedgMuViewer, basing on
available genomic data annotations respect to éhected patient cohort.
The BigQ-NGS plugin interface is based on visualgpamming (mxGraph
Javascript libraries [168]) and the user can gregdhy build queries with
drag and drop interactions. Genomic annotationutest are represented as
graphical blocks and can be linked together in ptdecreate the filtering
procedure used to query genomic variants: AND amil dperations are
implemented by linking blocks in series and in platarespectively.
Referring to Figure 37, query is made up by théofeing operations: (1)
the user drags and drops blocks inside the plugiwekspace. Blocks are
connected to each other to define the query. (2 pétient set is dragged
and dropped on the Patient Result Set Drop (PR$)Dbtock. (3) each
query block (in yellow) holds parameters to setrguegic and attribute
value constraints. (4) when run, each block exexugequery sequentially,
calling the NoSQL-NGS cell. (5) when all blocks kaperformed their
query, the user can visualize the results by doulitking the Patient
Result Set Table (PRS Table) block, consistinghareported example, of
patient codes having at least one genomic variaithing the query.
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Figure 37.The BigQ-NGS plug-in with user interactions highlighted.
execute queries on genomic variants passed byit@-BGS plug-in. The

12b2 cell has been written in Java and uses Light@API as well as the

The i2b2 cell has been developed to communicate @GduchDB and
import application.



Sequencing data management

Each block of the BigQ-NGS plugin performs a quiryhe NoSQL-NGS
cell by sending it an i2b2 XML-based message. Tdlkextracts all
parameters required to run the query:

» dataln: the basic object exchanged between the plug-intaadell
consisting in a set of documents UUIDs grouped dtyemt code

* query logic:two mutually exclusively operations are allowedld
and filter. The first represents the operation of union, thereeif
add is chosen, the UUIDs returned by the CouchDB aléed to
dataln and sent back in the cell response to the pludghia;second
in an intersection operation; therefore wtigter is chosen, only the
UUIDs belonging to both sets are returned.

* query type that identifies the variant fields (see Tableoh) which
the query should be executed. Examples of alloweztygtypes are:
gene for gene names, exonicFunc for exonic funstiand
PolyPhenScore for LIB PolyPhen2 score.

» query detailghe set of values required to perform the specifpe
of query. For example: the list of gene names fa ¢ene query
orthe PolyPhen-2 score interval endpoints for tbyPhen query.

Once these parameters are extracted, the NoSQL-d¢¢bSccesses the
CouchDBview associated with the specific query type accordmnthe
guery details; this operation is performed for epatient in thedatalnset.
Results from database, consisting in a new setlibd (genomic variants)
grouped by patient, are combined withtaln according to the query logic
(addor filter) to build the output of the cell, callethtaOut

Finally, the NoSQL-NGS cell builds the response XWMEkssage encoding
the dataOutobject and sends it back to the client.

3.2.6. Results and Discussion

To test our approach for integrating genetic quendthin the i2b2
framework, we have performed a “stress test” onsystem by submitting
increasingly large Whole Exome Sequencing (WESaskts on which we
performed the same two queries: a simple one éngtrg patients with a
given variant in dbSNP) and a more structured ogeerying by the
combination of a given gene name, exonic functioaisies and PolyPhen2
score). For each test we have measured the siz&Einof the database
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with its views, and the average time necessaryutothe two queries in
particular (see Table 5).

All tests were performed on a single AWS EC2machingarticular we
have used &3.2xlargemachine[169], a medium-high level server with 8
virtual CPUs and 15GB of memory. Regarding impdrage (ANNOVAR
+ JSON conversion),which is the most computatiatexhanding one, we
used 6ml.largeEC2 machines.

WES data were retrieved from the 1000 Genomes E&rgphasel
integrated release[170]. We have tested our systaenmsets containing
variants coming from 10, 20, 50, 100, 200 and 580nees. The average
number of variants of the sequenced exomes, anckhfieof the JSON
documents added to the database for each cadmus 23,000.

A single exome, in average, has been imported ouga# minutes and 50
seconds, i.e. less than 13 ms per single genonianta

The first query aimed at extracting those patiemasing a particular
mutation ¢s1805009 associated with red hair and poor tanning
ability[171]. The goal of the second query wasderitify patients that have
nonsense or probably damaging (according to PolyPhemissense
mutation in the DCP1B gene, which is known to bkatexl to pancreatic
cancer[172].

Table 5 and Figure 38show the results obtainedcatichg that the query
time is independent of the size of the databasthéncase of the simple
qguery 1, while it linearly scales with the sizetbé database in query 2. It
is interesting to note that, with the proposed cotaponal infrastructure,
the query time is almost instantaneous for the uséhe case of query 1
(about 0.06 seconds), while the time to query 580ognes and more than
11 million variants is only about 34 seconds.

#Exomes Size(GB) Tqueryl(ms) Tquery2(ms)

10 1,1 669 3440,2
20 2,5 678,8 3647,2
50 7,9 554,4 6462
100 19 680,4 9753,2
200 48 691 15595,8
500 160 678,4 34836,8

Table 5.Results obtained on sets containing variants coming from 10, 20, 50, 100, 200 and 500
exomes.
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Figure 38.Results obtained on sets containing variants coming from 10, 20, 50, 100, 200 and 500
exomes.

Combining NoSQL document database and the i2bZqgptatholds all
the premises to be a winning strategy both in tlmagement of genomic
annotated variants and in being the ideal knowledigf@ source to exploit
new correlations between patients phenotypes andtggees.

The system has been conceived to deal with var@mnisiknown clinical
meaning. For this reason, the data model is flexildnd reflects the
contents of ANNOVAR documents; the database caa bHeueasily updated
with new versions of the variant annotations. Iotfdbecause of the high
performances showed, it results more practicaktarrnotate and re-import
all genomic sample variants, even if a single geicaannotation field had
to be updated or added, rather than try to upd&t@N) documents for a
single or few attributes. Moreover, the computagiotime during import
phase can be further reduced by horizontally sgalineing genomic
variants treated independently both by annotatioeh ianporting including

view pre-computation (at least fomap functions), parallelization is
straightforward.
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Indeed, the query system has very promising perdoaa, showing to
scale well with the database volume, making it itdasto jointly query
clinical and genetic data. We note that the cha€eCouchDB allows
naturally relying on cloud-based implementationsebastic clusters, such
as the BigCouch system [173].

In the future would be interesting to compare omplementation to
other state of the art extensions of i2b2 and TRMRART[174]developed
to deal with NGS data.

Finally, several pending points have still to bedm$sed in order to
complete the whole picture:

» Update process (versioning): any document chan@gunchDB is
tracked by the intrinsic document versioning, which an
additional default attribute to the JSON. Imagimattthe new
version of a genomic database of interest comeasnapwe would
desire to update JSON documents for it. To complete-
annotate every variant into the database for eaanpotation field
is the most practicable solution. Two ways may bkofved in
order to track data updates: relies on CouchDB ioensg by
updating the same document; create new documernts a&n
updated and custom version number as JSON attribtie latter
would result in a duplication of the total numbdrdmcuments in
the database for each update and in the includidineoversioning
attribute within each view (queries should point,default, to the
last update version). Nonetheless, this shouldtkeghtforward
to implement. The second would use CouchDB versgsiystem,
but is expected to be more difficult, because quiees tracking
the JSON UUID during re-annotation process in ordebe able
to associate the very same re-annotated genomiamntato the
original document.

» Controls cohort with aggregate results: right ndwere is no
possibility yet to perform a case control matchiag genomic
variant level as we have seen in the RDBVMS. Reduoetions
in CouchDB allows us to aggregate data such asagesr on
views etc. but to pre-compute all the possible comtion of
patient cohorts to be used as controls would resuht a
combinatorial explosion; therefore, these kinds dfata
aggregations need necessarily to be performed @flfhWe can
therefore imagine to have a Patient Result Set Driogk for a
patient controls cohort as well, whose genomicaras follow the
same filtering procedure of the patient case cole@th document
resulting from the final list of the case cohortuwia be searched
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within a view given by a map function emitting $ample
chromosomestart, stop ref, obg, which univocally identifies a
genomic sample variant, and whexampleis set for each sample
of the controls cohort.

Patient code mapping: VCF provides the patient codming
from the sequencing analysis pipeline. Within theesgnted
performed tests, the i2b2 and the VCF codes weee sidime.
However, we expect this correspondence to lackémajor part
of cases; therefore an internal mapping between \f@kent
codes and i2b2 ones should be present and convewtexs should
be passed to the BigQ-NGS plugin.

Plug-in enhanced functionalities: BigQ-NGS pluginuld be
improved by adding new features such as :i) thesipdgy to save
the performed queries, ii) an expanded genomic oo
attributes set through which query variants, i tpossibility to
build query exploiting external resources (suchliass of genes
coming from an user file or specific pathway-rethtgene list
coming from KEGG database).
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Chapter 4

Sequencing data interpretation

In this Chapter a new algorithm for the predicti@hgenomic variants
pathogenicity is presented.
In 2.5.2 and Chapter 3 we have discussed the uapeagdiction tools
principles and how their results are utilized asaric annotation in order
to prioritize variants according to their predictiand score.
Hereby we present PaPl, our developed algorithmrttekes use of pseudo
amino acid composition to score human-protein cgdiariants.

The Chapter is based on the following paper, antbenent under review:

Limongelli I, Marini S, Bellazzi RRaPIl: pseudo amino acid composition to
score human protein-coding varianBVC Bioinformatics, under review.

4.1. Variant prediction by pseudo amino acid
composition: PaPI

PaPl is a new machine-learning approach to classity score human
coding variants by estimating the probability tondage their protein-
related function. The novelty of this approach astssin using pseudo
amino acid composition through which wild and mathprotein sequences
are represented in a discrete model. A machinailegrclassifier has been
trained on a set of known deleterious and benigtingpvariants with the
aim to score unobserved variants by taking intooant hidden sequence
patterns in human genome potentially leading teaksges. We show how
the combination of amphiphilic pseudo amino acid mposition,
evolutionary conservation and homologous proteingsedd methods
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outperforms several prediction algorithms and itaiso able to score
complex variants such as deletions, insertionsiadels.

A freely available web application (http://papi.pmiit) has been
developed with the presented method, able to sagreto thousands
variants in a single run.

4.2. Background and Rationale

Variant predictors are generally based on fouredéht approaches:
multiple sequence alignment (MSA) methods of horgoles proteins[125,
175]such as SIFT [8], protein structure informatguch as PolyPhen2[2],
comparative evolutionary data[128-130]and strudtorasequence pattern
encoding[176]. Since each algorithm has some litoiis, one approach to
detect a deleterious variant consists of testingise independent methods
and checking if at least one assesses its pathagdhiv7, 178]. This
strategy has high sensitivity, but poor specificithus leading to low
accuracy. Therefore, a number of algorithms thabhlwoe the outputs of
several predictors and optimize accuracy on knoamant sets have been
developed[179-181].Moreover, methods that use pkoowledge (e.g.
Human Phenotype Ontology, Gene Ontology) in comionma with
functional predictions in order to rank variants thre basis of a given
phenotype[112, 118]have been successfully impleeterds well.

In this scenario, due to the importance of havingrenaccurate and
exhaustive variant functional predictors, we depelb a new phenotype-
free method based on pseudo amino acid compos{feeAAC)[6] and
evolutionary conservation in combination with otheto well-established
and commonly-used approaches (PolyPhen2 and SNVE).believe that
our approach may provide a valuable addition to wieldwide research
efforts devoted to predicting the role of unchagazed variants.

PseAAC is a feature encoding method allowing batmgositional and
positional amino acid pattern representation oftigepprimary sequence in
a discrete model. Given a peptide sequence, PsefsAComputed by
modeling pairwise relationships between amino acidsng residues
chemical properties. In particular, we used ampifipfPseAAC, based on
normalized hydrophobicity and hydrophilicity: therangement of these
two indices along a protein chain play an importané¢ in protein folding,

catalytic mechanism and protein interaction witthest molecules and
environment[182].For example, hydrophobicity isesfta major contributor
of binding affinity between a protein and its liggh83], hydrophilic

residues such as Arg, Asp, Lys, and Glu have tlgbdst protein-surface
frequencies[184], and intrinsically disorderedioag (IDRs) usually have
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few large hydrophobic residues but favor polar acttarged amino
acids[185].

Previous studies[186, 187]analyzed human codindgamts in terms of
amino acid substitution both in disease and natbeadkground variant
datasets, such as Human Gene Mutation Databas¢ 4h88.000 Genomes
Project (1TGP). Such studies showed that diseaseceded variant
distributions are radically different from neut@nino acid ones and that
disease-associated variants exhibit more extrerffereinces in terms of
physicochemical properties such as amino acid veluroharge and
hydrophobicity.

We therefore coupled hydrophobicity and hydropit§yicPseAAC feature
encoding with machine learning to develop a mod#é do learn pseudo
amino acid composition substitution patterns follegvcoding variants that
can alter protein function and/or structure, legdio disease.

The difference in terms of PseAAC between wild andtated protein
sequences together with evolutionary conservatioores of the altered
bases have been used as features to train a RaRd@st (RF)[7]with the
aim to score coding variants into protein-damagingolerated class. Since
PseAACs model amino acid relationships in termsydrophobicity and
hydrophilicity arrangements within the wild and atgd sequences, RF is
supposed to learn from substitution patterns o@ogrrat amino acid
composition level in terms of frequency and ord&rvariant is therefore
implicitly evaluated within its sequence context.

We finally combined the RF output with PolyPhen2l 81FT by a voting
strategy. Despite the advantages of combining HayR and SIFT have
been previously reported[181], we show the RF isidn is able to further
increase prediction performances.

The overall algorithm, called PaPl, provides prédits even for those
variants that the other tools cannot process (@egause of lack of data)
and it is able to deal with any variant type, imthg single nucleotide
variants and insertion or deletion of several notkes.

While RF classifiers have been already used in Gee®y from GWAS to
RNA-protein binding prediction [189], to our knowlige, this is the first
time that PseAAC is applied to protein variant pcadn.

4.3. Methods

Hereby we denote with the tenmdel the following variants: insertions,
deletions, insertions followed by deletions (or eseersa) and multi-
nucleotide variants. We refer to single nucleotrdeiants ENV$ in case of
non-synonymous single nucleotide variants that keaal single amino acid
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change. Finally, we denote asframe andframeshift indelghose variants
causing the insertion/deletion of one or more an@oials and those altering
the open reading frame of the coding sequencegotisely.

PaPl is an ensemble classifier consisting of angotscheme that
includes a RF classifier, PolyPhen2 and SIFT. Tlerbdel have been
trained on PseAAC differences of mutated and wildt@n sequences,
evolutionary conservation scores and several &rlgth protein attributes.
Figure 39depicts the workflow through which a neariant is classified
and assigned a score, representing its risk ofgoeiatein damaging.

I Variant
l q.19813529 G>C

} PaPI framework

F 1
| Wild Sequence |
I . .TRRSERERG. ..

PseAAC |
I difference |

Y Mutated Sequence

| ...TRRSQRERG. . . |
| |
I — Full length primary structure attributes |
| I
| Evalutionary conservation scores |
| |
| |
| |
| I
| |

PolyPhen2

SIFT —, Voting . RFmodel e
scheme

Figure 39.Feature encoding scheme. A genomic variant is translated into wild and mutated amino
acid sequences. The difference in terms of PseAAC features is computed and is given as input to the
trained RF model along with evolutionary conservation scores and several full-length protein
attributes. PolyPhen2, SIFT and RF results are finally combined together to obtain the final PaPI
class and score.

4.3.1. Psuedo Amino Acid Composition

An amino acid sequence can be represented by getcrete numbers
mapping the patterns of its amino acid physico-dlcahproperties into a
fixed number of features.
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Traditional amino acid composition approach hasnbeelely used in
predicting protein structural class[190, 191]andmigérely records amino
acids frequencies in a protein sequence.

PseAAC adds a number of position-related featumed @nerefore it
reflects both compositional and sequential ordee. Willized, in particular,
amphiphilic PseAAC, based on normalized hydrophidpicand
hydrophilicity[182].

In brief, given a protein sequenPewith L amino acid residues:

P=A1A2A3A4A5A6... AL

it is possible to convert it into a finite set afimberP

P’={p1, p2, P3, P4 P5,---» P20, P20+1,--., P20+22}

where the first 20 numbers are functions of th@dencies of the 20 amino
acids withinP and the remaining’2are a set of correlation factors that
reflect different hydrophobicity and hydrophilicitgistribution patterns
along a protein chain. Correlation factors are gibg coupling the most
contiguous residues whose contiguity condition esriaccording the
considered tier (see Figure 40).

F N e O Y
PPOO®O® G
NN N NN

k k k k k
Hk‘l,2 Hk2,3 HkS,cl H 4,5 H5,6 H 6,7 H?,S H 8,9

Hk‘_l_,S Hk2,4 Hk3,5 Hktl,S HkSJ Hk6,8 Hk7,9

dtier O ® O OO ® O ® G
| OSSN

k k k
Hk‘l,ﬂl Hk2,5 Hk3,6 Hﬂ-.? HS,S HG,S

1st tier

Figure 40.Amphiphilic PseAAC representation. This is a diagram shows how the correlation
factors Hk, based on amino acid hydrophobicity (k=1) and hydrophilicity (k=2), vary in each tier
by coupling residues at different distances.

93



Sequencing data interpretation

The maximum number of tiers corresponds.t@oupling is then given by
the hydrophobicity and hydrophilicity correlatioanictions.

H1ij=h1(A) - h1(A)), H?j= h2(Aij) - h2(4)) (1)

where h1(Ai) and h2(Ai) are, respectively, the lomhmobicity and
hydrophilicity values for the ith (i=1,2,..., L) anonacid in P. Correlation
functions are summed over eaktier and the 20+2 coupling factors are
given

fu

(
| ’
S S Wik
- { IR @

,20+41 <u <20+ 24
L R fitwity

<u <20

where f are the normalized frequencies of the possiblar@tho acids irP,
7 is the sum of the j-tier correlation functiondamis a weight factor.

4.3.2. Feature Set

The features utilized for RF and LR training candreided into three
groups: (a) PseAAC, (b) full-length primary sequerattributes, and (c)
evolutionary conservation scores. The three feafmoups are described as
follows.

4.3.2.1. PseAAC

Given a genomic variant overlapping a protein, wst fgenerated the
altered protein sequence in according to the codwagne, we then
considered the 20 amino acid residues upstreamdanghstream the first
mutated amino acid forming a snippet of 41 aminiol aesidues. The same
procedure is followed in the case of the correspunavild type protein
sequence. Amphiphilic PseAAC is then computed byeARC-
builder[192]for both wild and mutated snippets. Thariant-sequence
features are finally encoded as the element-wiskerdnce of wild and
mutated PseAAC vectors (see Figure 41).
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g.19813529 G>C

Wild sequence
.. ACT CGG CGC AGC GAG CGC GAG CGA GGG ...

