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Abstract (English)

Many efforts have been recently done in order to introduce the concepts of
standardization, abstraction and modularity, typical of engineering, into life
sciences. These efforts, together with the technological improvements in the
field of molecular biology, gave birth to Synthetic Biology, a novel discipline
that aims to create new functionalities in living systems, such as microorgan-
isms, or to rearrange already existing ones. This is carried out by introducing
customized DNA sequences into living cells, in order to confer them the ability
to address new tasks.
Dealing with living systems, capable of replicating and reacting to environmen-
tal stimuli, makes the redefinition and validation of the previously mentioned
concepts necessary, especially standardization and modularity. Physical stan-
dardization has been achieved by the introduction of standardized assembly
techniques, such as the BioBrick™ standard assembly, a procedure to assem-
ble DNA sequences via an easy and iterative procedure, which has become
very popular in the last decade. Beside physical standardization, also shared
methodologies for the measurement of the activity of biological components are
needed; this concept requires further investigations, although some procedures
are nowadays shared and commonly used. Moreover, modularity, which allows
the predictability of the behaviour of composite systems on the basis of the
characterization of their subparts, still needs to be verified, by investigating
its validity boundaries.
Keeping these issues in mind, this thesis focuses on the design and assembly
of a system with a complex behaviour using a bottom-up approach. Since
negative feedback control is widely used in the engineering world and it could
bring to complex adaptive circuits in Synthetic Biology, this work focuses on
the bottom-up design of a synthetic close-loop controller in Escherichia coli.
In order to follow a rigorous bottom-up approach, an ordinary differential
equation system has been derived for the full circuit and its parameters have
been identified from data acquired through ad hoc experiments carried out on
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subsystems, i.e., smaller functional units of the whole network. Finally, the
goodness of the model is based on the comparison between predictions and ex-
perimental data obtained from the full system. The thesis describes the whole
design process of this circuit, from parts selection to the final circuit testing.
In particular, the herein presented genetic circuit aims at implementing the
control of the concentration of a signalling molecule in liquid E. coli cultures
through a negative feedback mechanism. This configuration, called the “close-
loop”, is expected to maintain the concentration of the target molecule at a
given set-point, in contrast to the “open-loop” configuration (i.e., without the
negative feedback), where no control is implemented and the molecule con-
centration is allowed to increase. The DNA sequences needed to implement
such a genetic controller were selected and retrieved from the catalogue called
Registry of Standard Biological Parts, an open access repository of biological
parts in the BioBrick™ format; then, design specifications were defined. The
system is based on the quorum sensing mechanism, that is exploited by some
naturally occurring bacteria to regulate some genetic pathways in a density
dependent fashion: the luxI gene is responsible for the expression of the LuxI
enzyme which produces the signalling molecule 3-oxohexanoyl homoserine lac-
tone (3OC6-HSL); the aiiA gene encodes the AiiA enzyme, which is able to
degrade 3OC6-HSL. When luxI is constitutively expressed and aiiA is placed
under the control of a 3OC6-HSL inducible promoter, PLux, it is possible to
obtain a negative feedback in which 3OC6-HSL starts to be enzymatically de-
graded when it reaches a sufficiently high concentration. On the basis of the
chosen DNA sequences and the design specifications, an ordinary differential
equation system of the genetic controller was derived in order to predict its
output (i.e., the concentration of the signalling molecule over time). The pa-
rameters were identified on experimental data obtained from ad hoc performed
tests on the subparts and the model of the complete circuit was used to obtain
predictions of the behaviour of the genetic controller. Given the uncertainty af-
fecting model parameters, a Monte Carlo-based strategy has been implemented
in order to propagate the uncertainty of the estimates from the subparts mod-
els to the output of the complete close-loop model.
A comparison between the open- and the close-loop configuration was per-
formed both in silico and in vivo to highlight the main differences between
the two conditions and the feasibility of a bottom-up approach was verified
comparing the predictions with experimental measurements performed on en-
gineered bacteria in a bioreactor with a continuous culture mode.
In Chapter 1, the basic concepts of Synthetic Biology will be illustrated and
deeply discussed, introducing the concept of biologic “parts” and the classifica-
tion based on their function. Then, a review of the state of the art and of the
most explanatory works in the field of Synthetic Biology will be shown, with a

iv



particular focus on the mathematical modelling, which is fundamental in the
design of complex systems, and on feedback-controlled synthetic circuits.
In Chapter 2, the methods will be illustrated. First, the laboratory protocols
used will be reported. An overview on the design of the negative feedback con-
troller will then be given, introducing the mathematical models of the whole
system and of its basic subparts. The strategy, where the parameters of the
whole system are estimated from ad hoc experiments on subparts, will be illus-
trated and a brief description on data analysis will be given. The Monte Carlo
method applied to propagate uncertainty will be deeply described, as well as
the strategy used to implement the continuous culture mode used to carry out
the most important experiments.
In Chapter 3, results will be presented. Simulations of the complete circuit
model with reasonable parameter values will be shown to verify that the de-
sired close-loop behaviour can be achieved, then parameters identification will
be described. The Monte Carlo approach results will be illustrated and finally
model predictions of the open- and the close-loop configurations will be com-
pared to the experimental data.
In Chapter 4, conclusions will be given, proposing further investigations on the
close-loop circuit behaviour and discussing the possible future improvements.
In Appendix A, a study on the stability of three commonly used inducers (i.e.,
chemicals able to regulate protein expression) will be presented; the stability
of these molecules was studied in different experimental conditions and the
variables that mostly impact on their half-life were identified through a facto-
rial analysis, using whole-cell biosensors for measurements. The quantification
of their decay rate is important to better predict the behaviour of the circuits
under investigation in this thesis.
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Abstract (Italian)