LIPS T T

« mp PseAACw
Mutated sequence _
.« T R R § a R E R G .. - PseAACm
20aa 20aa

Figure 41.Example of PseAAC variant feature encoding. A genomic variant is translated into the
relative wild and mutated amino acid sequences. PseAAC for both wild and mutated protein
snippets are computed and the differences between each PseAAC term makes the PseAAC feature
set.

Note that even if the method allows theoreticalgakihg with amino acid
sequence changes of any length, only insertionstidels up to 20 amino
acids (60 nucleotides) were considered for PseAAehtraining.

We chose two 20 amino acid flanking regions for treasons. First,
since the features are encoded by PseAAC diffesencensidering large
sequence portions (e.g. the whole primary strugtooeld introduce noise
and dilute the PseAAC difference information comt@specially in case of
single amino acid substitution, where both posiioand composition
change would be minimal. Second, we considered firatein short
functional regions, such as short linear motifsjoltplay a pivotal role in
protein interactions, range from 3 to 11 amino acith length
[193].Changes in their flanking regions could seWeralter the protein
function as well[194, 195].We therefore assumedt th@ amino acids
constitute a reasonable window size to encompassilpe short functional
motifs and their flanking regions.

4.3.2.2. Full Length Primary Sequence Attributes

We included in the RF model three features relatestariant position
and protein length. First, we considered the déifee and the ratio
between mutated and wild amino acid sequence lsngjthother words, we
measured the number of possible lost/inserted araoids caused by the
variant. Second, we considered the position ofvdméant in the amino acid
sequence normalized by the protein length (e.gf@&.% 100 amino acids
long protein and its mutated amino acid at the 9fiikition). This feature
reflects the fact that some kind of variants affegtthe initial part of the
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primary sequence may have a huge damaging potefarathe whole
protein (e.g. a stop-causing variant).

4.3.2.3. Evolutionary Conservation Scores

GERP++[128], PhyloP [129] and Siphy[130]were chobecause they
apply different and complementary methods to weighicleotide
conservation among different species. In case dkls) the following
policy was adopted: in case of deletion we took liighest score among
the deleted nucleotide bases; in case of inseni®rook the highest score
between the two reference bases where insertiomrscc

4.3.3. Data Set

We obtained positive (damaging) variants from theMD (updated to
May 2013). Variants were annotated by ANNOVAR usihg RefSeq gene
model. All non-coding variants, as well as variameported with a
frequency higher than 5% in the total of 1092 sasgdlom 1TGP (April
2012 release) were filtered out. Negative (toletptariants were extracted
from the aforementioned release of 1TGP and fror® E&00si release)
retaining only variant at frequency higher than 5.0Non-coding and
synonymous variants were filtered out by ANNOVARadB variant was
then processed by the PaPl annotation frameworkrder to build the
relative feature set. The original variant datasetsisted of 204021 coding
SNVs and indels, distinguished by transcript anttefed out for
synonymous SNVs. Stratification for descriptive tero alteration to the
primary structure unveiled a significant proportiqabout 44%) of
frameshift indels or stop-causing/disrupting vatsaim the damaging set in
comparison to the tolerated one (about 3%), asrte@ganTable 6.

Damaging Tolerated
(HGMD) (1TGP + ESP)
Initial variants 176523 65377
- SYN 1333 36546
- FR/SC/SD 77627 929
= Final variants 97653 27902

Table 6. Damaging and Tolerated variant sets. Damaging and tolerated sets after synonymous-
SNVs and frameshift, stop-causing and stop-disrupting variants removal. An instance of the data
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set is the coding variant relative to the transcript to which overlaps. SYN = synonymous, FR =
frameshift, SC = stop-causing, SD = stop-disrupting.

One can suppose these variants should be treateleterious a priori: the
proportion showed above is in accordance with thigothesis. Including
these variants in our data set would introduce\eergeclassification bias,
due to the aforementioned disproportion. Therefome randomly

assembled three quasi-balanced training (70%) ast (B0%) sets (see
Table 7) without considering these types of vasdot the evaluation and
comparison steps, but we trained the final RF mddehilable online) on

the whole unfiltered dataset.

Set Training Test
Damaging Tolerated Damaging Tolerated
25291 19570 10729 8332
2 | 25318 19570 10861 8332
3 (17838 13763 7616 5879

Table 7.Three random variant sets. Three quasi-balanced variant sets were generated randomly
and divided by training (70%) and test (30%) sets.

Indeed, PaPIl is capable to score stop-causingfatisig and frameshift
variants as well. The three test sets have been tgemeasure the
performances of the RF and LR (see4.4).

In order to compare RF, PolyPhen2, SIFT and PaFI{RPolyPhen2 +
SIFT) on the three test sets we further filtered the variants that
PolyPhen2 and/or SIFT were not able to classify{caae 8).

Set Damaging Tolerated All
1 5316 5153 10469
2 5323 5153 10476
3 3763 3642 7405
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Table 8. The three filtered variant set used to measure performances of RF, PolyPhen2, SIFT and
PaPI. Test sets have been divided by Tolerated and Damaging set. Variants on multiple transcripts
have been counted once.

4.3.3.1. Preparing the comparison

PolyPhen2, SIFT and the other predictors that Haeen compared to
PaPI (see 4.4.2)only classify SNVs. Furthermoreséhtools may be unable
to provide any prediction for lack of informatiom.¢. when only few
homologous sequences exist or remain after thikarifhg). To avoid any
bias that could favor PaPIl, we removed from theafentioned test sets
all the variants that other algorithms were undblecore (Table 9).

Set Damaging Tolerated All
1 5189 3631 8820
2 5105 3631 8736
3 3618 2553 6171

Table 9.Filtered test sets. The three filtered-variant set used for comparison with PolyPhen2, SIFT,
Carol, PROVEAN, FATHMM, MutationAssessor and LRT. Test sets are divided by Tolerated and
Damaging set.

The whole data set filtering and processing wonkfie shown inFigure 42.

Note that we grouped all the different transcriptiants for each variant in
the same set, i.e. all the mutated protein isofoimnsa variant were either
all in the training or in the test set. This progeslassured that very similar
instances were not present in both training andsets.
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1000 Genomes Project

(1TGP)
o
Human Gene Mutation Database Exome Sequencing Project
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Figure 42.Data set workflow. Workflow representing the data set selection. Variants from HGMD,
1TGP and ESP were filtered basing on coding, frequency and non-overlapping (unique) variants

99



Sequencing data interpretation

among the different data sources. In order to evaluate and compare the performances of the
variant predictor tools, variants were further filtered for frameshift, stop-disrupting, stop-causing
and variants not predictable for the other algorithms.

4.3.4. Voting Scheme

The RF model score is computed as the posteriobgiitity of the
class. For each instance, the RF model will proxadarobability score for
damaging class and its complement to one for therdted class. The
instance is thus considered damaging if the relateate is equal or larger
than 0.5, and a tolerated variant otherwise.

SIFT and PolyPhen2 provide scores in the (0,1)ruwae and the
thresholdds to separate damaging and tolerated variants d/Gand 0.05
respectively. We needed to standardize both SIFTRolyPhen2 scores in
order to compare them with our RF model score. Wes remapped SIFT
and PolyPhen2 results by forcing scords in the (0, 0.5) interval, and
scores % in the (0.5, 1) interval according the followin@gsdardization

A=((A’-min(A"))/(max(A")-min(A")))*(max(A)-min(A))+min(A) (3)

Where A’ is the score in the original interval aAds the score mapped to
the new interval, while min/max(A) and min/max(Adje the minimum and
maximum scores of the new and original intervaspestively.

A majority voting scheme is then applied when eatthe three models
provides a prediction. That is, in case of confhetween two tools, the
vote on class prediction of the third is determinéor the final class
assignment (damaging or tolerated). The normaligedre of the most
confident tool (distance from decision threshokljaken as the final score.
If PolyPhen2 or SIFT are not able to provide a mtoh, the most
confident normalized score between the remaining algorithms leads
class and score assignment. Finally, in case bothPRen2 and SIFT are
not able to provide a prediction, only the RF madalsed.

Usually the more tools are combined, the smalléhésnumber of the cases
that all of them can predict [196]. However, Pa®Inot affected by this
limitation since the RF model and the policy usdibva obtaining a
prediction even when PolyPhen2 and/or SIFT do not.

4.3.5. PaPl Annotation Framework

Each genomic variant (SNVs and indel) is annotdbgdone of the
available gene models (RefSeq or GENCODE). Non rgpd®NAs and
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ORF genes were excluded. Selenoproteins, for wtiiehUGA-stop-codon
in the middle of their coding regions codifies feelenocysteine were
included: notably, we observed that no one of tlbeio mentioned
prediction tools cited in this paper is able torectly deal with these
particular genes, even if several disorders invgyvichanges in
selenoprotein structure, activity or expression endeen reported[197].
Therefore, only variants that overlap the identfieoding regions of the
above gene models are considered for downstrearnysaaAll possible
transcripts for which the variant is coding areriested, and features are
computed for each transcript. In particular, foryPR and Gerp++
positional scores that can involve more than oreelwange, (a) in case of
deletion/indel the maximum score between the ddlbteses is taken, while
(b) in case of insertion the maximum score betw#den two neighbour
genomic positions is taken. Siphy score is includedy in case of
missense SNVs using dobNSFP (v2.1) data source[IIBNSFP database
was used to retrieve SIFT and PolyPhen2 pre-condpptediction scores
as well.

The PaPl annotation framework has been writterairaland customized
Tabix [157]libraries have been used to perform st fgenomic interval
search on compressed data files.

4.3.6. Parameter Tuning

The implemented RF model is based on Weka librggj@&'e tuned RF
model parameters by running an independent 10-fotds validation on
each of the generated training sets. The consideagadmeters were four,
two related to the RF (number of trees and numlieatures per node)
and two related to the PseAAG and w). Parameter details are shown
inTable 10. Note that the 41 amino acid snippegilerused to compute
PseAAC is fixed and it was not included in the optation parameters.
For each training set, we obtained the same optsaabf parameters, w =
0.1, A = 12, number of trees = 250 and number of featyersnode =
2.According to the PseAAC representationdetermines the number of
positional features (ik=0, we have the traditional amino acid composition
representation). In the amphiphilic PseAAC, feasuere 20 (frequency
related) + 2% (positional). As a consequence, the total numlhdeatures
varies according td.,, from a minimum of 30 (24 for PseAAC, 3 for
guantitative attributes and 3 evolutionary consBova scores) to a
maximum of 66 (60 for PseAAC + 3 for quantitativétriputes + 3
evolutionary conservation scores). Thus, With 12, our RF model uses 50
features (44 + 3 for quantitative attributes + dlationary conservation
scores). Beingh responsible for 4 to 60 features in the RF moded
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feature selection process stands implicitly in thparameter tuning. The
selected model includes 50 features and it is éion datasets including
tens of thousands variants (from 31601 to 44888hasvn in Table 7).
Since the number of samples is much greater thamtimber of features,
we did not proceed with a further feature selection

Amino acid sequences shorter tharl cannot be represented with
PseAAC. This issue, nevertheless, can happen ontlga case of a coding
mutation that introduces a premature stop-codothatbeginning of the
protein: this is the case of stop-gain variantsesth mutations are
automatically labeled as deleterious. It has taded that, considering=
12, only 438 mutated sequences (out of about 204Ke overall dataset)
were too short to be represented by this PseAACeahod

Parameter Used in Values

Num trees RF 5, 10, 50, 100, 150, 2Q0,
250, 300, 350

Num features per | RF int(log(# trees) +1), 2, 4

node

A PseAAC 4,8,12, 16, 20

w PseAAC 0.5,0.1

Table 10. Parameter values used for RF model tuning. List of parameters and relative values used
for the optimization of the RF model on training sets.

4.4. Results and Discussion

Known coding disease-related variants (damagingewetrieved from
HGMD, including SNVs and indels. We assumed thagfient genomic
variants are less suitable of being deleterioustetfore, tolerated variants
were retrieved by combining 1TGP and ESP selectinty polymorphic
(frequency higher than 0.05) and unique variantse b the unbalancing
between damaging versus tolerated variants of ékalting dataset (Table
6), we randomly split it into three quasi-balansets. We further split each
into a training (70%) and test (30%) set (TableThHe whole process has
been explained in4.3.3.

For each variant, the difference in PseAAC betweeald (reference
genome) and mutated amino acid sequence was cothpatailting in a set
of quantitative features, used to train and testaghine learning classifier.
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Three evolutionary conservation scores and threlé langth protein
attributes were included in the feature set as (selé 4.3.2).

An RF and a Logistic Regression (LR) models werdthbupon the
resulting training sets, while performances weresueed on each relative
test set. The RF achieved an average area undeuthie (AUC) of 0.897
and an average accuracy of 0.832 on the three sewylting in
performances higher than the LR ones (AUC=0.878ucy= 0.813, see
Table 11 and Figure 43). The gap between the tvassdiers can be
explained by the complexity of the feature set.egivts non-linear nature,
RF is more suitable to detect hidden structuredata with respect to the
LR.

Test |M | AUC | Accuracy | Sens | Spec | PPV | NPV | F-m | MC
Set (1C95%) C

#1 | RF | .898 | .8314 835 | 827 | 829 | .833| .832 .662
(.8381-
.8246)
LR | .877 | .8118 841 | 782 | .795| .830| .817 .624
(.8188-
.8047)

#2 RF | 90 | .8310 837 | 825 | .828| .834| .832 .662
(.8377-
.8242)
LR | 875 | .8121 846 | 777 | .793| .834| .818 .62¢
(.8190-
8049)

#3 RF | .903 | .8344 840 | 828 | .831| .837| .835 .66¢
(.8422-
8262)

LR | .883 | .8168 845 | 787 | 800 | .835| .822 .634
(.8250-
.8083)

Table 11.Performances of RF and LR Models (M) on the three test sets.Performances of the
Random Forest (RF) and Logistic Regression (LR) on the three test sets. Area under the curve
(AUC), accuracy with 95% confidence interval, sensitivity (Sens), specificity (Spec), Positive
Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-m) and Matthews
correlation coefficient (MCC) are reported for each method.

In order to quantify the contribution of PseAAC fie@s in
classification we measured the performance of the tRiined on the
aforementioned training sets without evolutionaongervation scores and
full length protein features (see Table 12). Inestivords, we assessed a
RF model based on PseAAC only. Notably, the RFn&di solely on
PseAAC reached, on average, an AUC and accuracy0.88 and
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0.82,respectively. This is only about one percesslthan the RF holding
the complete feature set.

Tool Test AUC | Balanced | F-m | MCC
Set accuracy
RF- |#1 .885 | .816 .816| .628
PseAAC| # 2 .888 | .821 .821| .637
only |#3 .892 | .827 .827| .65

Table 12.Performances of the RF trained only using PseAAC features, measured on the three
unfiltered test sets. Area under the curve (AUC), balanced accuracy (sensitivity/2 + specificity/2),
F-measure (F-m) and Matthews correlation coefficient (MCC) are shown.
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Figure 43. ROC curves of Logistic Regression (LR) and Random Forest (RF) on the three
unfiltered variant test sets.
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We finally combined the RF model with PolyPhen2 &i#T scores
through the implemented voting scheme. In ordentependently measure
performances of the three algorithms on the santa, dast sets were
filtered out for variants that PolyPhen2 and/or Bliwere not able to
predict. The combined approach, which we called |PaRreased the
overall performances: AUC, accuracy and Matthewsetation coefficient
(MCC) are increased in average by 2, 3 and 7 pégagen points
respectively when compared to the RF model aloeesfvity, specificity
and other performance metrics of the RF, PolyPh&h2T and PaPIl on the
three test set are reported in Table 13,while x&reioperating
characteristic (ROC) curves are reported in Figilbe

Test | Tool | AUC | Acc Sens | Spec | PPV | NPV | F-m | Mcc
Set (1C95%)

#1 | PaPl|.9207 | .8621 |.858 | .866 | .868| .855 | .863 .72
(.8553-
.8685)
RF | .8941| 8262 |.828 | 823 | .829| .823 | .828 .65
(.8189-
.8334)
PP2 | 9137| 8425 | .853 | .831| .839| .846 | .84 .684
(.8354-
.8493)
SIFT | 8682| 8045 |.772 | .837 | .830| .781 | .800 .610
(.7968-
812)

N

#2 | PaPl|.0196| .8618 | .857 | .866 | .869| .854 | .863 .728
(.8550-
.8683)
RF | .8960| .8275 |.831 | .823 | .829| .825 | .830 .654
(.8202-
.8346)
PP2 | .9121] .8401 |.848 | 831 | .838| .841 | .84
(.8330-
.847)

SIFT | .8677| .7994 | .762 | .837 | .829| .773 | .794 .60l
(.7917-
.807)

(%)

.680

#3 | PaPl|.9239 | .8648 | .857 | .872 | .874| .855 | .86§ .72
(.8568-
8724)
RF | .8999| .8289 |.835 | .821 | .828| .828 | .832 .65
(.8202-
.8373)
PP2 | .0185] .8416 |.850 | .832 | .840| .843 | .845 683
(.8331-
.8497)
SIFT | .8688| .7999 755 845 834 7700 793 603
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(.7906-
.8088)

Table 13. Performances of RF, PolyPhen2, SIFT and PaPI on the three test sets. Performances of
the Random Forest (RF), PolyPhen2 (PP2), SIFT and PaPI (RF + PolyPhen2 + SIFT) on the three
test. Area under the curve (AUC), accuracy (Acc) with 95% confidence interval, sensitivity (Sens),
specificity (Spec), Positive Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-
m) and Matthews correlation coefficient (Mcc) are reported for each method. Test sets were
filtered in order to retain only those variants that both PolyPhen2 and SIFT were able to predict.

Being PaPl an ensemble method based on three f®@assiwe also
analyzed the prediction consistency among the thoeds. The great
majority of the correct predictions (over 75%) fn&F, PolyPhen2 and

SIFT in agreement. More details are summarized Hgy Yenn diagrams
reported in Figure 44.

I
Y \ 220
; / \ (32%)

N\
/ 75
| (10.8%)

Figure 44.Venn diagrams showing contingencies in terms of prediction agreement between the
Random Forest, SIFT and PolyPhen2 on the whole variant test set where both PolyPhen2 and SIFT
hold a prediction. P=Positive (Damaging), N=Negative (Tolerated).
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Test Set 1
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Figure 45. ROC curves of the RF, PolyPhen2, SIFT and PaPI (RF+PolyPhen2+SIFT). ROC curves of
Random Forest (RF), PolyPhen2, SIFT and their ensemble (PaPI) on the three test sets. Variants
that PolyPhen2 and/or SIFT were not able to predict were filtered out.
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4.4.1. Performances on Unpredictable Variants for PolyPhen2
and SIFT

We further proceeded to evaluate PaPIl performapoethose variants
of the test sets for which both PolyPhen2 and SMe€Fe unable to give a
prediction, resulting in a total of 416 toleratendda974 damaging missed
variants. In these cases, PaPl classes and scomeside with the RF
predictor ones. The average area under the cur&Cjrof the RF was
equal to 0.94 while the average accuracy on theetlkiariant sets was equal
to 0.87 (see Table l1l4for the performance metrias Rigure 46 for ROC
curves).