Recentemente sono stati fatti diversi sforzi al fine di introdurre i concetti di
standardizzazione, astrazione e modularità, tipici dell’ingegneria, nell’universo
delle scienze della vita. Questi sforzi, insieme ai miglioramenti tecnologici nel
campo della biologia molecolare, hanno dato vita alla Biologia Sintetica, una
disciplina i cui scopi sono da un lato creare nuove funzionalità, dall’altro riorga-
nizzare quelle già esistenti in sistemi viventi, come ad esempio i microrganismi.
Questo avviene introducendo sequenze sintetiche di DNA all’interno delle cel-
lule, al fine di conferire loro la capacità di svolgere nuovi compiti.
Interfacciarsi con sistemi viventi, in grado di replicarsi e reagire a stimoli am-
bientali, rende necessaria la ridefinizione e la validazione dei concetti prece-
dentemente citati, in particolare quelli di standardizzazione e modularità. La
standardizzazione fisica è stata ottenuta con l’introduzione dello standard fisico
BioBrick™, una procedura che consente l’assemblaggio di sequenze di DNA me-
diante un processo semplice e ripetibile, divenuto molto popolare negli ultimi
dieci anni. Oltre alla standardizzazione fisica, sono necessarie anche metodolo-
gie condivise per la misurazione dell’attività di componenti biologici; questo
concetto richiede ulteriori indagini, sebbene alcune procedure siano oggigiorno
condivise e comunemente utilizzate. Inoltre, la modularità, che permette di
ottenere sistemi compositi con comportamento predicibile, sulla base della
caratterizzazione delle loro sottoparti, deve ancora essere verificata, indagando
i limiti entro i quali essa può essere ritenuta valida.
Tenendo presente questi problemi, questo lavoro di tesi si concentra sulla pro-
gettazione e l’assemblaggio di un sistema con un comportamento complesso
mediante un approccio bottom-up. Poichè il controllo con feedback negativo
è ampiamente sfruttato nel mondo dell’ingegneria e può portare ad ottenere
circuiti complessi con comportamento adattativo in Biologia Sintetica, questo
lavoro si concentra sulla progettazione bottom-up di un controllore sintetico
in anello chiuso in Escherichia coli. Per seguire un approccio bottom-up rig-
oroso, è stato definito un modello matematico basato su equazioni differenziali
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ordinarie per il circuito genetico completo e i suoi parametri sono stati identi-
ficati sulla base di esperimenti ad hoc svolti sulle sottoparti, cioè piccole unità
funzionali dell’intera rete di regolazione. Infine, la bontà del modello è stata
valutata sulla base del confronto tra le predizioni e i dati sperimentali ottenuti
dai test sull’intero sistema. Questo lavoro di tesi descrive l’intero prcesso di
progettazione e realizzazione di questo circuito, dall’individuazione delle parti
alla sperimentazione del circuito finale. In particolare, il circuito genetico qui
presentato mira a realizzare il controllo della concentrazione di una molecola
di segnalazione in colture liquide di E. coli attraverso un meccanismo di feed-
back negativo. Questa configurazione, chiamata “anello chiuso”, mira a man-
tenere la concentrazione della molecola target ad un dato set-point, al contrario
della configurazione in “anello aperto” (ovvero senza feedback negativo) dove
la molecola target viene accumulata in maniera non controllata. Le sequenze
di DNA necessarie per implementare tale controllore genetico sono state scelte
e recuperate dal catalogo denominato Registry of Standard Biological Parts,
un archivio open source dei componenti biologici in formato BioBrick™; succes-
sivamente sono state definite le specifiche di progettazione. Il sistema si basa
sul meccanismo del quorum sensing, che viene sfruttato da alcuni batteri per
regolare alcuni pathway genetici in funzione della densità cellulare: il gene luxI
è responsabile dell’espressione dell’enzima LuxI che produce la molecola seg-
nale 3-ossoesanoil omoserin-lattone (3OC6-HSL); il gene aiiA codifica l’enzima
AiiA, il quale è capace di degradare il 3OC6-HSL. Quando luxI è espresso in
maniera costitutiva e aiiA è posto sotto il controllo del promotore inducibile
da 3OC6-HSL, cioè PLux, è possibile ottenere un feedback negativo in cui il
3OC6-HSL inizia ad essere degradato enzimaticamente quando raggiunge una
concentrazione sufficientemente alta. Sulla base delle sequenze di DNA scelte
e le specifiche di progetto, è stato costruito un modello matematico del sis-
tema per prevederne l’output (cioè la concentrazione della molecola segnale
nel tempo). I parametri sono stati identificati a partire dai dati sperimentali
ottenuti da test ad hoc effettuati sulle sottoparti e il modello del circuito com-
pleto è stato usato per ottenere previsioni del comportamento del controllore
genetico. È stato implementato un approccio basato sul metodo Monte Carlo
per propagare l’incertezza delle stime dei parametri delle sottoparti all’output
del modello del circuito completo. Un confronto tra la configurazione in anello
aperto e quella in anello chiuso è stato eseguito sia in silico, che in vivo, per
evidenziare le principali differenze tra le due condizioni, mentre la fattibilità di
un approccio bottom-up è stata verificata confrontando le previsioni ottenute
con le misure sperimentali provenienti da colture continue di batteri ingegner-
izzati.
Nel Capitolo 1 saranno illustrati i concetti di base della Biologia Sintetica, in-
troducendo il concetto di “parte” biologica e la classificazione funzionale delle
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parti. Sarà quindi presentata una rassegna dello stato dell’arte e una raccolta
degli studi più significativi nel campo della Biologia Sintetica, con una partico-
lare attenzione alla modellizzazione matematica, che è fondamentale nel ciclo
di progettazione ispirato dall’ingegneria.
Nel Capitolo 2 verranno illustrati i metodi. In primo luogo saranno presen-
tati i protocolli di laboratorio utilizzati. Saranno poi descritte le fasi della
progettazione del controllore con feedback negativo, introducendo i modelli
matematici sviluppati per l’intero sistema e per le sue sottoparti. Sarà poi
illustrata la strategia adottata per la stima dei parametri dell’intero sistema
sulla base di esperimenti ad hoc condotti sulle sottoparti e verrà discussa la
procedura di analisi dati. Il metodo Monte Carlo, applicato per propagare
l’incertezza, verrà descritto in dettaglio, cos̀ı come la strategia utilizzata per
implementare la modalità di coltura continua, utilizzata per effettuare i test
più importanti.
Nel Capitolo 3 saranno presentati i risultati. Verranno mostrate le simulazioni
riguardanti il modello completo del circuito genetico ottenute con valori ra-
gionevoli dei parametri, per verificare che il comportamento desiderato possa
effettivamente essere ottenuto con il circuito progettato, quindi verrà descritta
la procedura di identificazione parametrica. Sarà presentato il metodo Monte
Carlo, utilizzato nella propagazione dell’incertezza, e infine saranno confrontate
le previsioni del modello del circuito in anello aperto e in anello chiuso con i
dati sperimentali.
Nel Capitolo 4 saranno fornite le conclusioni, proponendo ulteriori indagini sul
comportamento del circuito in anello chiuso e discutendo i possibili migliora-
menti futuri.
Nell’Appendice A verrà presentato uno studio preliminare sulla stabilità di
tre induttori (composti chimici capaci di regolare l’espressione proteica) co-
munemente utilizzati; la stabilità di queste molecole è stata studiata in diverse
condizioni sperimentali e sono state individuate le variabili che maggiormente
impattano sulla loro emivita attraverso un’analisi fattoriale, utilizzando biosen-
sori per effettuare le misure. La quantificazione delle lor emivite è importante
al fine di migliorare la predizione del comportamento dei circuiti che sono stati
considerati in questo lavoro di tesi.
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Chapter 1
Introduction

The last century discoveries and advances about DNA structure and its
manipulation [1, 2] represented the basis for the rise of biotechnology and
genetic engineering. DNA is a molecule, constituted by nucleotides, which
encloses the information needed in the development and functioning of cells
and living organisms in general. The way in which the information is decoded
and used is explained by the so called central dogma of molecular biology [3]:
protein-coding DNA sequences (herein called genes) are transcribed into RNA
molecules, which are translated into proteins at the ribosome level and finally
DNA sequences can be replicated in living cells to propagate the encoded
function to the progeny.
In the last decade a new discipline, based on the technological development in
the field of molecular biology, has spread all over the world: Synthetic Biology.
Several definitions have been given for this discipline; one of these states [4]:

“Synthetic biology aims to design and engineer biologically based parts, novel
devices and systems as well as redesigning existing, natural biological

systems.”

This is an apparently simple but very exhaustive sentence as it covers all of
the main features of Synthetic Biology. First of all, it underlines two distinct
aspects: on the one hand the construction of new synthetic biological systems,
based on unnatural molecules, that might (or might not) be inspired by nature
[5]; on the other hand the rearrangement of biological existing entities in novel
ways to obtain new functionalities in living systems [5, 6, 7]. In the former case
the focus is to deeply understand the mechanisms at the basis of life, while
in the latter the goal is the design and implementation of new functions to
complete particular tasks (often inspired by electrical circuits or computers).
Moreover, these concepts coming from the world of engineering, substantially
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1. Introduction

differentiate Synthetic Biology, which introduces a rational approach in design-
ing living systems, from genetic engineering and biotechnology [4, 8, 9].
During its short life, Synthetic Biology has seen a first period during which sim-
ple functionalities were implemented, combining basic biological parts; nowa-
days synthetic biologists are facing new challenges as they are moving towards
the design and development of more and more complex systems [10]. Yet, deal-
ing with living systems, for example microorganisms, is not trivial as they are
made up of biological elements (i.e., molecules) that can interact and interfere
with each other affecting their respective behaviour. Cells are able to grow and
evolve and these two features might affect the output of a system; particularly,
the growth rate of a microbial population might affect the performances of a
system, often resulting in its inability to meet the design specifications [11, 12].
Moreover, the capability to evolve could introduce issues on stability [8, 12]
(i.e., the predicted behaviour of a biological system is not preserved on a long-
time period due to unexpected mutation of one or more of its components).
Working in a biological context also means interacting with organisms that are
themselves capable of reacting to changes in environment, for example shifts
in temperature or pH; therefore they have to be considered as active elements
instead of passive chassis.
In order to face these problems, a rational approach in assembling and test-
ing new systems is needed. This means that guidelines or at least a set of
basic principles are needed in order to build new systems that act in a re-
liable and predictable way, giving a definition of the boundaries where this
is feasible. Despite the differences in the context of application, this disci-
pline could be considered analogous to other engineering fields, for example
electrical or computer engineering [4, 13]. The design process of a synthetic
biological function should follow the so called engineering cycle: first, specifi-
cations are defined, then system is designed according to these specifications
(in this phase, parts standardization is recommended); subsequently modelling
is required in order to predict the output. Finally, the implementation and the
validation steps are performed to verify if specifications are satisfied [4], as
shown in Fig. 1.1. The engineering principles of abstraction, standardization,
modularity represent the basis of Synthetic Biology [7, 13] and allow to follow
this rational approach. Synthetic Biology has focused on several applications,
e.g., information processing, chemicals manipulation, materials and structures
fabrication, energy and food production, human health and environment im-
proving [4]. Beyond doubt, one of the most illustrative successful examples
is the artemisinic acid production, a precursor of an anti-malarial drug called
artemisinin, made by engineered yeast [14]. This chemical was extracted from
Artemisia annua leaves and its cost was very high; thanks to the innovation
introduced in [14], today it is possible to produce artemisinin on a large scale