Tes | Too | AU | Acc(IC95% | Sens | Spec | PPV | NP | F-m | Mcc

t I C ) \%

Set

#1 | PaPl| .9368| .8676 (.84204 .917 |.824 | .819 |.919 | .865 |.740
(RF) .8896) 1 5 8 6 7 5

#2 PaPl| .9418| .8611 (.8352 .921 | .807 | .809 | .920 | .861 | .729
(RF) 8836) 4 7 5 5 9 6

#3 | PaPl| .942 | .8830 (.8523- .925 | .845 | .842 | .927 | .881 | .769
(RF) 9080) 6 1 1 9 9

Table 14. PaPI performances on the unpredictable variants by PolyPhen2 and SIFT. PaPI
performances on the three test retaining only those variants unpredictable both for PolyPhen2 and
SIFT. In this case, PaPI coincides with RF. Area under the curve (AUC), accuracy (Acc) with 95%
confidence intervals, sensitivity (Sens), specificity (Spec), Positive Predictive Value (PPV), Negative
Predictive Value (NPV), F-measure (F-m) and Matthews correlation coefficient (Mcc) are reported
for each method.
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Figure 46.ROC curves of PaPI on the three variant test sets after retaining those variants
unpredictable for both PolyPhen2 and SIFT. For these cases PaPI coincides with RF.
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4.4.2. Comparison with Other Variant Prediction Tools

PaPI's performances were compared to the followiagant predictors:
Carol[181], PROVEAN[127], FATHMM[175], MutationAsssor[125],
LRT [124], PolyPhen2 and SIFT. Thanks to the RF eipBaPI is capable
to score variants of any kind up to 60 nucleotitkee 4.3.2.1). PolyPhen2,
SIFT, FATHMM, MutationAssessor and LRT only clags®&NVs, while
PROVEAN deals with in-frame but not frameshift itgleFurthermore,
these tools may be unable to provide some predistidue to lack of
information (e.g. when only few homologous sequsnegist or remain
after their filtering). Therefore, in order to obtaa fair comparison, we
removed from the aforementioned test sets thoseamnar that other
algorithms were unable to score (see Table 9).WR&#l| scored every
variant, missing rates of the other prediction $ooh the three sets ranged
from 7.34% to 23%, as reported inTable 15.

% Missingrate

Set #1 | Set #2 | Set #3

PolyPhen2 7.66 7.68 7.34
SIFT 1041| 1039 9.8
Carol 11.05| 11.44 10.98

PROVEAN 9.85 9.89 9.34

FATHMM 7.64 7.72 7.09

MutationAssessor 9.78 9.72 9.58

LRT 2299 | 22.82| 22.23

PaPI 0 0 0

Table 15. Missing rates on the three unfiltered test sets. Missing rates (i.e. algorithm unable to
provide prediction) of considered algorithms on the three unfiltered test sets.

The average AUC and balanced accuracy of PaPl wki@926 and
0.864, respectively, reporting an average incredse5 and 3.3 percentage
points in balanced accuracy and MCC when compavetthé second best
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predictor (Carol). Negative/positive predictive we$s and other
performance metrics are reported in Table 16. RQ@ves of each
predictor are reported in Figure 47.

Set Tool AUC E?Li’;;ig Sens | Spec | PPV | NPV 'r:n MCC
PaPl 922 | 8575 | .852 | .863 | .899 | .803 | .875| .708

Carol 912| .8492 | .821 .877 .905 .774 .861689

PRO 893 8264 | .780 863 .892 .74l .83®/43

4q | SIFT 883| 8142 | .763 .86b .849 .718 .§21618
PP2 914] 8425 | 850 .834 .880 .706 .86®80

FHMM | .830 | .7517 | 626 .876 .878 .641 .731502

LRT 845| 8249 | .800 .848 .883 .749 840640

MutAss | .889| .812 | .75] .86 .80 .714 918614

PaPl 025 | 863 | .862 | .864 | .899 | .817 | .880 | .721

Carol 912| 8442 | .811 .877 .902 .767 .85479
Provean | .898  .8354 | .807 .863 .802 .761 .BA®B62

4o | SIFT 883] 8091 | .753 .866 .887 .713 .§14609
PolyPhen2 | 91§  .8491 | .83 .834 .880 .813 37695
FATHMM | 835 | .7603 | .644 .876 .880 .636 .7A3518

LRT 850 | .8317 | .814 .848 .883 .765 .847656
MutAssessol .892 | 8134 | .760 .866 .888 .720 .819617
PaPl 033 | 8721 | .875| .869 | .905 | .831 | .80 | .74

Carol 923] 8551 | .818 .891 .914 .776 .863700
Provean | .915  .8444 | 815 .873 .9D1 .169 .B5679

gl SIFT 891| 8166 | .759 .874 .895 .719 .821623
PolyPhen2 | 930 .8542 | .872 .835 .882 .822 [37706
FATHMM | .843 | 7643 | .641 .876 .880 .635 .74552
LRT 868 | 8408 | .828 .85p .888 .718 .851674
MutAssessof .898 | 8273 | .771 .877 .899 .735 .834644

Table 16.Performances of different prediction tools on the three filtered test sets. Comparison of
PaP], PolyPhen2, SIFT, Carol, PROVEAN, FATHMM, LRT and MutationAssessor on the three test
sets filtered for unpredictable variants by the other prediction tools. Area under the curve (AUC),
balanced accuracy (sensitivity/2 + specificity/2), sensitivity (Sens), specificity (Spec), Positive
Predictive Value (PPV), Negative Predictive Value (NPV), F-measure (F-m) and Matthews
correlation coefficient (MCC) are reported for each method
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Figure 47.ROC curves comparison between prediction tools. ROC curves of PaPI, PolyPhen2, SIFT,
Carol, PROVEAN, FATHMM, LRT and MutationAssessor on the three filtered test sets.
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4.4.3. PaPI Exploits Pseudo Amino Acid Composition
Substitution Patterns for Disease-related Variant Prediction

We hereby show the case of two disease-related@marifor which the
RF is the solely to correctly assign the right pegdn in contrast to
PolyPhen2, SIFT and the other cited tools. These &xamples show
therefore how the RF can positively contribute tocarrect variant
evaluation by exploiting pseudo amino acid compositsubstitution
patterns in specific protein-coding regions.

4.4.3.1. GDF6 - Ala249Glu

Several studies associated the mutation p.(Ala24dPp@l the growth
differentiation factor 6 (GDF6) with skeletal andubar abnormalities [199-
201].

The p.(Ala249Glu) mutation is within the C-termid@lf of the GDF6
prodomain, a region thought to facilitate correctutfide folding of the
mature secreted peptide and latent complex formgg@®2].Despite
segregation and functional analysis conducted gy studies mentioned
above demonstrated the mutation hypomorphicity futsction within the
domain remains unclear; moreover, the residue ishighly conserved and
only two homologue proteins hold the same residagerestingly, the
mutation is in a region rich in GC-content that daps with a CpG island
of 1267 nucleotide bases. The p.(Ala249GIlu) mumgtgven by c.746C>A
nucleotide variant, is part of ten adjacent badest exhibit a variable
percentage in cytosine methylation according to th®educed
Representation Bisulfite Sequencing ENCODE datanfriive different
human cell types (see Figure 48). CpG islands aoavk to be regions with
high germline mutational rate in methylated CpG8Jadd in coding
regions they cause biases into the amino acid segs§l86, 187]. For
example, Arg residue mutates more frequently retsfpeany other residue
and this can be in part explained by the fact tbp6& in the Arg codons
occur in the no-wobble positions resulting into seisse variants.

Damaging Tolerated

CpG 15031 3098

-CpG 137793 22506
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Table 17.Contingency table to compare the proportion of variants overlapping CpG islands into
the whole Damaging and Tolerated data set.Fisher exact test has been performed by Matlab
function developed by Michael Boedigheimer “fexact”
(http://www.mathworks.com/matlabcentral/fileexchange /22550-fisher-s-exact-test).

By analysing our training data set, we found 15,@3d 3,098 variants
overlapping CpG island for the damaging and tobmtatvariant set,
respectively, resulting in a significant difference numbers between the
two sets (p = 1.7 x 10-27; Fisher exact test, sHael17).

The proportion of the amino acid changes inside amngide methylated
regions of CpG islands (human cell line GM12878wdmaded by UCSC
Genome Browser) resulted significantly higher toe damaging variant set
with respect to the tolerated one (p = 3.2 ¥:1Bisher exact test, see Table
S4 in Additonal File 1).

Damaging Tolerated

mCpG 806 137

-mCpG 14225 2961

Table 18.Contingency table to compare the proportion of variants inside and outside methylated
regions of CpG islands into the whole Damaging and Tolerated data set.Fisher exact test has been
performed by Matlab function developed by Michael Boedigheimer “fexact”
(http://www.mathworks.com/matlabcentral/fileexchange /22550-fisher-s-exact-test)

These results show biases between damaging andtededata sets, thus
amino acid composition following amino acid changethin these regions
may be different, too. We suppose that the RF nzasehearnt the model of
substitution patterns in CpG islands within theetated and damaging
datasets, thus correctly predicting the p.(Ala249Gh the GDF6 encoded
protein.
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Figure 48. Mutation p.(Ala249Glu) (red asterisk) in the GDF6 gene from UCSC Genome Browser.
CpG island (dark green), Mammal and Vetrebrate conservations (light blue), Methylation sites
from 5 cell types (from light green to red respect to the percentage of DNA molecules that exhibit
cytosine methylation) are shown.

4.4.3.2. GUCY2C - Asp387Gly

Romi et al.[194] identified a single mutation p.E887Gly) in the
guanylate cyclase 2C (GUCY2C) transmembrane receptausing
meconium ileus (Ml), an intestinal obstruction iewborns. GUCY2C has
an extracellular domain that is activated by ligarfduanylin and related
peptide uroguanylin or E.coli heat-stable enterotoxSTa). The
p.(Asp387Gly) mutation is within an essential regiof its extracellular
ligand-binding domain and is adjacent to seven rofheotal amino acids
for the ligand binding [204]. The resulting sigedint reduction of ligand-
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binding leads to a reduction in guanylate cyclasevdly and activates a
signalling cascades that finally leads to M.

The GUCY2C extracellular domain belongs to the glasmic binding
protein-like | superfamily domain and corresponds the extracellular
ligand-binding receptor, IPR001828 in InterPro taise[205].The same
domain is shared by other 157 human proteins (tholythe one encoded
by GUCY2C). Among the disease variant set usedRbBrtraining, 242
disease variants belonging to the IPR001828 donaad related to 7
proteins are present. We suppose that the RF léathe model of
substitution patterns in the extracellular domain tioese proteins and
therefore it was able to assign the correct preshctor p.(Asp387Gly) in
the GUCY2C encoded protein.

4.4.4. PaPI Leads to Right Prediction in Case of PolyPhen2 and
SIFT Conflict

Here we report an example that shows how PaPIl oareatly classify
variants for which PolyPhen2 and SIFT are discordaprediction.
Tchernitchkoet al[206]compared PolyPhen and SIFT considering several
variants known to be responsible for affecting pmeducts of hemoglobin
and glucose-6-phosphate dehydrogenase genes, detadgeveral forms of
sickle cell anemia and G6PD deficiency, respecyivi the results in that
paper, PolyPhen and SIFT had discordant predictmmgen pathogenic
variants, for which experimental evidence was regghrWe therefore run
PaPl on the same variant set and we correctly ifladsall of them as
damaging. Five variants were predicted both by Pbgn2 and SIFT
(thanks to updated versions now available) as darmgaghile for the other
five variants there were still discordant predioBobetween these tools
(Table 19).

Gene | Proten PP2 SIFT RF Related PaPlI
Phenotype
E7V B D D Sickle cell | D
P (0.002) | (0.01)| (0.891)| anemia | (0.901)
B D D D
P-E122Q| (0.007)| (0.01) | (0.975)| Severe | (0.975)
HBB sickle cell
B D D D
p.E122K syndromes
(0.109)) (0.0) | (0.96) (1.0)
PETK | g 5 D 5
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(0.006)] (0.01)] (0.94) (0.94)

B D D G6PD D

GOPD| p-S188F| 5 039)| (0.04) | (0.988)| deficiency | (0.988)

Table 19.Examples of known disease-related variants. Known disease-related variants reported
by Tchernitchko et al. for which occurs a different outcome in prediction by PolyPhen2 (PP2) and
SIFT. For these cases, the RF is able to vote for the right class leading PaPI to the correct prediction
as well. In brackets the score for each variant predictor is reported. B= tolerated, D=damaging.

For these cases, the RF vote allowed obtainingigte class assignment.
Notably, SIFT is able to assign the right class éach variant as well,
despite we show that RF and SIFT have the lowest@amlance rate in
prediction in case of PolyPhen2 conflict (see Fegdd4).

4.4.5. Web Accessible Tool

PaPl software is freely available online (http:fpanipv.it) as a web
accessible tool.

The user interface allows to submit a single var@mno perform queries
in bulk by uploading a plain text file with a ligif variants (see for a
screenshot).

Users can choose between the RF and LR model. édthave showed
LR is less accurate than RF, it is faster and canubed for a quick
response.

Two different gene annotation models are availafiRefSeq and
GENCODE) and a variant score is given for eachedéht transcript.

Results are reported in a tab-delimited text fivel @an be sent by email:
PaPI prediction (damaging or tolerated) along with confidence score
plus prediction/scores of RF/LR, PolyPhen2 and SlEdch variant comes
with information about transcript, gene, type (misse, synonymous,
frameshift etc.) and evolutionary conservation esorPrediction runtime
takes, in average, between 0.3 and 0.7 secondsapant.

The business logic of the web application has bd&reloped in Java,
allowing asynchronous processes managed by two quanes: one for the
RF requests and another for the LR ones. The Rieequen requests one
by one (due to the RAM usage to put in memory taed®m Forest model)
while the LR can execute 4 requests in parallel.

Presentation tier has been designed using a Mom~Controller pattern
(MVC) by employing Java Server Faces (JSF) techmolo
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PaPI

Combines Pseudo Amino Acid Composition (PseAAC), Polyphen2 and Sift to predict and score the

functional effect of every human coding mutation such as those identified by NGS analysis.

Form

Chromosome |3
Start position 72055100
Stop position 72055100
Reference
Alteration
Model type

Reference

Gene Model

Email

PAPI_CLASS PAPI_SCORE TRANSCRIFT GENE CHR  START END REF ALT TYPE CODING_FUNCTION AA_CHANGE PHYLOP GE

DAMAGING  0.36 NM_001361 DHODH | chrif | 72055100 72055100 C T snv missense R193C 2.5%6 5.2

L3

Figure 49.PaPI web interface, results for single query are shown in the browser, or can be sent by
email.

4.4.6. Conclusions

We developed a new method, called PaPl, to classity score human
coding variants potentially leading to functiondteaations of related
proteins, especially as human inherited diseasescancerned, since the
algorithm has been trained on HGMD database, wiscknown to be
biased towards human Mendelian diseases. The mauelty of the
approach is the introduction of features basedhendifference in pseudo
amino acid composition between snippets of wild ailtéred protein
sequences where coding variants occur. Hydrophtybarid hydrophilicity
pairwise relationships between amino acids are @éedtdy these features.
Evolutionary conservation scores and quantitatigecdptors at the whole
protein level were included in the feature set &l.wA RF classifier was
trained on these features to mine disease andalgudeudo amino acid
composition substitution patterns and classify enseoding variants into
damaging or tolerated class.

Despite it has been shown that the combinationasfant classifiers is
not always beneficial[207],we showed that the impdated voting strategy
between PolyPhen2, SIFT and our RF model improwasopnances in
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terms of area under the curve, accuracy and otbported metrics in
comparison to the ones of each predictor alone.s@ening only those
variants that PolyPhen2 and SIFT are unable toipieBaPl maintains
high performances thanks to the RF model. Moreoienas to be noted
that in case of prediction by both PolyPhen2 anBTSIPaPl is biased
toward sequence conservation, because of the rmajodting system
between the RF and these two tools[196].We comp&a@l with other
variant prediction tools (PolyPhen2, SIFT, CardRGVEAN, FATHMM,
MutationAssessor, LRT) and we showed that PaPloperdnces were the
highest on the data sets used. Notably, PaPIl is @bkcore any variant,
including the ones that the other mentioned methadse unable to
predict.

We have reported two examples for which the RF rhaglehe only
algorithm that predicts the correct class, than&sits capability of
exploiting potential disease-related pseudo amimd acomposition
substitution patterns such as protein ligand-bigdadomains and CpG
regions. We also showed several examples wher&Ehmodel vote leads
to a correct prediction, in case of conflict betwéslyPhen2 and SIFT.

To our knowledge, PseAAC has never been used irmmnaprediction.
We are confident that the algorithm can be furiihgsroved by optimizing
other parameters (e.g. length of sequence sniguetsunding variants) or
by exploring other PseAAC descriptors (e.g. inchgdiamino acid side
chain mass property).
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Chapter 5

Clinical Applications

In this Chapter, some clinical applications of tiariant Management
System based on the Relational Database (RDBVM8§$joagh discussed
in 3.1 are reported.

The presented cases have been published on intaraktscientific
journals, as referenced below.

Multiple clinical forms of dehydrated hereditarystatocytosis arise from
mutations in PIEZORAndolfo I, Alper SL, De Franceschi L, Auriemma C,
Russo R, De Falco L, Vallefuoco F, Esposito MR,déape DH, Shmukler
BE, Narayan R, Montanaro D, D'Armiento M, Vetro Bmongelli I,
Zuffardi O, Glader BE, Schrier SL, Brugnara C, SaetwGW, Delaunay J,
lolascon A.Blood. 2013 May 9;121(19):3925-35, S1-12doi:
10.1182/blood-2013-02-482489. Epub 2013 Mar 11.

Improving molecular diagnosis in epilepsy by a datitd high-throughput
sequencing platforrdella Mina E, Ciccone R, Brustia F, Bayindir B,
Limongelli I, Vetro A, lascone M, Pezzoli L, BedlaR, Perotti G, De

Giorgis V, Lunghi S, Coppola G, Orcesi S, MerliSdvasta S, Veggiotti P,
Zuffardi O. Eur J Hum Genet. 2014 May 21. doi: 1XB8/ejhg.2014.92.

(Epub ahead of print)

Lower motor neuron disease with respiratory faileaused by a novel
MAPT mutationDi Fonzo A, Ronchi D, Gallia F, Cribiu FM, Trezzj |
Vetro A, Della Mina E, Limongelli |, Bellazzi R, dga I, Micieli G,

Fassone E, Rizzuti M, Bordoni A, Fortunato F, SalanMora G, Corti S,
Ceroni M, Bosari S, Zuffardi O, Bresolin N, Nob{gazio E, Comi GP.
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Neurology. 2014 Jun 3;82(22):1990-8. doi:
10.1212/WNL.0000000000000476. Epub 2014 May 7.

The contents (including tables and figures) of thkBowing sections
have been extracted from the aforementioned pa@anstribution to these
studies comprise sequencing data analysis, fromseyjuencing data to the
list of the genomic variant candidates for eachigpét by using the
RDBVMS presented in 3.1. Furthermore, statisticahlgsis has been
performed foDella Mina et alrelated work

5.1. Multiple clinical forms of dehydrated
hereditary stomatocytosis arise from mutations in
PIEZO1

Autosomal dominant dehydrated hereditary stomatmigt (DHSt)
usually presents as a compensated hemolytic angitiianacrocytosis and
abnormally shaped red blood cells (RBCs). DHSt ast @f a pleiotropic
syndrome that may also exhibit pseudohyperkalemah @erinatal edema.
We identified PIEZO1 as the disease gene for plept DHSt in a large
kindred by exome sequencing analysis within thevipresly mapped
16023-g24 interval. In 26 affected individuals amon multigenerational
DHSt families with the pleiotropic syndrome, 11 dreizygous PIEZO1
missense mutations cosegregated with disease. PIEZ@xpressed in the
plasma membranes of RBCs and its messenger RNA pestéin levels
increase during in vitro erythroid differentiatioh CD341 cells. PIEZOL1 is
also expressed in liver and bone marrow during hunaad mouse
development. We suggest for the first time a catreh between a PIEZO1
mutation and perinatal edema. DHSt patient redsceiith the R2456H
mutation exhibit increased ion-channel activity. nEtional studies of
PIEZO1 mutant R2488Q expressed in Xenopus oocy&sodstrated
changes in ion-channel activity consistent with élttered cation content of
DHSt patient red cells. Our findings provide diresidence that R2456H
and R2488Q mutations in PIEZO1 alter mechanosessitchannel
regulation, leading to increased cation transpogriythroid cells.

5.1.1. Introduction

Dehydrated hereditary stomatocytosis (DHSt), alsovkn as hereditary
xerocytosis (OMIM=194380), is an autosomal dominacingenital
hemolytic anemia associated with a monovalent oagak. DHSt consists
of a wusually compensated hemolysis, associated witloderate
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splenomegaly[208]. Blood smears show variable nusbé stomatocytes,
sometimes rare and ill-formed, and likely to be rweked. The
reticulocyte count is elevated, and red cell meanpescular volume
(MCV) is slightly increased. DHSt red blood cellRBECs) exhibit
decreased intraerythrocytic K+ content and incréastaerythrocytic Na+
content, usually accompanied by increased meanusogbar hemoglobin
(Hb) concentration.

The cation leak of DHSt red cells resembles thataftrol RBCs in its
temperature dependence, but is of greater magnituate all
temperatures[209]. The definitive diagnosis of DHStascertained by
osmotic gradient ektacytometry, which shows a laftivshift of the bell-
shaped curve[210]. Occasionally, associated hejkiaxsis beyond that
expected from the mild hemolytic state suggestgr@ng tendency to iron
overload[211]. Unlike hereditary spherocytosiswhich splenectomy can
be beneficial, splenectomy in DHSt is contraindeéchtlue to increased risk
of thromboembolic complications[212]. DHSt can mmisas an isolated
erythroid phenotype or as associated with pseudatkgbemia, with pre-
and/or perinatal edema, or with both pseudohyperka and effusions.
The pre- and/or perinatal edema is of chylous tgpd may lead to life-
threatening hydrops fetalis requiring therapeuticraimbge[213].
Remarkably, the edema recede spontaneously beiidhedn within several
months postnatally, and do not reappear. In contedema may also be
restricted to prenatal, clinically silent ascitegettable only by ultrasound.
Isolated familial pseudohyperkalemia (FP) is dedinby the time-
dependent elevation in serum (K+) when blood sample left for several
hours or more prior to analysis at temperaturesvbdbody temperature,
whereas serum (K+) is normal in freshly drawn blodeP may be
associated with DHSt or, when linked to chromosdines isolated FP.
The causative gene of isolated FP linked to 2q35+88 recently identified
as ABCBSG6, encoding a porphyrin transporter[214].

Mapping of gene(s) responsible for familial DHStemtified a
cosegregating critical region at the telomeric oegiof 16q[215].
Zarychanski and colleagues reported for the firset in 2 families with
isolated DHSt, 2 missense mutations in the FAM38&na encoding
PIEZO1[216]. We report here our independent finding 7 unrelated
families with isolated DHSt, DHSt with pseudohypaiémia, or DHSt with
both pseudohyperkalemia and pre-/perinatal fluidsbn, novel mutations
in the PIEZO1 gene that cosegregate with the meltijisease phenotypes.
We have further characterized PIEZO1 expressioerythroid cells and
during mouse and human development, and perforraedtibnal studies
on R2488Q and R2456H mutations in human erythrecyied Xenopus
oocytes.
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5.1.2. Material and Methods

5.1.2.1. Case Report

The clinical phenotypes of kindreds Arras (AR), &re (Bl), Dax (DA),

Essex, and Troyes (TR) were previously described[21Definitive
diagnosis of DHSt was made by ektacytometry. FawilDax and Troyes
showed isolated DHSt.
Families Arras and Edinburgh showed DHSt plus pebyderkalemia
[218]. Family Bicetre exhibited DHSt accompanieddsgudohyperkalemia
and massive perinatal fluid effusions that sponbaiséy and permanently
regressed within several months after birth. Simitessive but transient
perinatal fluid effusions have been observed byh219]. Following our
initial studies, the patients were followed up libza

The expressivity of the phenotype was generally ilarmamong
members from a given kindred, but some variabilitgs noted. (1) In
family Dax, the MCV and ektacytometric curve of thather (Il.1;
numbering from Grootenboer et al) were only sligtdltered, whereas the
son (Il.2) exhibited a full-fledged DHSt [217].(2n family Bicetre,
whereas DHSt in father 1.3 [220], was accompanieby
pseudohyperkalemia and dramatic perinatal fuid seffius, his 2 children
exhibited effusions which were less pronounced. eB@ttomy was
performed in only 2 patients. In keeping with Stewet al [209], member
11.2 of family AR developed a thrombosis after aipd in an ankle cast,
followed some years later by a moderately severengoary embolus,
treated by chronic anticoagulation. The secondepétimember 1.2 of
family DA, was without thromboembolic complicatioat the time of
examination.

Patient SF, a 38-year-old female triathlete, has been reported
previously. She was referred by her primary phgsicto a hematology
clinic for evaluation of hemolytic anemia, firstaginosed at age 14 in the
setting of severe weakness of 1-month duration. il8imepisodes of
weakness recurred once in her 20s and again agbaef 32, unrelated to
medications or specific foods, and resolving witlpportive care. The
patient reported chronic “yellowing of her eyes,itlvout changes in color
of urine or stool, and without fevers or gastrogtiieal symptoms. Neither
medication nor food triggered these episodes. Rahigtory was notable
for recently diagnosed hemolytic anemia in the qudts brother,
accompanied by 50% deficiency of pyruvate kinasel a report of mild
anemia of unclear etiology in the patient’s father.

Physical examination revealed mild scleral icteemsl hepatomegaly
(edge 1 cm below costal margin). Hematologic inglieere: Hb, 13.2 g/L;
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hematocrit, 37%; RBCs, 3.573106mm3; MCV, 103.7 fted cell

distribution width, 13.1%; absolute reticulocyteuod, 139,300/mL. The
peripheral blood smear revealed spherocytes, mg@®c and rare
stomatocytes and tear drops. Total bilirubin waé rhg/dL, with normal
lactate dehydrogenase, and testing for Gilbert symeé was negative.
Direct Coombs test was negative, and red cell gtidae and enzyme
activities (G6PD, PK, GPI, HK, ADA) were normal.

Osmotic fragility testing and ektacytometry revehtesmotic resistance,
and ektacytometry also showed decreased RBC dehlitgan hypertonic
solutions: hypoosmotic point was 112.8 (normal,.839 16.0 mOsm/kg);
maximum deformability index was 0.63 (normal, 0.540.06 artificial
units), osmotic point was 348.7 (normal, 405.6 +318osmol/kg). These
results supported the clinical diagnosis of dehtgllastomatocytosis
(DHSY) in patient SF.

5.1.2.2. Bioinformatic Analysis for Exome Sequencing

Reads were aligned to the most recent version aham genome
(GRCh37/hg19) using the BWA software package (wer€l.5.9). Mapped
reads were consequently filtered out for polymerelsain reaction (PCR)
duplicates by Samtools (version 0.1.18), locallgligned around inferred
insertions and deletions, and their base qualieealibrated in the context
of alignment by Genome Analysis Toolkit (versiod-R1).

Single-nucleotide polymorphisms, short insertioasd deletions were
identified by the GATK Unified Genotyper. Resultingariants were
filtered out for possible sequencing and alignmartifacts, taking into
consideration variant quality, variant read-depthd the proportion of not-
uniquely-mapped reads overlapping variants. Praxtictracks for each
mutation were generated by automatic queries toahlhriTaster and
PolyPhen-2. Output data were filtered on the basfisan autosomal
dominant model of inheritance, removing those aateat variants which
were out of exome target, synonymous, common (asotated in
dbSNP135), or found in previous exome sequencinguwoforrelated
samples. Candidate variants were also comparedpandtized with the
1000 Genome Project Database and the Exome SeaqgeRcoject (ESP)
Database (Exome Variant Server, HLBI ESP, Seafl&; ESP5400
release). The remaining, filtered variants wereesssd for pathogenicity
by SIFT. The filtered exome sequencing data weseplgically visualized
with Integrative Genomics Viewer (IGV) [221], allowg interactive
exploration of these genomic datasets.
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5.1.2.3. RNA isolation and cDNA synthesis from CD34"cells

Total RNA was isolated from CD341 cells at days,Oand 14 of
erythroid differentiation. Single-strand complemayt DNA (cDNA) was
synthesized from 2 ug of RNA template, using 2.8%suof VILO reverse
transcriptase (Technologies, Milan, Italy).

5.1.2.4. Two microelectrode voltage clamp of PIEZO1-expressing
oocytes

Oocytes were harvested from Xenopus laevis and tedeawith
collagenase as previously described [222]. cRNA iwgected in a volume
of 50 nL, and oocytes were maintained at 17°C f@rhburs prior to
experimentation.

Defolliculated oocytes were placed in ND96 (in m8&g NaCl, 2 KCI, 1.8
CacClb, 1MgClh, 5 HEPES  (N-2-hydroxyethylpiperazine-N’'-2-
ethanesulfonic acid), pH 7.4) in a bath (RC-16; kéar Instruments,
Hamden, CT) on the headstage of an upright micyps@nd imaged at x20
magnification.

Oocytes were impaled with pipettes fabricated frbwrosilicate glass
(World Precision Instruments, Sarasota, FL) usin@uter P87 puller.
Resistances of electrodes were 2 to 10 megaohms \ilhked with 3M
KCI.

A voltage clamp protocol was generated using thentplex subroutine

of PCLAMP 10 (Molecular Devices Corporation, Sunalg; CA),
applying 10 sweeps of 400 ms, in 20-mV steps fraf@ mV, with a
sampling rate of 10 kHz. Holding potential was -8/ in all groups
throughout the experiment.
Currents were recorded using a Geneclamp 500 woltégmp (Molecular
Devices). The bath reference electrode was a sdhrided wire with a
3M KCI agar bridge. Junction potentials were miraed by using 3M KCI
in the pipettes and by use of a bath clamp.

Current voltage relationships were determined MW§infy the currents
recorded at t = 370 ms using the Clampfit subreubh PCLAMP 10, and
plotted with Sigmaplot graphics.

5.1.2.5. On-cell patch recording of PIEZO1-expressing oocytes

Defolliculated oocytes were placed in a hypertdmth and the vitelline
layer was removed by hand with Dumont no. 5 forcepsler x40
magnification. The devitellinized oocyte was immegdly placed in a low-
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volume bath (RC-25; Warner Instruments) on the estaf an Olympus
IMT-2 inverted microscope, imaged at x40 and padcivwith fire-polished
pipettes of 7 to 12 megaohms resistance. Bath apdttp solutions
contained (in mM) 150 Na methanesulfonate, 10 NarADPand 10 Na
HEPES, pH 7.4. On-cell patch recording was perfarnas previously
described in this paragraph, except that curremtewlicited by imposition
of a 250-ms linear voltage ramp from -100 mV to @1tV during

application of negative pressure (0 or -25 mm Hygj}he pipette port and
recorded by pneumatic transducer (Biotek DPM-1Bnowski, VT).

5.1.3. Results

5.1.3.1. Whole Exome analysis

Whole-exome analysis was performed on 2 affectedl 2runaffected
members from family Edinburgh (DHSt plus pseudolgpkemia).After
filtering out of likely false-positive single-nuaéde variations(SNVs) and
short insertions/deletions (InDels), an averag82f862variants was called
for each of the 4 exomes, spanning about 12 053gemi¢h about 1700
novel SNVs/InDels per sample. Among novel SNVs/IlfD&e focused on
heterozygous variants falling in exons, splice-gitections and 5 and 3’
untranslated regions that segregated with diseasm@ the 4 individuals
and were absent from 38 unrelated exomes fromrdarnal database. This
approach highlighted 13 variants in as many gened,which were exonic,
5 of which were predicted as likely pathological the in silico tools
MutationTaster, PolyPhen-2, and SIFT (see Table 20)

Filtered Variants
Total variants 30,435
Variants called under dominant model 1,170
Variants cosegregating with the disease phenofyji
CDS| Intron / UTR
7 6
Predicted damaging 5 0

Table 20.Number of called variants through sequential filtering steps

One of these variants mapped within the previodgfined critical region
on chromosome 16 [218], and was identified asc.€38Q T2127M of
PIEZO1 (see Figure 50).
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Figure 50.PIEZ01 mutations found in the families here analyzed
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5.1.3.2. PIEZO1 Mutational Analysis

PIEZO1 has been sequenced in 26 affected and 1Bhhesubjects
among 7 affected families. The mutations and thelmer of affected and
unaffected subjects are described in Figure 50.

The nucleotide changes are shown in Figure 51A. eNoh the noted

nucleotide changes were present in the 1000 genaaease, or in 50
healthy subjects here analyzed. The amino acidsctfl by the PIEZO1
missense mutations identified in the DHSt patieares located in 2 regions
of the 2521 amino acid PIEZO1 polypeptide: 1 betwessidues 718 and
1117, and the carboxy-terminal region beyond resid000 (Figure 51B).

The DHSt phenotype in families AR, Essex, and Bkegregated with > 1
novel missense mutation in cis in PIEZO1 (Figurg. 3he mutated amino
acid residues are all conserved in PIEZO1 of maeaqmd mouse; 9 of the
10 residues are conserved in rat PIEZO1, and heflD are conserved in
Xenopus tropicalis and Danio rerio (Figure 51C).
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A €.2344G>A ¢.6008 C>A
¢.1848+31G>G ©.2423G>A c. 5059 >T ¢.6380 C>T c. 7463 G>A
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Cytoplasm

Extracellular

C G7828 R808Q A2003D
Homo sapiens = B AR AR GUHTARLERLE BT ge—
Macaca mulatta
Mus musculus
Rattus norvegicus
Xenopus tropicalis
Danio retio

Arras Bicetre Bicetre Essex Troyes
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T2127TM  2166-2169delK  R2456H R2488Q

Homo sapiens
Macaca mulatta
Mus musculus
Rattus norvegicus
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Essex Edinburgh Dax San Francisco Arras
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Figure 51. Mutational analysis. (A) Schematic representation of PIEZO1 (blue squares, exons;
horizontal double lines, introns; double slashes, large introns); red arrows indicate exonic
positions of the nucleotides mutated in the 7 families in whom DHSt was previously mapped to
chromosome 16q. (B) A 2-dimensional (2D) hydropathy profile of human PIEZO1 protein. The
transmembrane regions of PIEZO1 (UniProt accession Q92508) predicted by TMHMM were
displayed using TMRPres2D. Red circles mark approximate locations of DHSt-associated missense
mutations. (C) Evolutionary conservation of the residues mutated in our DHSt patients (red
shaded boxes) among the species indicated at left.

5.1.3.3. PIEZO1 expression in human and mouse during fetal and
embryonic development

PIEZO1 expression has been analyzed in several enansl human
tissues during embryonic development to account floe erythroid
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involvement of DHSt and for the fluid effusions acdng in some DHSt
families. We collected mouse embryos at embryorag (E) 9.5, E10.5,
E12.5, E15.5 and postnatal day 0 (PO; at birth) domantitative PCR
analysis of murine PIEZO1 expression. PIEZO1 megseRNA (MRNA)

abundance increased gradually from E9.5 to E15.8 was sustained
through birth (Figure 52B). We further showed PIEZ@olypeptide
expression in adult RBC membranes from mice (Fii#€) and humans
(Figure 52D).