2



Figure 1.1: The engineering cycle. The engineering cycle begins with the definition of the

specifications of a system, followed by the choice of the parts and their connections (design); then modelling

is performed in order to predict the output and the behaviour; once the system is assembled it is tested and

validated to understand if specifications are met and, if not, the system is rationally modified, on the basis

of the results [4].
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as demonstrated by the Garessio (CN, Italy) facility launched by Sanofi in
2013. Moreover many efforts have been recently done in the field of biofuels
[15, 16, 17, 18]. These works demonstrate that Synthetic Biology has a broad
range of application.
Synthetic Biology is considered similar to engineering disciplines, as it is based
on the key concepts of abstraction, standardization and modularity that will
be presented and discussed below.

1.1 Abstraction

Engineering disciplines provide a powerful tool to face complexity: ab-
straction [13]. Differently from other scientific fields, here this notion needs to
be extended in order to be applicable to the biological field [7]. Abstraction
means establishing a hierarchy of modules and devices, based on their com-
plexity: users must be able to work at any level of complexity with limited
exchange of information between levels, so that the design process can be per-
formed at any level independently from one another [7, 13, 19]. Levels share
common interfaces, in order to help communication. This strategy allows for
the design of arbitrarily complex systems without the need to take into account
unnecessary details [20] as useless information is hidden to manage complexity
[8].
A proposed abstraction hierarchy that can be found in the scientific litera-
ture (Fig. 1.2) [13] places at the bottom level the DNA (i.e., a sequence of
nucleotides); this can be considered as the physical layer in electronic engi-
neering. At the upper level there are parts, intended as atomic functional
DNA sequences like, for example, promoters. A combination of parts which
performs a slightly complex task is considered a device, and finally, the in-
terconnection of devices that carry out a function with higher complexity is
considered a system. An alternative has been proposed in [7], keeping in mind
the parallelism with the world of computer engineering: proteins and genes are
the bottom level. Their combination results in a set of biochemical reactions
which can, in turn, form pathways. These ones can be considered themselves
as the basic components of cells, that finally could be grouped in tissues and
cultures.

1.2 Basic parts

It is necessary, in order to clarify the concept of “part” in this biological
context, to give a brief explanation of what actually is referred to as a part.
In this work, a DNA sequence is considered a part and it can be classified on
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1.2. Basic parts

Figure 1.2: Abstraction hierarchy. Representation of one possible abstraction hierarchy

[13]. From this point of view, the DNA represents the lower level, while, increasing complexity, one can find

functional sequences that can be combined to build devices. At the top level there are complex combinations

of devices, namely systems.

the basis of its basic function. In fact, depending on their function, parts can
be grouped in several categories. The main categories will be here described.

1.2.1 Promoters

Promoters are DNA sequences placed upstream of genes, recognized by the
RNA polymerase, which is the enzyme that transcribes to mRNA the mes-
sage encoded in DNA. Promoters are responsible for transcription initiation.
The strength of a promoter (i.e., the rate of transcription initiation) depends
on its nucleotide sequence: a strong promoter is able to recruit more RNA
polymerases, hence having a high transcription initiation rate and producing
a large amount of the mRNA corresponding to its downstream sequence.
Promoters can have a constant transcriptional output; in this case they are
called constitutive promoters. Conversely, due to the presence of operator
sites, short sequences able to bind specific elements (transcriptional factors
and/ or chemicals), their activity can be regulated (inducible promoters).

1.2.2 Ribosome Binding Sites

Ribosome Binding Sites (RBSs) represent the leading mRNA sequence to
which ribosomes bind in order to initiate translation. Thus, DNA sequence of
RBSs is placed upstream of the coding sequence and downstream of the corre-
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sponding promoter. For this reason, RBSs are transcribed but not translated
sequences. The main feature of RBSs is the Shine-Dalgarno sequence which
is placed right before the START codon of the coding sequence (Sec. 1.2.3)
and is responsible of mRNA binding to ribosomes. The sequence of an RBS
is related to the translation initiation: a stronger RBS is a sequence which
determines a higher translation initiation rate, hence a higher production rate
of the protein of interest. In the last few years several efforts have been done
in the processes of forward and reverse engineering of RBSs: a tool called “The
RBS Calculator”helps the evaluation of the strength of an RBS and the design
of sequences upon defined strength [21].

1.2.3 Coding Sequences

A coding sequence (CDS) is a DNA sequence that, once transcribed into
mRNA, encodes the information needed by ribosomes to assemble a polypep-
tide chain; coding sequences are present downstream of RBSs sequences. A
group of three nucleotides is called codon; every codon determines the amino
acid to be bound to the polypeptide chain, depending on the genetic code of
the host organism. The CDS is delimited by a START and a STOP codon.
The protein is generally composed by three domains:

• an N-terminal, also called the head domain, that contains the START
codon and, optionally, a sequence tag, namely a sequence that can be
recognized by particular proteins of the host organism (e.g., export or
attachment tags);

• a protein domain which represents the core of the polypeptide chain.
It gives the polypeptide chain its ability to perform a particular task;

• aC-terminal, or tail domain, containing a STOP codon and with special
optional tags, such as degradation tags.