PIEZO1 immunohistochemical analyses were perfororedhuman fetal
tissues (17 weeks of gestation) to verify PIEZOJpression in liver,
spleen, and peritoneum lymphatic vessels. In fievak, PIEZO1 showed
strong cytoplasmic and membrane signals particplanh hepatic
erythroblasts. Fetal spleen at 17 weeks showedtip®scytoplasmic
staining patterns in splenic plasma cells. PIEZ@fression in lymphatic
vessel of fetal peritoneum at gestational week 45 lteen also evaluated to
examine the correlation between PIEZO1l expressioth @accurrence of
perinatal edema. PIEZO1 showed a marked signalymmphatic vessels
(Figure 52E). In contrast, PIEZO1 immunoreactivisas absent from
peritoneal lymphatic vessels of healthy human adsubjects. This
observation provides a first link between PIEZOltations and pre- or
perinatal edema.
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Figure 52.PIEZ01 characterization during mouse and human embryonic development. (A) PIEZ01
mRNA levels (normalized to GAPDH) in murine C57BL/6 embryos at E9.5, E10.5, E12.5, E15.5 and
P0. Mean 1 SEM of 3 experiments. (B) Immunoblot showing expression of PIEZ01 protein
expression in lung, spleen, liver, and bone marrow from PO C57BL/6 mouse. Protein (50 mg) was
loaded in each lane, with GAPDH as loading control. Representative of 2 independent fresh tissue
lysate preparations. (C) Immunoblot showing PIEZO1 protein RBC membranes prepared from
blood pooled from 8 adult C57BL/6 mice. Protein (50 or 100 mg) was loaded in each lane, with
GAPDH as loading control. One of 3 similar experiments with independent membrane
preparations. (D) Immunoblot showing PIEZO1 protein in human RBC membranes prepared from
blood pooled from 3 healthy subjects for each lane. Protein (50 mg) was loaded in each lane, with
GAPDH as loading control. One of 3 similar experiments with independent membrane
preparations. (E) Immunohistochemical expression in human fetal (17 weeks of gestations) and
adult tissues with PIEZO1 rabbit polyclonal antibody. The red arrow in the 3400 liver panel
indicates a positive erythroblast. The red arrows in the fetal peritoneum panels indicate positive
staining in the lymphatic vessels, while in the adult peritoneum panels indicate negative staining in
the lymphatic vessels. Antigen is stained brown; nuclei are stained in purple with hematoxylin.
Tissues were imaged with a Leica microscope equipped with 203 and 633 objectives.
Representative of 3 independent experiments.GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.
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5.1.3.4. PIEZO1 expression and localization in RBCs

PIEZO1 localization in RBCs was evaluated in healttontrols.
Confocal microscopy analysis showed that PIEZOlesressed on the
RBC membrane, as demonstrated by its complete aliation with the
erythroid membrane marker glycophorin A (Figure $3#&nd confirmed by
colocalization with the membrane marker CD55/DAFeTdata confirm
previous mass spectrometry data of Zarychanskil é2E6]showing the
presence of PIEZO1 protein in red cell membranes.
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Figure 53.PIEZ01 characterization in RBCs and in CD341 blood cells during erythroid
differentiation.
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5.1.3.5. PIEZO1 expression during erythroid differentiation

To investigate the role of PIEZOL1 in erythroid selve first examined
PIEZO1 expression and localization in an ex vivodeloof erythroid
differentiation. CD32 cells isolated from the peripheral blood of heglth
volunteers were induced to erythroid differentiatidby 14 days of
erythropoietin treatment. As shown in Figure 53BEZFO1 mRNA was
significantly upregulated after 14 days of erytlomiin treatment (P =
.003). These data were confirmed at the proteiell®y western blotting
and densitometric analysis (Figure 53C).

We then assessed PIEZOL1 protein localization insdrae cell systems.
As shown in Figure 53D, PIEZO1 colocalized with flasma membrane
marker glycophorin A at 7 and 14 days of CD3#ythroid differentiation
(Figure 53D). No PIEZO1 immunoreactivity was de¢ectn day 0 CD34%
cells (not shown).

5.1.3.6. Expression of WT and mutant PIEZO1 polypeptides
inHEK-293 cells

To evaluate expression of the PIEZO1 mutants, waed PIEZO1wild-
type (WT) and PIEZO1 mutants R2488Q and R2456H Mp6-IRES-
GFP and transiently transfected the recombinansnpids into HEK-293
cells.We found that neither mutation impairedPIEZ&pression at mRNA
or protein levels (Figure 53E-F).

5.1.3.7. DHSt red cells exhibit altered ion content and transport

Patient SF red cells heterozygous for the PIEZO1atman R2456Hhad
elevated Na content of 61 mmol/kg Hb and reduceddftent of219
mmol/kg Hb (after overnight shipment).Magnesium {Mgontent was
slightly elevated at 9.7 mmol/lkg Hb. Red cell aties of K-CI
cotransport, Na-K-2Cl cotransport, and Na/H excleamgere not higher
than in unrelated control cells (not shown). On-galtches recorded from
patient SF DHSt red cells as described in5.1.2du(f@ 54A) revealed
spontaneous ion-channel activity (lower trace) aetiected in cells from an
unrelated subject (upper trace). This activity wasaracterized by a
distribution of channel open probability (NPo) &f1.+0.43 (Figure 54B), a
single-channel ohmic conductance of 13single chlaooaductance (pS)
with reversal potential -11 mV 4= 0.95; Figure 54C), and was competely
blocked by 2.5 mM Grammastola spatulata mechanntdx{GsMTx4) in
the pipet (P < .05).
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Figure 54.Cation channel activity in on-cell patch recordings of DHSt red cells from patient SF.

5.1.3.8. Function of WT and mutant PIEZO1 expressed in
Xenopus oocytes

X laevis oocytes previously injected with hPIEZObnplementary
RNA (cRNA) were subjected after 72 hours to 2-glede¢ voltage clamp
recording. Uninjected oocytes exhibited a smalkéin current at holding
potentials between -100 and +80 mV, with reversateptial of -64 mV
(Figure 55A). After 14 minutes of exposure to a m@ely hypotonic bath
(20% dilution of ND-96 which, based on the low in&ic oocyte water
permeability should produce only minimal swellinghese properties
remained essentially unchanged. Oocytes previoagdgted with PIEZO1
cRNA exhibited slightly elevated currents in ND-9&yt with a reversal
potential depolarized to -40 mV. However, and imtcast to uninjected
oocytes, 14- minute exposure of PIEZO1-expressiogyies to hypotonic
bath conditions substantially increased an outwamdictifying current,
while hyperpolarizing reversal potential to -56 nilgure 55A). Exposure
of oocytes previously injected with PIEZO1 cRNAhygpertonic bath (ND-
96 containing 200 mM mannitol, 15 minutes) also fedncreased current
(not shown). Because mPIEZO1 exhibits mechanoseitgjtmultichannel
on-cell patch currents of Xenopus oocytes exprgsfiRIEZO1 were
recorded during voltage ramps before and durindiegion of -25 mm Hg
suction via pipet. As shown in Figure 55B, negatpressure did not alter
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current in uninjected oocytes. In contrast, negatpressure induced
increased currents in oocytes expressing PIEZOX% (B05) and mutant
R2488Q (P < .001), but not mutant R2456H (Figur€bS he response of
mutant R2488Q to negative pressure appeared toedxteat of WT

PIEZO1 (P = .057). Occasional oocyte patches altbwesolution of

single-channel activity, as illustrated in Figuré. 9n these resting state
patches, the uninjected oocyte NPo of 0.013 ine@ds 0.69 in oocytes
expressing WT PIEZO1, 0.88 in oocytes expressingZPIl mutant

R22488, and 0.22 in oocytes expressing mutant R24598espective

single-channel conductances were 25 pS (WT), 26.§R2488Q), and 43
pS (R24566H).
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Figure 55. PIEZO1 expressed in Xenopus oocytes confers increased current elicited by hypotonic
medium and negative pressure activates currents in on-cell membrane patches of WT PIEZO1 and
mutant R2488Q.
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Figure 56.0n-cell patch current traces of R2488Q and R2456H mutations in Xenopus oocytes.

5.1.4. Discussion

We have identified PIEZO1 as the causative gendghervaried clinical
forms of autosomal dominant DHSt linked to chronmaeol6p. PIEZO1
was selected as a strong candidate gene within cifiecal region
previously mapped to 16g23-qgter based on exomees®myug analysis in
family Edinburgh. Subsequent targeted sequencinglyars identified
several additional novel PIEZO1 mutations in 7 fiesi with DHSt
syndromes. PIEZO1 protein expression was charae@rduring human
and murine development and during erythroid diffii@ion. Functional
studies demonstrated for the first time that PIEAQitations cause altered
ion transport in erythroid cells. PIEZO1 proteinsaaso detected in fetal
lymphatic vessel endothelium, consistent with itepmsed causative role
in the pathogenesis of perinatal effusions. Elgitgsiology analysis in
oocytes demonstrated changes in ion transport stemgi with the altered
ion content of DHSt patient red cells.
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The PIEZOL1 open reading frame was first found & hliman immature
myeloid cell line KG-1, and transcript tissue ple$i showed apparently
ubiquitous expression [223]. Satoh et al demonstratranscriptional
induction of PIEZOL1 in senile plaque-associatedoastes from Alzheimer
disease patients [224]. PIEZO1 involvement in inte@ctivation requires
recruitment to the endoplasmic reticulum of the Bn@lrPase R-Ras,
promoting release of Gafrom intracellular stores to activate cytoplasmic
calpain. Recently, PIEZO1 and PIEZO2 were both iogeéd in
mechanosensation as stretch-activated cation clanf#25]. Soon
thereafter, expression in human cells of the sifyi@sophila melanogaster
PIEZO (DmPIEZO or CG8486) was shown to resemblemi&mmalian
counterparts in its ability to induce mechanicallstivated currents [226].
Behavioral responses to noxiousmechanical stimelienseverely reduced
in DmPIEZO knockout larvae, whereas responsesgttt iouch or to other
types of noxious stimulus were unaffected. HumaaZ®)1 is an N-linked
glycoprotein that serves as substrate for both yéein and
phosphorylation [227]. Coste et al further showdettmouse PIEZO
(MmPIEZO1) can assemble as a 1.2-megadalton homgorokr with a
total of 120 to 160 transmembrane segments, tlyesathomomeric plasma
membrane ion-channel complex identified to date 8]22Purified
MmPIEZOL1 reconstituted into asymmetric lipid bilayeand liposomes
forms ruthenium-red-sensitive ion channels in tlsemce of any other
protein.

PIEZO1 expression has been characterized duringsen@nd human
development. We have shown that PIEZO1 expressicneased during
murine embryogenesis and, at birth, expression pvagdominant in liver
and bone marrow. In fetal human tissues, PIEZOlwskio marked
expression in liver and spleen. Of note, PIEZOl1 wegpressed in
lymphatic vessels of the fetal peritoneum and weseat in adult lymphatic
vessels, demonstrating for the first time a potnphysiological link
between PIEZO1 mutations and the perinatal edenst #ometimes
accompanies DHSt.

PIEZO1 expression has been also identified andliliatad in the
plasma membrane of RBCs, confirming immunologicétlg original mass
spectroscopic identification of PIEZO1 as part bé tred cell membrane
proteome [229], and its subsequent detection in cell membrane by
targeted mass spectrometry.

In 3 unrelated families, we found multiple in cigssense mutations in

PIEZO1. R2488Q mutation in family Arras alteredesidue conserved in
all analyzed species (Figure 51), and the linkedathon G718S altered a
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residue conserved in all tested species exceptiD. 82020V mutation in
family Essex altered a completely conserved residmel linked mutation
S1117L altered a residue conserved in all testedisp except X tropicalis
and D rerio. The linked variants at sites of lessavlutionary conservation
are not, however, present among normal allelesSid databases, and so
may not be harmless variants. Further studies ehltidate the origin of
geographic clustering of these mutations. Howevke contribution of
each individual mutation to its linked clinical piaype cannot yet be
assigned. At this time, we do not know which one tbé mutations
coinherited in cis might be individually respongblfor the disease
phenotype, or whether disease arises from the awedbeffects of the
coinherited mutations. Interestingly, the 2 fansliearrying 2 novel, linked
mutations exhibited the phenotype of DHSt plus peéyperkalemia, but
affected individuals in the single family characzed by 3 allelic
mutations exhibited a more complex phenotype of DS perinatal
edema and pseudohyperkalemia. The connectionsningenotype to the
red cell dehydration phenotype and to phenotypigabdity could reflect
mutation position within the 3-dimensional stru&uof the PIEZO1
polypeptide (allelic heterogeneity) and/or modifigame coinheritance.

Patient SF exhibited the same mutation, R2456Hndoin one of the
families reported by Zarychanski et al. Our patiamd the previously
reported R2456H patients showed a similar phenotyp&racterized by
DHSt unaccompanied by pseudohyperkalemia or peilinatiema. In
contrast to the report of Zarychanski and colleaguoer families exhibited
only heterozygous mutations, as predicted for gonpattern of dominant
inheritance.

The presence of PIEZOL1 in the red cell membrangesig a link to the
erythroid ion imbalance and altered erythroid icaxahel activity of DHSt
patients. Functional studies in Xenopus oocytes afestrated that WT
PIEZOL1 expression increased 2- electrode voltagmplcurrent elicited by
osmotic swelling, and channel activity in cell-attad patches. The
PIEZO1 mutation R2488Q increased hydrostatic presswduced currents
in on-cell patches of Xenopus oocytes, likely refileg, in part, increased
NPo. Oocytes expressing PIEZO1 mutant R2456H etddbcell-attached
patch currents of elevated single-channel condweetamhese properties of
oocytes expressing PIEZO1 mutants are consistetit thie steady-state
elevation of intracellular Na+ and reduction of ragellular K+ that
characterize red cells of DHSt patients. HoweMee, link between PIEZO1
mutations and the combination of elevated MCV arehmcorpuscolar Hb
concentration, which underlies the descriptor “dlayed stomatocytosis”,
will require further experimentation. Further exjpeents will be needed to
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confirm individual mutation-selective changes in ngde-channel
characteristics suggested by the present data.il@kt@omparison of
functional effects of endogenous WT and mutant R)E4n intact red cells
with those of heterologous WT and mutant PIEZO1regped in Xenopus
oocytes will also require additional experimenthie$e will be directed
toward a greater understanding of differences betwde chronic effects
and influences of WT and mutant PIEZO1 channelselhvolume and ion
content and the rapid kinetics of PIEZO1 channetsorded in whole-cell
and patch modes. Such differences are influencethdstill incompletely
defined changes in membrane tension and cytoskelgt@amics inside the
patch pipet containing the distinct plasma membsasfefetal erythrocytes,
adult erythrocytes, and Xenopus oocytes. All ofsthan turn, likely differ
from the strains experienced by the membranestatimed cells over their
normal 120-day lifespan as they experience a raofjdaminar and
turbulent shear stresses during their circulatimough vessels ranging in
diameter from the ventricular chamber and the acdwa capillary
tortuosities, and accompanied by sequential adhedim and releases from
other blood cells and endothelial cells.

In conclusion, DHSt is a pleiotropic syndrome cald®y dominant
PIEZO1 mutations. In particular, R2456H and R248&@@tations in
PIEZO1 likely alter mechanosensitive channel regoig leading to
increased cation transport in erythroid cells. Angofunctional analysis
should further elucidate the pathogenic mechanisshsall PIEZO1
mutations found in simple and syndromic forms of &H

5.2. Improving molecular diagnosis in epilepsy by
a dedicated high-throughput sequencing platform

We analyzed by next-generation sequencing (NGSmlépsy genes in
19 patients with different types of either isolated syndromic epileptic
disorders and in 15 controls to investigate whethequick and cheap
molecular diagnosis could be provided. The averagember of
nonsynonymous and splice site mutations per sulyjastsimilar in the two
cohorts indicating that, even with relatively sma#irgeted platforms,
finding the disease gene is not an univocal prac@ss diagnostic yield
was 47% with nine cases in which we identified ayvikely causative
mutation. In most of them no interpretation woulavd been possible in
absence of detailed phenotype and familial inforomatSeven out of 19
patients had a phenotype suggesting the involveroéra specific gene.
Disease-causing mutations were found in six of éheadses. Among the
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remaining patients, we could find a probably cawgamutation only in
three. None of the genes affected in the latteesdsmd been suspected a
priori. Our protocol requires 8-10 weeks includihg investigation of the
parents with a cost per patient comparable to serjng of 1-2 medium-
to-large-sized genes by conventional techniques platform we used,
although providing much less information than whel®me or whole
genome sequencing, has the advantage that carbalsaon on ‘benchtop’
sequencers combining rapid turnaround times wiginé& manageability.

5.2.1. Introduction

Epilepsy is one of the most common neurologicabiiers in humans
with a prevalence of 1% and a lifetime incidence uif to 3%[230].
Epilepsies present with a broad range of clinieatfires and their genetic
causes remain unknown in the vast majority of cas¢though several
genes have been identified in rare Mendelian foreither heritable or
sporadic. Finding the disease genes can be chaligngs the same
epileptic phenotype may be associated with sevgeasles. A molecular
diagnosis of epilepsy is important especially ipeiatric setting in order
to (1) establish the recurrence risk in followingegnancies, (2) stop the
diagnostic odyssey that is frequently restless uondiagnosed epilepsies,
and (3) provide, at least in some cases, specHerapies. Recently,
genomewide association studies revealed a few megharboring high-
ranking candidate genes, although these studidls ngitessitate further
replication efforts[231]. Genomic arrays had beearensuccessfully, as
they allowed identifying several possible pathogeropy-number variants
not present in controls in about 9% of the cased2Bresently, high-
throughput sequencing is becoming the most promisapproach to
improve molecular diagnosis of this condition, aliigh the interpretation
of the results is far from being a standardizedcpss. Indeed, next-
generation sequencing (NGS) does not magically mdiegnoses but
typically provides a handful of possibilities regung further studies on the
function of each candidate gene. To overcome thpsEblems, we
composed a panel containing most epilepsy geneseric several
relevant phenotypes. With this NGS platform, wedggd 19 index patients
suffering from a range of seizures, either familoal sporadic. Although
initially we performed a blind study trying to impget the sequencing data
without any knowledge of the clinical history, wikeh realized that no
analysis was possible in absence of detailed plgpest and familial
information. This study allowed us to evaluate moiy the diagnostic
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capability of this approach but also the cost dra&ltime required to report
the final result to the family.

5.2.2. Materials and Methods

5.2.2.1. Patient Cohort

The 19 index cases ranged from few days to 4 yafaage at the time of
the first clinical examination. Most of them hawveeln then followed-up for
several years. This cohort has been randomly ssledtom patients
afferent to our epileptic center for children ardbkescents. All available
family members have been enrolled for segregatinalyais. Informed
consent was obtained from each family and clinealuation and genetic
testing were carried out in accordance with thecsttapproval granted
(11017C-RC2011 IRCCS C. Mondino, Diagnosis andapgrof epileptic
syndromes).

Each patient has come along clinical diagnosis lastbry, presence of
the epilepsy in relatives (family history), ele@nzephalograms, magnetic
resonance findings, and administered antiepileftigys. In order to assess
the diagnostic capability of our approach, we cuble patients presenting
with a wide range of epilepsy phenotypes: 11 amagic cases, whereas
the remaining eight have a history of familial episy.

Patients have been subdivided in two groups: ttst éine, subcohort A,
was constituted by seven patients whose clinicaltuies were either
strongly or more loosely suggestive for a syndroassociated with a
specific gene; the second group, subcohort B, dedul2 subjects with
very different types of epilepsy, presumably hegemeous in their genetic
basis and not suggestive of any or a single smegéne. In both subgroups
other clinical features such as language impairmgsichomotor delay, or
autism spectrum disorder were present in severdgilema. Magnetic
resonance abnormalities were detected in someeoii tiAll cases had been
previously analyzed by array comparative genomiorigyzation and a few
(6-A, 8-B(i), 8-B(ii)) by Sanger Sequencing for sffee genes without any
positive result.

5.2.2.2. Control Cohort

Control subjects (nine females and six males), irapdgrom 18 to 35
years of age, were recruited among blood donorsoasrols for both this
and a cardiovascular study. Besides, they were estigd to answer a
structured general medical questionnaire with dpecemphasis on
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neurological and cardiac symptoms, control subjé@ad to answer two
specific questions: (1) have you ever suffered frepilepsy or seizures,
and (2) have you become acquainted with any seidiserders or EEG
abnormalities present in some of your family mersBe©Only those who
answered negatively were recruited.

5.2.2.3. Platform Design

A custom-designed target enrichment library for ¢§&@nes has been
designed by using the Agilent eArray website
(https://earray.chem.agilent.com/earray/). Thisdilg contains unique baits
covering the exons, the UTRs, and the intron—exmctions of the selected
genes. The estimated base coverage of the libsady4i5Mb. The selection
was made on the basis of the following criteria:. g&nes associated with
idiopathic epilepsy; (2) genes associated with sgmdc epilepsy; (3)
genes associated with epilepsy and cerebral maHfboms excluding
holoprosencephaly; (4) genes that appeared to éebélst candidates for
epilepsy in microdeletion syndromes. Selected gemegeported in Figure
57.

Epilepsy Platform

ALDH7A1 ARHGEF9 ARX
CCM2 CDKLS CHRNAZ
CHRNA4 CHRNA7 CHRNB2
CLN8 CNTNAP2 CSTB
DCX DYRK1A EHMT1
EPM2A FLNA FOXG1
GABRA1 GABRD GABRG2
GPR98 GRINZA GRINZB
KCNJ10 KCNMA1 KCNQ2
KCNQ3 KCTD7 KRIT1
LGI1 MAGI2 MECP2
MEF2C NHLRC1 OPHN1
PAFAH1B1 PCDH19 PDCD10
PDYN PLCB1 PNKP
PNPO POLG PRICKLE1
RELN ROGDI SCARB2
SCN1A SCN1B SCN2A
SCN9A SHANK3 SLC25A22
SLC2ZA1 SLC9A6 SPTAN1
SRPX2 STXBP1 SYNL
TBC1D24 TCF4 TSC1
TSC2 TUBA1A TUBB2B
UBE34|

Figure 57.Epilepsy genes platform

5.2.2.4. Sample Preparation
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DNA (5 ug) extracted from peripheral blood by startdimethods were
diluted in 700 pl of nebulization buffer (lllumin&gan Diego, CA, USA)
and sheared using a nebulization technique (Ingéng Carlsbad, CA,
USA), which breaks up DNA into pieces < 500 bpptigh the application
of 60-70 psi (pound force per square inch) of pedifair for 4min. This
process generates double-stranded DNA fragmentsaioamg 3’ or 5’
overhangs that were cleaned up using QIAquick sfmlumns (Qiagen,
Hilden, Germany). A quality control step on theoeered DNA was then
performed using Nanodrop 1000 to quantify the DNAab260-nm reading
and Bioanalyzer 2100 (Agilent, Santa Clara, CA, J$Acheck the size of
the fragments.

According to the Agilent SureSelectXT protocol, ated DNA
overhangs were end-repaired and then purified utiegmagnetic bead-
based Agencourt AMPure XP purification system (Beak Coulter
Genomics, Brea, CA, USA). Then we performed theiragidf ‘A’ bases to
the 3’ end of the DNA fragments and the ligation inflexing-specific
paired-end adapters.

After a few cycles of PCR amplification, 500 ng DNA from the
resulting libraries were hybridized to the bait sstng the SureSelectXT
MP Capture Library Kit (Design no. 5190-0312931—Il&gt) at 65°C for
24 h. Hybrids capture was performed according te thanufacturer’s
protocol with Streptavidin-coated Dynal magneticati® (Invitrogen).
Captured samples were further purified through Agemt AMPure XP
beads and subjected to a PCR-based amplificatiantios to add index
tags (each is a sequence of six bases in lengitviald to identify samples
after pooling), accordingly to the Agilent SureS#}T protocol. For each
step of library preparation, all samples were qifi@dt on a Bioanalyzer
2100 (Agilent). We performed a multiplexed run & tillumina Genome
Analyzer lIx, where nine multiple samples were sated in a single lane
of a flow cell; number of samples to be pooled hasn calculated on the
basis of the enriched target’s size, according ¢gaeht’s instructions. The
sample libraries from nine individuals were denatuwith NaOH and
loaded on a single lane of a lllumina Flowcell vhaxe DNA clusters were
generated through a one-step workflow (accordinfilaonina protocol) on
the Cluster Station using TruSeq PE Cluster Ki{flomina).

One percent volume of a PhiX control library (llluma) was used as
internal control and loaded in each lane of thev@ell.

The capture was considered successful if at 1e8% 9f our target
regions were covered by more than eight reads @i lguality (that is a
Phred-scaled mapping quality score of at leasto2@é&ch).

5.2.2.5. Annotation and interpretation of data
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Sequences for each sample were generates by Iunsioftware
CASAVA v1.8.1. Reads were filtered by quality relgi on the standard
lllumina quality filter test. Reads were alignedth® most recent version of
human genome (GRCh37/hg19) using BWA software pgehkd.6.07 and
filtered out for PCR duplicates by Samtools v0.1.R&ads were realigned
around inferred indels and their base qualitieseweralibrated taking into
account the context of alignment by the Genome ysi1alToolkit (GATK)
v1.6 suite. SNPs and short indels were called usiBATK
UnifiedGenotyper module and the resulting variawisre filtered using
GATK Variant Filtration module and specific Perlrigts, as such variants
were probably owing to alignment errors and, ineyah they cannot be
considered reliable variants. Several filtering stoaints were also applied,
such as minimum variant quality (50, Phred scaledninimum of five
reads supporting variant, number of ambiguous méppads overlapping
variant, neighborhood of each reliable indel or lbpolymer excluding
those single-nucleotide variations that overlaghwait

Variants annotation was performed on the resultiata set by in-house
genomic database application (the RDBVMS systemgdietion tracks for
each annotated variant were generated by autonraticote calling
procedures to MutationTaster and Polyphen-2 (vergi@.2).

In order to identify potential causative mutationge applied the so-
called discrete filtering approach. We first exa@ddsynonymous out of
target and UTR-overlapping variants. We then exetudhe variants
present in dbSNP135 and Exome Sequencing ProjeetbBses (ESP) with
a frequency higher than 1%. Moreover, we discardatiants reported in
our in-house database (66 whole exomes) that wieetified in at least
two individuals without epilepsy or other neurologii disorders. We then
took into account only variants predicted to altiee protein structure or
function by at least one of the three predictionldowe used (Mutation
Taster, SIFT, Polyphen2) as well as variants forctwlall prediction tools
failed. At the end, we excluded all variants ocmgrin at least three cases
and/or at least two subjects of the control cohort.

We prioritized the candidate alterations on theebat the expression
and function of the altered gene, the type of matatnd its effect at
protein level, presence of the variant in the Hum@ene Mutation
Database (HGMD) or in the literature, the metabgathway involved,
and obviously the clinical features of the patitntily. A manual
inspection of the variants eliminated by the pré&dit tools filtering step
allowed us to reconsider them on the base of plessitrrelations with the
patients’ phenotype. For example, this permittezbnsidering a variant of
ALDH7A1, which was then ascertained as causative.

The entire protocol of data analyses is illustratedhe flowchart reported
in Figure 58.
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Variants disregarded Discrete Filtering Variants disregarded

Whole set of variants ,:‘> out of target calls

synonymous SNVs

l dbSNP135 Exclusion variants reported with
L ESP frequency >1%

In-house database Lﬁ_> ”e"tmwff sl:bl;(;: than

Predicted *’Benign’’ by at
least one of the three pegee,
interrogated predicition tools Prediction tools

"‘ Control cohort ,:> Identified in more than
‘A 3 two subjects

Subset of
candidate
variants

Candidate variants prioritization |

Gene
Mutation
Phenotype
Model of inheritance

. NO good candid
SRR | 7
v

Sanger
(Validation and Segregation)

Disease
Variants

Figure 58.Flow chart representing the strategy adopted to analyze sequencing data. Discrete
filtering, prioritization, and re-evaluation steps are highlighted inblue, orange and green,
respectively.

The final subset of mutations was confirmed by Sangequencing
followed by segregation analysis in each familylyOa close collaboration
with the specialist allowed us to find a specifiengtype—phenotype
correlation discarding those variants that werehegit pathogenic in
recessive state in families where the conditionresgated in a dominant
manner or those that correlated to a neurologibehptype totally different
from that of the patient. This point was taken witktreme caution, as it
could not be excluded, a priori, that a novel motamight cause a totally
different phenotype with respect to the ones kndwibe associated with
the same gene. Some of the remaining alteratiomen ef predicted
damaging by at least one tool, have been discavdeeh they did not
segregate with the epileptic phenotype in famitakes (i.e., MAGI2 in
case 5-A that was inherited by the healthy mothdrereas KCNQ2 was
considered causative because it was inherited dptiected father).

We applied the same filtering strategies to thetrmdrcohort in order to

perform a statistical test to assess whether thmbewu of deleterious
variants in cases was significantly higher thanantrols.
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5.2.2.6. Deleterious variants: Cases vs Controls

To assess the significance of difference in the lemmof variants
between patient and control cohorts we applied tion-parametric
statistical hypothesis test of Wilcoxon-Mann-Whygn&/MW).

The choice of this statistical test is justified blye assumption of
independence of all observations (number of vasiam both the two
cohorts and therefore by their discrete and ordnadlire.

We performed the WMW test using R v.2.15.1 typirtg tfollowing
command:

wilcox.test(Cases,Controls,correct=TRUE,conf.level=0.95)

Where Cases and Controls are two arrays contamumgber of variants
for patient and control groups respectively, couitiyp correction factor is
applied and the significance level is set to 0,DBe test was performed in
two-sided and one-sided way according to test tignificance of
difference in number of variants between cases @nmdrols before and
after discrete filtering respectively.

Because of the discrete nature of our observatwasapplied ties
correction for standard deviation (sl1.1) to be i the presence of ex-
aequo observations was not affecting results.

Z_(Tiaw—uT (1.1)
- ~ ,

_Nl'(N1+N2+1)
= 2 ,

Ur

or

9 .3
Nl.NZ N3_N t] _t]
N-(N—1) 12 12

- Ny, N,are the number of patients and controls respegtivel

- N=N;+N,

- gis the number of ties

- tis the number of observations with the same rartkiwieach tie

5.2.3. Results
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Targeted massive parallel sequencing of patient emmtrol cohorts
produced for each subject about 180Mb of sequemtech yielded an
average coverage of about 400x at each targetexl Rasaverage, 96% of
target bases exceeded the 15x coverage threshqldred for confident
analysis, defined as 99% power to detect a varigWe. compared the
number of variants per subject between patientscantrols using the non-
parametric statistical hypothesis test of WMW d&srd in the previous
section. We did not find any significant differenoetween the two cohorts
after filtering (Pvalue = 0.4928). This might be iog to the limited
number of subjects analyzed by this platform. Fegb® reports all the
variants remaining after the filtering and priazétion processes (ranging
from one to three per subject). In bold are highilegl those variants
considered as having the main effect on the pasigrttenotype. By this
approach we were able to identify candidate SN\ésy Vikely causative of
the epileptic phenotype, in nine out of 19 patiesiz of which belong to
subcohort A and three belonging to subcohort B ioresly discussed
(seeFigure 60). In the remaining 10 cases, we coatdind any potential
causative alterations even after a careful re-estadn by manual
inspection of variants filtered out. Causative ntiotas were validated by
Sanger sequencing (data not shown). All varianeseifter reported have
been submitted to Leiden Open Variation Databa833].
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Figure 59.Selected variants after the filtering protocol. In bold are reported those variants that

fulfill the criteria for disease-causing mutations: affected genes already associated withpatient’s

phenotype, exhibit complete segregation with the disease, and are absent in healthy controls
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Figure 60. Alignments loaded on IGV 2.1(Integrative Genomics Viewer) for every causative
mutation reported in bold in Table 2. Chromosomal view has the covered 41bp delimitated in red,
followed by genomic coordinates, relative coverage for single base pair, and alignments covering
101 bp in average. At the bottom of every image the reference sequence and the corresponding
amino-acid sequence are visible.
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5.2.3.1. Subcohort A

Case 1-A, a female, showed a de novo transitioexon 3 of the DCX
gene (NM_000555.3) leading to a nonsense mutafitve. reading frame
was interrupted by a premature stop codon possédaying to nonsense-
mediated decay (NMD) of the mRNA as suggested leypitediction tools
(Polyphen2, Mutation Taster, and SIFT). Leger ehas reported the same
mutation[234]. A paternally inherited SHANKS3 mutati, considered
probably damaging by Polyphen2, was also presesde@-A showed two
mutations both in ALDH7A1 gene, one inherited fréhe father and the
other one from the mother. The paternal allele &ddansition reported in
ESP (MAF 0.0077%) and HGMD (CM087549). The materalédle had a
mutation occurring in intron 16, 5 bp upstream hie previous exon. This
mutation was present in ESP (MAF 0.0231%) in hetggosis and was
also reported in HGMD (CS091873). The intronic aatiwas predicted to
alter the splicing by skipping of exon 16. Case HiAd a maternally
inherited missense mutation at GPR98 gene thatonedicted as damaging
by one prediction tool. Case 4-A, showed a de rgplece site mutation in
the SCN1A gene. A heterozygous missense mutatioRQ@IG, was also
detected both in the patient and in his normal dati his alteration was
given as damaging by prediction tools. Case 5-Angtba 1-bp deletion, in
the KCNQ2 gene creating a frameshift with a premaatstop 15 codons
downstream. The mutation was inherited from thbdawho suffered from
the same type of epilepsy. A missense mutation AMG\2, predicted as
damaging and inherited from her normal mother was present. Case 6-A
showed a de novo missense substitution in the KCN&2e. Other two
heterozygous missense mutations were detected RO&RNd TBC1D24,
both inherited from the normal father. Case 7-A hiagb missense
mutations at SCN1A and SCN1B, both predicted asadgng. SCN1A
mutation was de novo, whereas SNC1B alteration whsrited from the
father.

5.2.3.2. Subcohort B

Case 9-B showed a 1-bp exonic duplication in theBE&2 gene. This
duplication creates a frameshift starting at coddall8 with the new
reading frame ending in a stop five codons dowmstreThe mMRNA was
predicted as target for NMD by MutationTaster. Hagne duplication was
found in the father who suffered from the same d@oordl A mutation of
RELN, predicted as damaging and inherited from m@mal mother was
also detected. Case 10-B had a heterozygous messeangation in the
GRIN2A gene inherited from his mother who showed @rerlapping
phenotype. This transversion occurred in a higlidgserved nucleotide. A
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missense mutation in the RELN gene, predicted damagby
MutationTaster, resulted to be inherited from tloenmal father. Case 13-B
showed a maternally inherited missense transitiorthe SCN2A gene,
affecting a highly conserved nucleotide and presticto be damaging by
SIFT and Mutation Taster but not by Polyphen2. CaéeB had two
missense mutations at GPR98 and GRIN2A, both predito be damaging
by at least one prediction tool. Both GRIN2A andR®B mutations were
inherited from the normal father. Case 19-B hadredigted damaging
missense mutation at SCN9A, inherited from the rantases 8-B, 11-B,
12-B, 14-B, 15-B, 17-B, and 18-B did not show amysgible causative
mutation.

5.2.3.3. Control Cohort Variants

The examination of the 22 variants found in corgralfter discrete
filtering revealed that only 4 of these, all hetsr@ous, were potentially
disease causing. In particular, we found a missessdstitution
p.(Gly216Ala) (c.647G4C) in CHRNA4 gene (NM_00074#) one case
and a heterozygous missense mutation p.(Gly1602&@e4B04G4A) in
FLNA gene (NM_001110556) in a female subject. Adhiontrol subject
had a mutation of UBE3A (NM_000462) (c.1735G4AMalb79Met)) and
a second mutation of SCN1B (NM_199037) (c.178CA4TAm60CYys)).