1.2.4 Terminators

Terminators determine the end of the transcription process of RNA poly-
merase. They can be ρ-dependent or independent; in the first case a special
protein called ρ factor with helicase activity is needed in order to unbind the
RNA polymerase from the DNA fragment which is transcribing. For what
concerns ρ-independent terminators, they are able to end the transcription
process as they form hairpin structures that cause the separation of RNA
polymerase from DNA. This latter class of terminators is characterized by se-
quences which, once transcribed, fold to form structures known as stem-loops
that are responsible for the so called intrinsic termination.
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1.3. Standardization

1.2.5 Plasmid Vectors

Plasmid vectors are circular double-stranded DNAmolecules used to deliver
a genetic program into host cells. Generally their features are:

• a replication origin, which is a sequence determining the number of
copies of the plasmid per cell. In fact, plasmid DNA replication is per-
formed in parallel to chromosomal DNA replication;

• a selection marker which is a region that contains an expression cas-
sette for a particular protein which confers the host cell special capa-
bilities, for example the resistance to an antibiotic. This allows for the
selection of cells that contain the plasmid vector;

• a cloning site, which is a region designed for the purpose to put in the
plasmid a user-defined functionality. It is flanked by sequences called
restriction sites, which are recognized and specifically cut by enzymes
called restriction endonucleases. With molecular biology protocols it is
possible to cut and ligate the plasmid vector in order to place desired
sequences in the cloning site.

1.3 Standardization

Standardization is one of the key concepts of engineering disciplines; it
allows to build interoperable systems or devices that share a common interface.
Basic elements that meet established criteria can be interconnected simply and
recursively. Moreover, standardization can also refer to the fact that common
methodologies (e.g., measurements) are needed in order to share knowledge.
In Synthetic Biology the minimal biological part is a DNA functional unit,
which cannot be further divided into smaller components [22]. A standard
format for DNA sequences has been proposed, called BioBrick™ Standard [23,
24]; it simplifies the assembly of novel genetic sequences that can be easily
shared and re-used. BioBrick™ parts are put in special plasmid backbones
which have standardized features: their cloning site is flanked by a prefix
sequence containing the EcoRI (E) and XbaI (X) restriction sites and by a
suffix sequence containing the SpeI (S) and PstI (P) sites (Fig. 1.3). The
four restriction sites must be unique, namely they must be present only in
the prefix and the suffix but not in the plasmid vector or in the user defined
sequence inserted in the cloning site. Plasmid backbones also have an antibiotic
resistance as a selection marker and a replication origin that determines the
copy number (Fig. 1.3).

This configuration allows users to digest and ligate the DNA so that parts
can be combined and result in a new one that is compliant with the above
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Figure 1.3: Plasmid backbone. Structure of a plasmid vector compliant to BioBrick™

Standard [22]. In this schematic representation the main features are highlighted. They are: the replication

origin, the resistance marker and the cloning site. This is flanked by the four restriction sites compliant to

the BioBrick™ Standard: EcoRI (E) and XbaI (X) in the prefix, SpeI (S) and PstI(P) in the suffix.

mentioned standard (see Fig. 1.4). This way, multiple rounds of insertion on
either side of a part are easily possible via a reproducible procedure involving
the same four enzymes [8].

A collection of BioBrick™ parts, called Registry of Standard Biological
Parts, is held by the Massachusetts Institute of Technology (MIT); parts are
catalogued with their names that follow a standard code. Moreover, an on-line
documentation is provided [22], and information about their usage and func-
tioning can be easily retrieved.
Although a lot of information is freely and easily accessible on BioBrick™ parts,
it is necessary to define basic shared procedures to reliably measure biological
parts activity [13]. These might allow standardized quantitative descriptions
for biological devices in order to easily establish if parts meet the needed spec-
ifications during the design of a new system.
Like in other engineering disciplines, it could be useful to have standardized
data-sheets to retrieve information on a device about [25]:

• its function and interfaces (i.e., the input and output);

• the operating context of its characterization, for example the genetic
background (the host organism) and the growth conditions (growth medium,
temperature and pH);

• its quantitative characterization that could be based on mathematical
modelling.
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Figure 1.4: Standard assembly. Assembly of two BioBrick™ basic parts: BBa B0034 is

digested with EcoRI and SpeI restriction enzymes, while BBa C0010 with EcoRI and XbaI. Since XbaI and

SpeI are isocaudomers, their protruding ends are complementary, so they can be ligated and result in a

mixed site that is not recognized by any of the four above mentioned enzymes. At the end of the process

the resulting composite part is compliant to the BioBrick™ Standard [22].