5.2.4. Discussion

We used a NGS-based approach to test 67 epilepsmsga 19 patients
with different types of epilepsy. Patients had bs#atified in two groups
according to their neurological phenotypes. Ingheup A, including seven
patients whose clinical features were rather suggesfor a specific
syndrome, we detected a likely causative mutatiosix (cases 1-A, 2-A,
4-A, 5-A, 6-A, 7-A). In the group B, including 12apents with a
phenotype not distinctive for any specific gene,hva@e been able to find a
plausible causative mutations only in three (caSeB, 10-B, 13-B),
whereas the remaining cases were either negatieeelfscases) or had
mutations whose role was unclear (cases 16-B anB)19hese results
were not unexpected and emphasize the restrictiothis approach is a
lack of knowledge about the functional role of meatiants, resulting in a
large number of variants of uncertain significan€er this reason, the
diagnostic yield of 47% (9/19) is quite high. Th2 dases who had at least
one mutation are discussed below. Patient 1-A higgbiaal clinical picture
of Lennox—Gastaut syndrome and magnetic resonanaging showed a
very large double cortex overlapping with the sulical band heterotopias
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syndrome. The de novo truncating mutation of DCX fiery well with her
double cortex. The mutation of SHANK3 was inheritedm her normal
father. SHANKS3 alterations are causative of PheldieDermid syndrome
[235] and are characterized by complete penetranes, we assumed that
this missense mutation was likely benign. PatietRA 28howed neonatal
seizures and multifocal epileptiform dischargesE&G, which became
normalized with pyridoxine. Presently the patientl4 years old and the
treatment with pyridoxine allowed a complete cohwb seizures with a
normal psychomotor development. She had a compdwtdrozygous
mutation for ALDH7AL. The intronic mutation wouldatie been lost if we
had disregarded all SNPs reported in public datehawhereas we have
taken into consideration all the SNPs with a MAF<1&gtually, both
mutations have already been described in patienith Wwyridoxine-
dependent epilepsy [236]. The finding that her egtic crisis ceased after
pyridoxine treatment indeed demonstrated the caysafl the ALDH7A1
mutations. Patient 3-A, who was also affected byidoxine-dependent
epilepsy, had normal 1Q No mutations were detedtedhe candidate
ALDH7A1 gene, whereas a missense mutation was ptese GPR98
inherited from the normal mother. Alterations of have been
associated with familial febrile seizures and aatoal recessive or digenic
dominant Usher syndrome. However, the clinical mitgme of the patient
was completely different from these conditions. Gindings suggest that
pyridoxine-dependent seizure does not only relyAWDH7A1 mutations.
Patient 4-A had a clinical diagnosis of Dravet symde, so the de novo
splice site mutation of SCN1A fitted well with highenotype. The
heterozygous mutation in POLG was considered neb@ated with his
condition because it was also present in the hgaftther, whereas
dominant POLG mutations are associated with adukeb progressive
external ophthalmoplegia [237]. Patient 5-A had maal generalized
tonic-clonic seizures, occurring on the second afalyfe, not responsive to
any therapy. Seizures ceased spontaneously atSte day of life. Her
father, who was found to carry the same mutatiad the same neonatal
condition also ending at the 25th day of life. Tih@meshift mutation at
KCNQ2 well correlated with the phenotype [238]. Trhatation in MAGIZ2,
inherited from the healthy mother, was not consdedisease causing,
although it was predicted as probably damaging. Iélapufficiency for
MAGI2 has been associated with hypsarrhythmia [238] condition
different from the one we observed in this famiBatient 6-A showed
neonatal seizures since his 3rd day of life thatseed 1 month later. He
then suffered from sporadic seizures episodes giargiuntil now (8 years
old). He also presented a severe pervasive deveotahdisorder. The
family history was negative. He had a de novo mmseemutation of
KCNQ2. This type of mutation has been reporteddmesal patients with
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early onset epileptic encephalopathy[240] in caosttreo frameshift or
nonsense mutations that are more frequently foundng patients with
BFNS. Patient 7-A was affected by generalized @giyewith febrile
seizures plus (GEFSP) and had normal 1Q. Our inyasons revealed a de
novo missense mutation of SCN1A and a missense tiontaf SCN1B
inherited by the father. The two mutations coulglai her phenotype as
GEFSP is extremely heterogeneous, and both SCNIA S@N1B are
among the genes associated with this condition[2B&}ient 9-B, during
her first year of life suffered from numerous fébriseizures that
diminished later on. She had a frameshift muta@nGABRG2 present
also in her father who suffered from febrile seezuntil 5 years of age. In
fact, mutations of GABRGZ2, either missense or taiimg, cause a
spectrum of seizure disorders, ranging from eanget isolated febrile
seizures to GEFSP, type 3, which represents thet msevere
phenotype[242]. The type of febrile seizures préserthis patient and in
her father fits well with the milder phenotype. Theterozygous mutation
of RELN has not been considered as causal of hengilgpe because only
recessive mutations of this gene are associatdd avgathogenic condition
characterized by lissencephaly not present in atiept who has a normal
psychomotor development. Patient 10-B showed ac#&pclinical and
EEG’s picture of benign childhood epilepsy with ttetemporal spikes.
We detected a missense mutation at GRIN2A that alss present in his
mother and aunt (the sister of the mother) showlireg same clinical and
EEG’s picture with remission of seizures in adoérs®e and borderline
cognitive level. Our patient did not have overtzsees until the age of 7
years when rolandic epilepsy appeared. A serienuthtions of this gene
have been described in subjects/families with anphge overlapping that
of our patient including learning disabilities. Ratt 13-B had a missense
mutation of SCN2A inherited from her mother. Muteits of this gene are
associated with noteworthy clinical variability gang from familial benign
seizures to generalized epilepsy with febrile segu or epileptic
encephalopathy. The patient presented only fels@igures, whereas her
mother had benign generalized epilepsy with abserfeatient 16-B had an
epileptic encephalopathy with severe cognitive impant. The two
missense mutations highlighted in GPR98 and GRIN#A not seem
related to his phenotype. As he was born from hgattonsanguineous
parents, an autosomal recessive condition has to tddeen into
consideration. Finally, patient 19-B had a missenséation of SCN9A
predicted as damaging. However, mutations of théhegare usually
associated with febrile seizure, GEFSP, and Drayetirome, whereas the
patient’'s phenotype was suggestive of an epilegnicephalopathy strongly
resembling West syndrome with hypsarrhythmia, spaamd psychomotor
regression. Both his parents were healthy.
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Our targeted platform was thought with the aim tovide a quick and
cheap molecular diagnosis to most patients witheareptic disorder.
When we built the platform, we thought we couldntify the causative
mutation independently from any clinical informatioln this sense we
required the specialist to select the cases intallyorandom way and
without giving us any information about their ph&pe and family
history. The only request was to exclude cases aloprosencephaly for
which we have a dedicated NGS platform. Actualhg finding of multiple
candidate mutations made clear that the culpritegesuld be highlighted
only by knowing in detail both the patient’'s pheypg and the family
history. Moreover, predicted damaging mutations bhadn detected in the
healthy controls as well. Eventually, in 9 of 19ipats we identified a very
likely causative mutation (Figure 59) with mosttbém detected in cohort
A including patients whose phenotype indeed suggetite involvement of
a specific gene. Among the 12 patients owing toocblB, affected by
different types of epilepsy not suggestive for anya single specific gene,
we could find the most likely causative mutatiodyom three and in all of
them (cases 9-B, 10-B, 13-B) the alteration couddhardly suspected a
priori.

The absence of any mutation in seven patients ¢c8dg, 11-B, 12-B,
14-B, 15-B, 17-B, 18-B) indicated that alteratiansmany other genes not
present in our platform are associated with epilemtressing the high
genetic heterogeneity of this disorder.

The analysis of the control cohort revealed fouteptially damaging
mutations in three healthy individuals. None of shevariants were
previously reported in HGMD. One female subject @aBLNA mutation
predicted to be damaging. We could not define wirethis was a benign
variant rather than a really damaging mutation viitomplete penetrance
as reported for females with mutation of this gemmsl cardiac valvular
dysplasia (OMIM #314400). The interpretation of tGeIRNA4 mutation
was also difficult as alterations of this gene amuse either nocturnal
frontal lobe epilepsy type 1, although with incoetel penetrance, or
nightmares and other sleep disorders that are aftellagnosed. Variants
in SCN1B and UBES3A were identified in the same sghjAs in the case
of FLNA, the SCN1B mutation could be either neutralpathological with
incomplete penetrance, whereas the UBE3A mutationdc be either a
benign variant or disease causing but inheritethftioe father.

To conclude, we were unable to interpret some efgénetic lesions we
met in the control cohort, further stressing that &nowledge of genetic
variants is presently limited, increasing the ridkfalse-positive and false-
negative information. If these lesions were indgathogenic, we should
consider the hypothesis that common disease saith as epilepsy are the
result of different genetic components. In facte tlobservation of
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deleterious mutations in 237 ion-channel genes thighsame prevalence in
individuals with epilepsy and control subjects sestgd that, at least for
these genes, the personal risk assessment in gpitlgpends more on the
combination of the variants rather than specifitetigious variants[243].

The lack of enrichment of protein-disrupting ionacimel mutations in

individuals with epilepsy has been confirmed by dein et al[244]. These
authors also demonstrated that single epilepsyepidsle variants

identified by exome sequencing in patients withopdithic generalized
epilepsy (juvenile myoclonic epilepsy and absenuéepsy), although rare,
were possibly real risk factors, each of them aaotiog for only a small

fraction of individuals with epilepsy. This burdehdata makes evident the
complex architecture of epilepsy with genetic hegeneity much higher
than expected. It is conceivable that in the neaurte the collection of

clinical history, EEG, and imaging will be combingdth the analysis of

NGS-dedicated platforms. The negative cases wilabalyzed for whole

exome if not for whole genome. The advantages @ #"pproach are
evident both in the immediate (consulting for radkrecurrence) and in the
long run when specifically targeted treatments Wwdladopted.

We have been able to conclude the analysis of patients (the number
of patients we pool in a single lane), including tenlargement of the
investigation to parents, in 8—-10 weeks with a quest patient comparable
to sequencing 1-2 medium-to-large-sized genes bywveational
techniques, a result overlapping that reported leynke et al[35]. Our
results suggest that using a single platform taisage all or most of the
epilepsy genes may increase the diagnostic yidids i particularly true in
absence of clinical signs suggestive for involvetr@ma specific gene like
in three patients of our cohort. Obviously noveltations require that their
causative role is further confirmed by segregatwrfunctional analyses.
On the contrary, smaller platforms containing aitéd number of genes
may reduce the efficacy of the NGS-based approash,epilepsy is
extremely heterogeneous both under the geneticpthotypic point of
view. Our platform, as well as the one already dbsd by Lemke et al,
has the advantage that can also be run on ‘benckezpiencers, which
forego high yields in exchange for low capital sgssmall physical
footprints, and more rapid turnaround times, makithgm far more
attractive to smaller biomedical laboratories.
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5.3. Lower motor neuron disease with respiratory
failure caused by a novel MAPT mutation

Lower motor neuron diseases (LMNDs) are a groupmheterogeneous
clinical presentations accounting for approximatdl§% of all motor
neuron disorders. Various names have been usedlifi@rent forms of
LMND, such as progressive muscular atrophy (PMAistal muscular
atrophy, and segmental distal/proximal spinal miescatrophy. PMA is
diagnosed clinically by the presence of progresgeaeralized muscular
involvement and proven anterior horn cell degenenatat postmortem
examination. PMA differs from amyotrophic lateratlexosis (ALS), in
which both upper and lower motor neurons are ddityc involved.
Progression may be rapid or display a gradual oetdron, with PMA
showing a longer survival compared with ALS. Thederying genetic
defects are heterogeneous [245]. Mutations in theratubule (MT)-
associated protein tau (MAPT) gene have been regortin
neurodegenerative disorders with abnormal tau praecumulation, such
as frontotemporal dementia with parkinsonism linkedchromosome 17
(FTDP-17), progressive supranuclear palsy, corasab degeneration, and
late onset Parkinson disease dementia [246]. MARDIvement in the
etiology of motor neuron degeneration was derivednfthe observation of
tau pathology in subjects with ALS/Parkinson-densentomplex from
Guam, New Guinea, and the Kii peninsula of Japar2#evertheless,
MAPT mutations have not yet been linked to a pumanneuron disease
phenotype.

Hereby we describe the identification of a novel RIA mutation
underlying adult-onset autosomal dominant LMND witrominent
respiratory insufficiency, proximal weakness of theper limbs, and no
signs of frontotemporal lobar degeneration or sdinatementia in a large
Italian family.

5.3.1. Methods

5.3.1.1. Linkage Analysis

DNA samples were obtained from 10 subjects (IV_1§,,19, 20,21, 22,
23, 24, 25,26, and 29). Genome-wide genotypingashes IV_17, 18,
20,21,22, and 26 was performed using Affimetrix &ERip Human
Mapping 250K Array. Nonparametric linkage and pagéme analyses were
performes using ALLEGRO software [248]. Twenty-fivahort tandem
repeats (STR) markers were also genotyped by PQiobHpes were
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reconstructed by ALLEGRO and displayed using Haploter
(http://haplopainter.sourceforge.net).

5.3.1.2. Exome capture and sequencing

A total of 5 pgof genomic DNA from 3 affected (IV7118, and 21) and
one unaffected (IV_23) family members underwentmegoanalysis using
the SureSelect Human All Exon Kit (Agilent Santaa@, CA). Samples
were processed according to the Illlumina protocdbllowing
manufacturer’s instructions. Sequencing was peréarnon the lllumina
Genome Analyzer lIx platform as paired-end 100-bas& reads. An
exome capture was considered successful if >80%heftarget regions
covered with a high-quality genotype.

5.3.1.3. Bioinformatics analysis of exome data

Reads were aligned to the GRCh37/hg19 genomiceeber using BWA
(v.0.5.9). Mapped reads were filtered for PCR dugikes using SAMtools
(v.0.1.18), locally realigned around inferred irtsrs and deletions and
their base qualities recalibrated in the conteidrahent using GATK (v.
1.4-21). Variant calls were obtained by GATK (Uedi Genotyper) as well.

5.3.2. Results and Clinical findings

Five of the family members (IV_20, 21, 17, 18, ak@) presented
common sympthoms: progressive proximal weaknessin{ynaffecting
upper limbs) with weak tendon jerks, no bulbar gramid signs, early
development of restrictive respiratory insufficignevith the need of
mechanical ventilation, and no dementia.

Patient IV_20 was 55 years old when she presentéd immbar
backhache and difficulties staying upright. Progres weackness of the
proximal upper limbs and dyspnea with restrictivad disease appeared a
few months later. The patient needed noninvasiveilation at age of 67,
and from the age of 71, she could not walk and iredua wheelchair. The
patient started therapy with 550 mg riluzole twazly, in the hypothesis
of a motor neuron disease. At the age of 70, siveldped mild anxiety,
partly due to the respiratory distress and theafiseninvasive ventilation.
She had no frontal release signs. The patient dfegspiratory failure at
the age of 72.

Patient IV_21 presented at 65 years of age withblmbackache. One
year later, she developed dyspnea and progresesteiative respiratory
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insufficiency, which required noninvasive ventiati She died at 72 years
of age of respiratory failure and underwent autopsy

Five cousins (subjects IV_17, 18, 26, 27, and 28) kimilar symptoms
such as lumbar backache, leg cramps, fatigue, dyitppnea, and proximal
upper and lower limb weakness. None of them hadhpayric symptoms.
Neuropsychologic examination in patients IV_17 &d18 was normal.

Two other cousins (subject IV_27 and 1V_28) andlear{subject 11I_10)
of the probands died after short history of fatigmed dyspnea. Their
clinical records have been collected. Patients [¥add IV_28 presented
with bradykinesia and camptocormia and were iditialliagnosed
elsewhere with Parkinson disease, which was inimgylbecause of the
known association of parkinsonism with motor neuthsease as part of
the FTDP-17 and Guam syndromes. However, there neasnention of
levodopa response, and whether the anterior flexibthe trunk without
resting tremor and muscular rigidity was due tokiesonism or to axial
muscle weakness remains unclear.

5.3.2.1. Genetic studies

Using a core pedigree (IV_17, 18, 20, 21, 22, afjl  genome-wide
linkage analysis revealed a nonparametric linka@sSLscore of 1.88 and
parametric LOD score of 1.78 on chromosome 17qddu(eé 61B). STR
haplotype analysis confirmed this finding (FigureGj and defined an 8-
Mb candidate region.
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Figure 61. A. Pedigree of the family. Arrows indicate probands IV_20 and IV_21. (B) Multipoint
linkage analysis of the genome-wide scan. The peak on chromosome 17 is indicated by the arrow.
(C) Parametric multipoint linkage analysis with short tandem repeats on chromosome 17. (D)
Scheme of the human tau protein encoded by MAPT. The electropherogram of the c.1043A>G
mutation in exon 12 resulting into the p.D348G amino acid substitution. (E) ClustalW multiple
sequence alignment of the tau region containing the mutated residue in the family.

Whole-exome analysis was performed on affected esibj IV_17,
IV_18, and IV_21 and one unaffected (IV_23) membgkthe family. We
focused on heterozygous variants in exons, in agar {20 bases from

exons) splice site junctions, in 5’

and 3’ untraetl regions, and that

segregated with the disease among the 4 sequemckdduals. After
filtering out variants found in uncorrelated sangpléom an internal
exome-sequencing database and the ESP databage? amriants in 2
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genes remained, both single-nucleotide substitati@ifecting sperm
associated antigen 5 (SPAG5) and MAPT, which ammdowithin the 8-
Mb linked region on chromosome 17. The MAPT variant
(NM_005919.5:¢.1043A>G) involves exon 12, resultimythe p.D348G
change at protein level (NP_005901.2). Sanger senuog of MAPT in
affected patients (IV_17, 18, 20, 21, 22, and 26hfcmed the same
heterozygous mutation (Figure 61D) and its autosatominant pattern of
inheritance.

The transition was not detected in more than 5Q0@irots. The affected
residue, located in the fourth repeat domain (Rdg)highly conserved
among higher eukaryotes (Figure 61E) but not amuthgr repeat domain
in the human tau sequence (Figure 61F).

5.3.2.2. Transcript analysis

The expression of MAPT exons 2,3 4A and 10 is temalhp and
spatially regulated. In particular, the inclusioh exon 10 leads to the
production of isoforms containing 4 MT-binding repe (4R-tau), whereas
its exclusion leads to the synthesis of 3.repeaftorsns (3R-tau). Similar
levels of 3R and 4R isoforms are detected physio&ly in normal adult
human cerebral cortex. However, this ratio is oftdtered in the cortex
patients with MAPT mutation. Therefore, the possil#ffects of the
c.1043A>G MAPT mutation at the transcript level teeen checked. Total
MAPT expression has been assessed by quantitaixexge transcription-
PCR analysis in postmortem samples from patienlVincluding cervical
spinal cord. There was no a significant differermween patient and
control MAPT RNA levels, with the exception of tfrental lobe of patient
IV_21, which had less MAPT transcript (ratio 0.5809). The levels of
expression of 4R:3R isoforms were estimated as,vmsilusing specific
probes designed to detect the 2 distinct isofoffhe data were normalized
to housekeeping gene 18S and total MAPT. We fatieddetect any
difference between samples from IV_20 and conti©@tmventional reverse
transcription-PCR analysis confirmed these findings

Taken together, these findings argue against asdrgtional effect of
the ¢.1043A>G mutation on expression of MAPT traiggc as previously
observed for other mutations in exon 12[249]. Meexo no quantitative or
guantitative alteration in MAPT transcript was ob&al in the spinal cord,
making it an unlikely cause of the selective invahent of the spinal cord
observed in our patients.

5.3.2.3. Immunocytochemical analysis in NSC34 cell models
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One of the physiologic roles of tau within the csllthought to be the
stabilization of microtubules (MTs). Therefore, Haeen explored whether
the mutation p.D348G mutation impairs tau stabidihd affects its function
on MT assembly and organization. A differentiatipmotocol was used in
NSC-34 motoneuron-like cells to achieve a motoneysbenotype and to
promote neurite elongation. The established celldef® underwent
confocal immunocytochemical analysis using antibsddirected against
tau and acetylated tubulin (Figure 62).

In some cells, MT bundles were observed after tansfection and this
phenomenon was more evident for mutated tau prdtean for wild-type
moiety. Cells overexpressing mutated tau isofornspldyed a consistent
reduction in neurite length and arborization. Atdibance in MT stability
and organization was also confirmed when evaluatihg acetylated
tubulin signal, which was decreased in transfectts expressing mutated
tau (Figure 62A). Confocal analysis showed that ated tau caused a
reorganization of the MTs and the creation of thMK bundles, which
appeared as swirls around the nucleus. These amtlsistently displayed a
poor MT network with few, short axons compared witintransfected cells
or cells expressing wild-type tau (Figure 62B).

Despite these findings, the colocalization of taud @cetylated tubulin
was preserved, suggesting that the p.D348G mutatoms not impair the
binding of tau to MTs. This concept has been furtikenfirmed by
biochemical studies (Western blot analysis).
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Figure 62. Immunocytochemical studies. (A) NSC34 cells were stably transfected with vector
overexpressing complementary DNA containing wild-type (WT) and mutated (D348G) tau open
reading frames. Confocal microscope immunocytochemical analysis was performed using
antibodies directed against human tau (5A6). Microtubule networks were detected by
immunolabeling with antibodies against acetylated tubulin. No difference was observed in the
subcellular localization of tau protein. Impaired axonal elongation was more evident in the
presence of mutated tau protein. (B) Double-immunofluorescence staining of tau transfectants.
Cells were labeled with antibodies to tau (red) and acetylated tubulin (green). Cells overexpressing
D348G tau exhibited short neurites, but colocalization of tau and acetylated tubulin signals (orange
and yellow color) was observed for both WT and mutant transfectans, suggesting that the D348G
mutation does not likely impair tau binding to microtubules.