A clear example of a standardized measurement procedure is the quantifica-
tion of promoters activity in terms of Relative Promoter Units (RPU) [26].
Reporting the output of a promoter of interest to that of a standard refer-
ence promoter is very useful as it is possible to have reliable measurements
across different experimental conditions or instruments. The RPU measure-
ment approach is based on a simple mathematical model that captures the main
features of promoter activity. In particular, Polymerases per Second (PoPS),
defined as the number of RNA polymerases that pass through a specific point
of a DNA strand per time unit, is an interesting parameter which describes
the transcription rate of a downstream gene caused by the promoter. By using
mathematical modelling and a gene encoding a fluorescent reporter protein
downstream of the promoter of interest, PoPS can be indirectly estimated.
The mathematical model is reported in Eq. 1.1:

d
dt
[M ] = n · PoPS − γM · [M ]

d
dt
[I] = ρ · [M ]− (a+ γI) · [I]

d
dt
[X] = a · [I]− γX · [X]

(1.1)

where PoPS is the transcription initiations per second per DNA copy while
[M ] is the mRNA per cell concentration, [I] the immature protein per cell
concentration and [X] the mature protein per cell concentration. γM and γI
are the degradation rates of mRNA and immature protein, respectively, and γX
the degradation rate of mature reporter protein. The degradation terms named
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γ take into account both the dilution due to cultures growth and the specific
degradation of the species: in the case of mRNA the specific degradation rate
cannot be negligible, while, considering the high stability of the reporters used
to perform these measurements, the dynamics is dominated by the dilution
due to cells duplication. a is the maturation rate of the reporter protein and
n is the average copy number of the plasmid bearing the promoter of interest.
Finally ρ is the synthesis rate of immature protein per second per mRNA.
Assuming the steady state, namely ˙[M ] = 0, ˙[I] = 0 and ˙[X] = 0, it is possible
to express the PoPSSS (in which SS superscript stands for steady state) in
terms of mature reporter protein concentration:

PoPSSS =
(a+ γI) · γM · γX · [XSS]

n · ρ · a
(1.2)

Finally, the synthesis rate per cell of reporter mature protein is defined as
in Eq. 1.3.

Scell = a · [I] (1.3)

Hence, it is possible to calculate the PoPSSS as in Eq. 1.4.

PoPSSS =
(a+ γI) · γM · SSS

cell

n · ρ · a
(1.4)

The RPU value of a promoter Φ is defined as the ratio between its PoPSSS

value and the PoPSSS value of the standard reference promoter, which is the
BBa J23101 constitutive promoter from the Registry of Standard Biological
Parts [22]. As a result, the activity of a promoter Φ relative to the reference
promoter, can be derived as reported in Eq. 1.5.

RPU =

(aΦ+γI,Φ)·γM,Φ·SSS
cell,Φ

nΦ·ρΦ·aΦ
(aref+γI,ref )·γM,ref ·SSS

cell,ref

nref ·ρref ·aref

(1.5)

Assuming that:

• the maturation rate of the reporter protein is the same between the two
different conditions;

• the average copy number of the plasmid of the reference and the promoter
of interest is identical;

• the transcription initiation site and the downstream mRNA are identical,
so that the two degradation rates and the two synthesis rates of immature
protein per mRNA per second can be considered equal;
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• the dilution rate of the protein, equal to the culture growth rate (γI = µ),
is negligible compared to the protein maturation rate a;

it is possible to evaluate the RPU as in Eq. 1.6.

RPU =
SSS
cell,Φ

SSS
cell,ref

(1.6)

Thus the activity of the promoter can be easily evaluated on the basis of
its synthesis rate per cell divided by the synthesis rate per cell of the reference
promoter BBa J23101. This is an easy-to-measure quantity because, given an
instrument which allows to monitor the culture growth and the activity of a
reporter, it is possible to derive the SSS

cell as the time derivative of the reporter
signal over time, divided by the culture density expressed, for example, in
terms of optical density (OD):

SSS
cell =

dF

dt
· 1

OD
(1.7)

Usually, in order to obtain robust measurements, it is convenient to con-
sider the average of this quantity during an appropriate period (for example
during the exponential phase of bacterial growth when the above assumptions
can be considered to be valid) [26, 25]. Although the RPUs represent a reliable
measurement for the transcriptional activity of promoters, a major challenge in
their characterization is still their context dependent behaviour; in fact the ob-
servable output can vary depending on the upstream or downstream sequence.
Several efforts have been done towards this goal, for example by creating a
library of insulated promoters that behave in a predictable manner across dif-
ferent genetic contexts [27]. Other parts such as RBSs and terminators are
intrinsically context dependent and this strongly affects the measurement of
their performances; thus, standardization in measuring biological parameters
linked to these elements is a challenging task. Biophysical models have been
recently developed to face these problems and give information about the work-
ing of these elements. Biophysical models applied to Synthetic Biology try to
capture the intermolecular and intramolecular interactions that regulate pro-
cesses like binding of enzymes to mRNA or mRNA folding, and describe their
strengths in terms of free energy. A useful tool developed by Salis et al. [21, 28]
allows to predict RBSs’ translation initiation rate on the basis of the surround-
ing sequences or to design the sequence of an RBS with a user-defined output,
relying on a thermodynamic model and optimization. Similarly, thermody-
namic models, coupled to linear models, were used to predict the behaviour of
a library of terminators [29].
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Figure 1.5: Modularity. The concept of modularity is herein represented: in a modular frame-

work, given two quantitatively characterized modules (in terms of transfer function), it is possible to quan-

titatively predict their output when interconnected [31].

1.4 Modularity

Modularity is fundamental in all engineering applications because it allows
to build up complex systems, obtained by assembling basic functional mod-
ules, with predictable behaviour [30, 31]. After basic functional modules are
fully characterized, it is possible to assemble them to obtain more and more
complex functions, relying on this property. Once modularity is verified it al-
lows to combine modules guaranteeing the integrity of their properties upon
interconnection [32]. That is, if the input-output transfer function of N mod-
ules is known, it is possible to interconnect them and to predict the output
of their interconnection [31]. In fact, decomposing an interconnected system
in smaller modules, means, on the one hand, to reduce complexity and, on
the other hand, to design modules and engineering systems more efficiently. In
some cases, given a precise characterization, it is possible to predict the output
of interconnected systems but in other cases this is not sufficient as the parts
may not work as expected when put together [33].