5.3.3. Discussion

MAPT mutations have been described in differentrodagenerative
diseases, including FTDP-17, progressive supraeauclpalsy, and
corticobasal degeneration. In some of the caseserittesl so far, MAPT
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mutations generated neurodegenerative disease fypesoin which the
spinal cord was clinically and/or neuropathologigahvolved, as in the
case of the disinhibition-dementia-parkinsonism-atmgphy complex

[250].

Degeneration of spinal motor neurons with tau ismns but without

amyotrophy has been described in patients with FIDRffected by the
MAPT p.N279K mutation [251]. Similarly, a MAPT p.0.3M mutation in

exon 11 has been found to cause a phenotype chaemct by dysarthria,
tremor, amyotrophy, and frontal signs. Some of gaients developed
levodopa-resistant Parkinsonism and supranuclesypahereas others
displayed corticobasal degeneration. Notably, higfic examination of the
cervical spinal cords from these patients revedkgkeneration of the spinal
motor neurons and tau inclusions.

The suggestion that tauopathy may be involved imomoeuron pathology
was supported by transgenic models. Mice expresbimgan P301L tau
exhibit a motor phenotype with evidence of motoruno& loss, and
transgenic mice expressing human tau in both neuramd glia also
displayed axonal degeneration at the spinal cordl IR252].

The family we examined clearly proves the link beéw MAPT
mutation and tau pathology in motor neuron pathploghe phenotype
associated with the novel p.D348G mutation desdribhere resembles that
of PMA, including the involvement of the lower motoeuron of the
proximal limbs and trunk, subsequent respiratonjufa, and absence of
dementia and pyramidal and bulbar signs. A low degof clinical
variability was observed among affected family mensb

Patient IV_20 presented a slow disease course €h2sy, whereas the
course was slightly faster (5-7 years) in the cafshis sister and cousins
(IV_21,1IV_27, and IV_28).

None of these patients developed cognitive defiaiist even patient
IV_20, who had the longest disease course. Thistgepresents a novelty
in the framework phenotype associated with mutatiosnMAPT, in which
the frontotemporal deficits have so far been reggbes hallmarks.

Only one patient (Ill_10) would have developed dein at the last
disease stage. Unfortunately, whether this suggeptsenotypic
heterogeneity or was due to unknown comorbiditienains to be
elucidated because detailed clinical and instrualertata were not
available.

All affected patients developed respiratory instiéfncy, early in the
disease course in some cases. Some other casesdporéed a similar
involvement, despite the age at disease onset loiffegent.

A homozygous APT S352L mutation in exon 12 has breported to cause
autosomal recessive restrictive respiratory failutering youth in 2
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siblings[253]. However, we can exclude that thisepdtype is due to
mutations within a specific tau protein domain, dese other mutations
affecting surrounding residues often result in fodemporal lobar
degeneration without spinal cord involvement.

Most of the described MAPT mutations, especiallpstd in intron 10,
pN279K, and p.S305N, have been shown to induceepgmderance of tau
protein isoforms 4 MT-binding repeats, which alté&isase anterograde
transport because tau competes with the kinaseeeaMT-binding site.
Other exonic mutations located within the MT-binglirepeats decrease tau
binding to MTs, causing destabilization and reswgjtiin faulty axonal
transport [254]. The p.D348G mutation does notratie expression of the
3R and 4R isoforms or the ability of tau to bind 8/Wwhich suggests that
the mutation causes degeneration via different @meisin. We speculate
that mutated tau escapes natural proteasome deigradad consequently
accumulates in neurons, leading to neurotoxicityre Theuropathologic
findings in our patient seem to support this hyesihb.

The discovery of a new MAPT mutation causing auteaiodominant
motor neuron disease associated with tau patholegyesents a new
finding for the etiology and pathogenesis of thassurodegenerative
diseases and offers new possible diagnostic andpkatic approaches for
a category of presently incurable diseases. Monedke reported mutation
broadens the spectrum of phenotypes associated MRT alterations,
suggesting that patients with autosomal dominantDisMvith respiratory
involvement should also be screened for MAPT matedi
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Chapter 6

Conclusions and Future Works

The aim of the work described in this thesis camesisn the design and
in the development of innovative strategies andhnetogies dedicated to
manage and interpret the overwhelming amount o ga@oduced by high
throughput sequencing platforms, particularly faongs on genomic
variants.

It has been discussed how new generation sequersmayolutionizing
the Genomic research empowering clinical diagnestiad other aspects of
medical care. Nonetheless, we highlighted how thesbnologies would
be useless if not supported by Bioinformatics, datid to analyze
sequencing data, manage and support genomic datanetation.

With these goals in mind, we have developed a systgitten in Java
and based on a MySQL database to annotate, stareexnact genomic
variants coming from targeted enrichment sequenekpgeriments.

This system allowed us to manage hundreds of segdesamples and
millions of related variants. By using its web dlienterface, we extracted
subsets of interesting annotated genomic variaetdy to be further
analyzed for each sequencing project. One of thetnmportant features
of the developed system has been its capacity téonpe case-control

studies by reporting cases genomic variants ancchedt controls data
aggregates on the fly.

We have discussed how the limitations of the systemterms of

computational performances and flexibility jointiyth the introduction of

new developed technologies leaded us to changetoategy and bet on a
new approach to the problem.

Therefore a new system to manage both genotypepaedotype of the
sequenced individuals has been developed. Base&fioanhDB, a NoSQL
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database, we showed how it allows annotating, rsgjoand retrieving
millions of genomic variants and significantly reda computational times
if compared to the previous system. Moreover, wewsd how the
integration into the i2b2 framework allows first $elect the patient cohort
of interest by the available phenotypic data anentho retrieve related
genomic variants, creating the bases for phenogg®type correlation
studies.

Future directions comprehend the extension of tegelbped NoSQL
system in order to set up the update procedures goarantee the
continuous state-of the art of the genomic varemtotations. The system
flexibility makes this effort more straightforwangspect to a relational
database application. Another point would be théhaecing of the
developed i2b2 plug-in and cell, allowing for kn@dfe-base queries, such
as pathways, protein-protein interactions, liskobwn-disease genes or by
implementing those discussed ontologies-based lsedgorithms for gene
prioritization. The latter point, giving the inbodinrphenotype data from
i2b2, should be straightforward at least for phgpetontologies based
gene prioritization tools such as Phevor [112] gtaSy [118].

We also dealt with one of the most important problen genomic
variant interpretation, which is the in-silico pretion of genomic variant
pathogenicity inferred by their probability to alterotein stability and/or
function.

We discussed how the outcome of existing variaatjetion tools is one of
the massively used parameters to discern, among plle¢hora of
sequencing variants, potential disease-relate@ntgifrom neutral ones.
We therefore developed PaPl, a new algorithm thatli@s machine
learning algorithms with features derived fromfeliénces into the pseudo
amino acid composition (PseAAC) of known diseasd aputral protein
variants. The algorithm is able to classify unsgemomic variants into
damaging or tolerated class within a confidencerescVe demonstrated
that PaPI results in higher accuracy with respedhe state-of-art variant
prediction tools, and in higher coverage, encompgssn fact every
genomic variant and type. Moreover it is suitalleassert the true variants
pathogenicity of those variants altering amino apatterns such as in
binding and methylation sites. We also developefilea web accessible
application (http://papi.unipv.it) able to preditiousands of variants in
runtime.

We argue that PaPI could be further improved andpmcialized by e.g.
tuning some parameters we omitted in developmems@hsuch as the
amino acid snippet length where PseAAC is compugdso, the inclusion
of other amino acid properties such as charge d& shain mass into the
PseAAC should be tested. Being PaPIl a machineilpmethod, one can
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also thing to specialize it to predict mutation ifit a particular gene or
selected genes, assuming to have a consistent murabeknown
observations. This should lead to an improved amuifor the particular
case respect to the general model we made availabtee community.

We finally reported some successful clinical apgticns in which
sequencing data analysis procedures joined withdthesloped relational-
based variant management system allowed the gesistio investigate the
genetic causes of heterogeneous diseases suchhgdrated hereditary
stomatocytosis, epilepsy and lower motor neuroeats.

However, as highlighted in these works, the solagntification of
possible disease-related candidate genomic variamtst enough to assess
variant pathogenicity and should be complementedabych phenotype
patient data collection and experimental evideribes may varies case by
case.

We argue that the new developed variant managesystiem integrated
within the i2b2 framework will contribute to therd$t point, while PaPl can
be used to better filter the list of possible dseaelated genomic variants,
but not avoiding the need of experimental eviderasmecially in case of
variants unreported in the scientific literatur&2.
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Appendix A

A.l Data For mat

Hereby several genomic data formats discussed @ ttiesis are
reported.

Fastq

Fastq is a standard format to store DNA sequenceagls and their
qguality scores in Phred [13] scale. Qualities ameoeled in ASCII code
starting from the 338 character and ranging 40 possible values.

A fastq file uses 4 lines to represent a singlérrea

- the header representing the ID of the read

- the sequence, a string of 5 possible characte&GAT and N
- acomment line (beginning with “+” symbol)

- the quality scores, one for each base, ASCII coded

[gEWUsI-EASTO3_0001
AGTGTTARRATCCTTATC
DDE-EFFDFFFFFDEE?=
@HWUSI-EAS703_0001

AR A GRGT CCATAGC CAGCAGAC AR AT T T GARAT CTICTGGECTAAT T TGTARGAT CTATGITITARRACTCCTCAGT GAACGAGGGGCAAGRRARMAC

1:1007:15348%#0/2

CCCCCTTARTARTGATTAT TCACTGAGT I TTATTAT TARTARCARTTAGGTCATTCARCATTCTGATTTICCTITITTICT

2DBEBDDDDDBDCDDDSDDE : 2AADDDED?DAD : D: 2DADBDDDE=DDDDDB=AD=: ; : A: DDDDD?BADAD?DBCDD==5AC>ARBDDAD62A=B : BC2A>

Figure A 1. an example of two reads in Fastq format.

Variant Calling Format (VCF)

VCF is a text file format introduce by 1000 Genoimject to store
genomic variants belonging to one or more sampldse most recent
version is the 4.2.

It comprises meta-informations, a header and a bdttya line for each
variant. Each line contains information about gemowariant position on
the reference genome, eventually variant calleter§l, base coverage
information and genotypes on reported samples.
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##fileformat=VCFv4.2

##fileDare=20090805

$#source=myInputationProgramV3.1

##reference=file:///seqg/references/1000GenomesPilot-NCBI36. fasta

##contig=<ID=20,length=62435964, assembly=B36,md5=f126cdf8aée0cTE379d618ff66beb2da, species="Homo sapiens”, TaXxonomy=x>
$#phasing=partial

## INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">

##INFO=<ID=DP, Number=1, Type=Integer,Description="Total Depth">

## INFO=<ID=AF, Number=3a, Type=Float,Description="Allele Freguency">

##INFO=<ID=AA, Number=1, Type=5String, Description="Ancestral Allele">

$#INFO=<ID=DE, Humber=0, Type=Flag, Description="dbSNP membership, build 129"s

## INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">

##FILTER=<ID=qgl0,Descriprion="Quality below 10">

##FILTER=<ID=250, Description="Less than 50% of samples have data">»

##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">

##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">

##FORMAT=<ID=DF, Number=1, Type=Integer, Description="Read Depth">

##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">

#CHRCM PCS ID REF ALT QUAL FILTER INFO FORMAT MAO00O1 NAO0002Z NAOOOO3

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GI:GQR:DP:HQ 0]0:48:1:51,51 1]0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 gl0 N5=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 rs&040355 A G,T 67 PASS N5=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3:;DP=13:RA=T GT:GQR:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 microsatl GIC G,GTCT 50 PRSS N5=3;DP=9;RR=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

Figure A 2. An example of VCF file

Meta-informationis in a key=value format and inahgdthe description
of the attributes that describe a variant.

Each line is tab-delimited and holds all varianttadaVariant is
univocally identified by the first five fields coissing of chromosome
(CHR), relative position (POS), a dbSNP id (ID)ference base (REF) and
comma-separated alternative bases (ALT). QUAL muaber correlated to
variant quality. FILTER is a free text field witlhert name of the applied
filter usually explained by meta-information. INFQ@an contains
severaldata aggregates by samples: variant coveragdele
frequencies,number of samples holding variant. Marisequence context,
presence in variant databases and other optionabtations are usually
defined in this field as well. FORMAT indicates hothe following
genotype fields are formatted and meta-informatierplain format
abbreviations. Genotype fields having as the he#lteisample ids usually
hold data on genotype by a numbered codificatioRBE, 1=first allele in
ALT, 2 second allele in ALT etc. Genotype can beagdd “|” or not “/".
Other genotype field components can be coverageetmh allele and
genotype quality.

A.2  Code Snippets
Herby diverse code snippets and related /*commétis* reported.
RDBMS-VMS

ServletNGS.java

import javax.servlet.http.*;

bublic class ServletNgs extends HttpServlet{
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/*Properties file with infos on database,directorie S
etc.*/

private final static String PROPERTIES_FILE =
"/conf/ngs.properties”;

"cmd” is the HttpServletRequest parameter used to call
the a specific method of the ServletNGS class*/

private final static String COMMAND = "cmd";

private ConnectionPool connPool=null;

/* Method “init” that is called only once at Servle t
initialization. It load properties and initialize t he
Connection Pool to the database*/

public void init(ServletConfig config) throws
ServletException {

super.init(config);

URL url =
getClass().getResource(PROPERTIES_FILE);

Properties properties = new Properties();

try{
connPool=ConnectionPool.getConnectionPool();
}catch (ConnectionPoolException c){
System.out.printin(c);
}
try {

properties.load(url.openStream());
} catch (IOException e) {
throw new ServletException(e.getMessage());

}
J* Method “doPost” tells the ServletNGS what to do in
case of HTTP POST requests. It search for the COMMA ND
parameter to which is associated a specific method. */

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException,IOException{

int command;

try {
command =

Integer.parselnt(request.getParameter(COMMAND));
} catch (NumberFormatException ex) {
command = 1;
}

switch (command) {

case 1.
try {readMarkers(request, response);

catch (SQLException e) {
/I TODO Auto-generated catch block
e.printStackTrace();

break;
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case 12:
try {chooseCaseAndControls(request,
response);
}catch (ConnectionPoolException e) {
/I TODO Auto-generated catch block
e.printStackTrace();

break;

}

/*the method “readMarkers” calls the method

“getMarker()"of the DBAnNalize class which returns a n
iterable object that will be forwarded to the

“markers.jsp” page as an attribute*/

private void readMarkers(HttpServletRequest request ,
HttpServletResponse response)

throws ServletException, IOException, SQLException {
request.setAttribute("list", ((new
DBAnalize(connPool)).getMarker()).iterator());

RequestDispatcher
rd=getServletContext().getRequestDispatcher("/marke rs.js

rdiforward(request, response);

}

ConnectionPool.java

import java.net.URL;
import java.sql.*;
bublic class ConnectionPool {

/* The variable managing the only instance of
ConnectionPool*/

private static ConnectionPool connectionPool = null ;

/* queue of free connections */

private Vector freeConnections;

/* database driver */

private String dbDriver;

/* ConnectionPool constructor*/
private ConnectionPool() throws

ConnectionPoolException {
freeConnections = new Vector();
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/* Method that load parameters containing database infos
such as driver*/

loadParameters();
/* Method that load database drivers*/

loadDriver();

/*invoke the constructor and return this class*/

public static synchronized ConnectionPool
getConnectionPool()
throws ConnectionPoolException {
if(connectionPool == null) {
connectionPool = new ConnectionPool();
}

return connectionPool;

}
brivate void loadParameters() {..}

private void loadDriver() {..}

/*The method “getConnection” returns a free connect ion
by pulling it from the queue of the free connection s or,
in case of no available connections, it creates a n ew
one*/

public synchronized Connection getConnection()
throws ConnectionPoolException {
Connection con;

if(freeConnections.size() > 0) {
con = (Connection)freeConnections.firstElemen t();
freeConnections.removeElementAt(0);
try {
if(con.isClosed()) {
con = getConnection();

}
catch(SQLEXxception e) {
con = getConnection();

}

else {
con = newConnection();

}

return con;
}
/*"newConnection” builds up a new connection to the
database*/
private Connection newConnection() throws

ConnectionPoolException {
Connection con = null;
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try {
con = DriverManager.getConnection(
dbUrl,
dbLogin,

dbPassword); // crea la connessione

}
catch(SQLEXxception e) {
throw new ConnectionPoolException();

}

return con;

}

ReadV CFCallablejava

import java.util.concurrent.Callable;

/*The class ReadVcfCallable implements the Callable

interface for concurrent programming. SerlvletNGS p ush
this object into a ThreadPoolExecutor with a core p ool
size equal to one*/

public class ReadVcfCallable implements Callable {

private InputStream is;
private String id_sample;
private String build;

/*the ReadVcf class implements methods to parse and
manipulate the VCF file*/

private ReadVcf read;
private ConnectionPool connPool,

[*constructor*/

public ReadVcfCallable(InputStream ais, String
aid_sample, String abuild,ReadVcf read,ConnectionPo ol
aconnPool) {
is=ais;
id_sample=aid_sample;
build=abuild;
this.read=read;
connPool=aconnPool;

[*override of he call() method*/

public boolean call() {
try{
[* parse the VCF by a ReadVCF method*/

read.parseMutationVCF(is,id_sample,build,connPool);
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}

return 1;

PredictionsRunnablejava

import java.util.concurrent.Runnable;

[*This class implements the Runnable interface.

ServletNGS instanciates two objects (one per predic tion
tools differentiated by the passed integer code)and

start two threads in parallel*/

public class PredictionsRunnable implements Runnabl e

private ConnectionPool conn;
private int code;

private Vector mutations;

private static final int DELAY = 100;

public PredictionsRunnable(ConnectionPool
conn,Vector mutations,SharedData data, int code) {
this.mutations=mutations;
this.conn=conn;
this.data=data;
this.code=code

public void run() {
try {

switch (code){

/* MutationTaster */

case 0:
try {
/* calls the method that send the data via HTTP POS T to
MutationTaster web service and retrieve results thr ough
HTTP GET method. Insert the results into the databa se*/

Vector mutOupDatel=new
PredictionTools().MutationTasterPrediction(conn,mut ation
s,dir);

boolean
data.MutationTasterUpdate(mutOupDatel);

break;

[*PolyPhen-2*/
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case 1:

try {

Vector mutOupDate2=new
PredictionTools().PolyphenPrediction(conn,mutations

boolean
data.PolyphenUpdate(mutOupDate2);

break;

}
Thread.sleep(DELAY);
}
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