In a biological context, the environment-dependent behaviour of some de-
vices, the interaction with the cell machinery, side effects on their metabolism,
intrinsic noise and mutations, make living cells extremely complex systems
and these and other elements affect the possibility to modularly program new
predictable functionalities. Several works have been performed in order to
investigate the degree of modularity of parts and solve the issues related to
the interconnection of devices [32, 34, 30, 31]. Also in other disciplines, such
as electrical or mechanical engineering, modularity is not always valid but
context-dependent effects have been well identified and systems can be pre-
dictably composed from characterized basic parts given the working context.
For example, temperature is known to affect the impedance of electrical compo-
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nents, such as resistors, but designers can take into account such quantitative
effect by considering the temperature-impedance characteristics of the compo-
nent of interest during the design process of circuits. Designers are also able
to predict circuit behaviour changes upon interconnection with a downstream
load. Considering the latter example, the term “retroactivity” has been intro-
duced in biological engineering to describe an analogous situation to non-zero
impedance in electrical circuits, which can lead to interconnection-dependent
behaviour changes during genetic network design. In particular, in [35] the
issue of retroactivity is deeply discussed in order to understand how this phe-
nomenon can affect the dynamical behaviour of genetic circuits. Retroactivity
is due to signals travelling in the opposite direction (i.e., from downstream
to upstream) to information [36]; in Fig. 1.6 the two signals that represent
retroactivity are shown. Signal s is called retroactivity to the output and is
due to the interconnection of the system Σ to a downstream module; signal r
is the retroactivity to the input and represents the change in the dynamics of
Σ when it is stimulated by an input u. Thus, retroactivity emerges when mod-
ules are interconnected and leads to unwanted effects on system output; this
occurs, for example, in presence of unwanted repressor binding sites in a down-
stream circuit that bind a repressor protein involved in an upstream circuit.
As demonstrated in [32], the effect of this unpredicted interaction is clearly
visible in the activation and de-activation dynamic behaviour: a test circuit,
inducible by the chemical Isopropyl-β-D-1-thiogalactopyranoside (IPTG), has
been used to trigger gene expression and the dynamics of activation and de-
activation in the presence of extra operator sites for the LacI repressor. The
behaviour of the circuit was monitored via reporter gene. In both cases a shift
in time was observed (a delay or an anticipation) for the response, compared
to the circuit without additional operator sites. Hence, this work underlines
the importance of studying not only the input-output relation of a system at
its steady state but also its dynamics features, in order to better understand
its behaviour upon interconnection.
Another phenomenon that impacts on the output of a synthetic genetic reg-
ulatory network is the fan-out, a concept which is imported from electrical
engineering and is related to retroactivity: it expresses the maximum number
of downstream clients that an upstream output transcription factor can regu-
late without delay or signal attenuation. In fact the interconnection of a set
of downstream outputs can affect the output impedance and the working of
the circuit. Analogously a genetic network of transcriptional regulators could
stumble this problem, affecting the behaviour of the input module and con-
sequently the output of the whole system [37]. In [38] a method to measure
the fan-out has been proposed to experimentally characterize the interfaces
between modules and quantifying the level of modularity of a gene regulatory
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Figure 1.6: Retroactivity. Retroactivity is an unwanted effect that is due to the fact that

signals could move from downstream to upstream, that is, in the opposite direction in which information is

travelling. u represents the input to the system Σ, while y is its output. Red arrows are the two signals linked

to retroactivity: r is the retroactivity to the input, that determines changes in Σ when it is stimulated with

an input, while s is the retroactivity to the output that emerges upon interconnection with a downstream

module [36].

network.

In order to face these problems and reduce the time needed to design and
realize new functionalities in living systems it is important to quantitatively
characterize basic parts, relating the output of devices to their inputs and to
the context of application. The achievement of robust predictions is not trivial
as there are several sources of uncertainty: the effects of noise in gene expres-
sion, mutation, cell death, undefined and changing extracellular environments,
and interactions with cellular context; Synthetic Biology must tackle these
hard problems by providing predictable and scalable design for the genetic
parts [7, 39].
A powerful tool to manage uncertainty and aid the predictability is math-
ematical modelling as it enables to describe systems using a limited set of
parameters. Nowadays it is possible to define arbitrarily sophisticated models
as personal computers have very high computing power, even though there are
peculiarities linked to intrinsic noise of biological systems that are not easy to
model [40]. Models can be defined prior to physically assembling a system in
order to predict its output and verify if there is a configuration able to meet
the specifications; they can also be helpful in the engineering cycle to predict
how a system could behave upon changes in the working of some of its basic
parts, without the need to perform several trial-and-error experiments [41].
Moreover, the comparison between predictions and experimental data could
point out inaccuracy in some hypotheses on biological systems and, through
this, explain the possible malfunctioning of synthetic devices [4].
Different systems were designed and investigated through mathematical mod-
elling, in order to study the modularity in Synthetic Biology. For example
in [42] a silencing mechanism called post-transcriptional controller based on
a TRANS-CIS interaction that inhibits translation was used to test a pure
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bottom-up approach, using a mathematical model to predict the behaviour of
the system. The system is composed of a sequence that constitutively pro-
duces a Green Fluorescent Protein (GFP) whose mRNA is modified in order
to have a CIS regulatory sequence, and a regulated production of a TRANS
element that is able to block the translation of GFP. Sub-systems were used to
estimate the parameters of the mathematical model and evaluate its output.
In this case predictions are not always aligned with the output of the system,
highlighting that a pure bottom-up approach is not always effective in design-
ing and assembling new functionalities.
Other works focused on the design and implementation of logic gates in bacte-
ria, for example AND gates. An AND gate is a device whose output is a logical
one if and only if all of its inputs are logical ones; otherwise the output is a
logical zero. In the field of Synthetic Biology AND gates have been proposed in
several works and efforts have been done in order to obtain modular systems.
For example in [43] the authors proposed a biological AND gate in E. coli,
which works with two promoters as inputs that regulate the transcription of
two factors that, together, activate an output promoter whose transcription
activity depends on the T7 RNA polymerase. The two input promoters are
inducible systems while the output of the AND gate was measured by the GFP
reporter. A simple model of the steady-state behaviour of the logic gate has
been derived in order to make predictions of the behaviour of the whole system
once its sub-parts have been characterized. Even though, as demonstrated by
the authors, the system is modular in the sense that any inputs or outputs
can be placed instead of the ones presented above, there were still some issues
concerning the RBSs of the input genes. In fact, in order to obtain an AND
gate behaviour, RBSs had to be chosen from a saturation mutagenic library,
so that for every input the sub-part has to be re-characterized.
A similar work is presented in [44], where the authors designed another or-
thogonal AND gate realized in E. coli. In this work sub-parts have been char-
acterized in-context, that is, they have been tested in the same experimental
conditions as the whole system, focusing on strain, RBSs, medium and tem-
perature. After having estimated the parameters of a model analogous to the
one presented in [43] on the sub-parts, a set of candidates has been chosen to
realize the desired behaviour. Moreover, a NAND gate, a logic operator which
presents a logic one as an output only when all of its inputs are logical zeros,
has been realized by connecting a NOT gate downstream of the AND gate.
All of these systems have been successfully realized with a forward engineering
approach, keeping in mind the context of sub-parts characterization. Alterna-
tively, in order to obtain a predictable complex system upon interconnection
of simple modules, the authors proposed to deal with genetically or physically
insulated parts, as stated and done in other works (e.g., as in [45]).
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More complex systems were realized in [46], where a set of activator-chaperone
pairs have been identified from bacteria and used in E. coli to realize sev-
eral AND gates and interconnect them in a layered fashion (Fig. 1.7); some
of them were modified in order to meet design specifications. After having
characterized AND gates for each activator-chaperone pair with different sig-
nals as inputs, the authors realized layered programs reaching a maximum of 4
input AND gate. Again, a model-aided strategy was used to make predictions
of the behaviour of the final system. The layered fashion in which the gates
are connected could lead to problems in the output of the network: in fact the
progression of signals may not be synchronous, leading to faults and incoherent
results.
These works demonstrate that modularity is still a major issue in Synthetic
Biology and that it is not always possible to design and realize a complex sys-
tem with a pure bottom-up approach unless by taking into account a large
number of variables such as the genetic context and the environment.

1.5 Electronic engineering inspired genetic cir-

cuits: state of the art

Several topologies of genetic regulatory networks have been considered and
studied as a proof of concept of the possibility of engineering micro-organisms
capable of carrying out a specific task. Hereinafter, a set of works will be pre-
sented, in which the authors designed and studied different regulatory networks
inspired by electric circuit or control theory.

1.5.1 AND gate

One of the basic logic operations in digital electronic is the one performed
by the AND gate; this device is connected to a set of inputs and elaborates the
information so that its output is a logical one only when all of its inputs are
true. Several works focused on the possibility to design and realize a biological
AND gate.
In [46] the authors worked on a system based on promoters activated by a com-
plex of a transcriptional factor and its cognate chaperone protein (Fig. 1.7),
presenting a set of AND gates with two inputs implemented in E. coli. Ac-
cording to this design, the promoter output is high only when the transcription
factor and the chaperone are simultaneously expressed.

These chaperone-protein dependent systems were insulated from other or-
ganisms, Salmonella typhimurium, Shigella flexneri and Pseudomonas aerugi-
nosa, thus they have to be characterized and, in some cases, modified, in order
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Figure 1.7: AND gate scheme. Representation of the generic AND gate realized in [46];

different realizations rely on different chaperone-transcriptional factor pairs able to activate a set of target

promoters, selected from several organisms.

to work in E. coli and extend their activity range and orthogonality. The AND
gates were studied and characterized using inducible promoters as inputs, such
as PTet, PBAD and PLux, inducible by anhydrotetracycline (aTc), arabinose and
3-oxohexanoyl homoserine lactone (3OC6-HSL), respectively. A mathematical
model of the AND gate was derived; its parameters were identified on subsys-
tems and used to guide the assembly of the genetic circuits and predict their
outputs. Moreover AND gates were interconnected to generate more complex
systems; the mathematical model was extended and used again to successfully
predict the output of these networks. Even though results were in accordance
with the model prediction for networks with a small number of layers (2-3), the
connection of a large number of layers could result in heavy issues due to the
pulses that can emerge in incoherent feed-forward loops in signalling networks.
This means that signals are not synchronized, thus affecting the correctness of
the output.

1.5.2 Toggle-switch

One of the milestones of Synthetic Biology is a device implementing a ge-
netic toggle-switch, realized in engineered E. coli. The concept of toggle-switch
refers to a particular class of switches allowing to drive electric circuits between
two states; thus they belong to the class of bistable circuits. The behaviour of
these devices is particularly interesting in Synthetic Biology as, by a genetic
network of transcriptional regulators, it can be reproduced in a cell culture.
In [47] a model based approach has been adopted in order to obtain a set
of toggle-switches; a simple mathematical model was used to investigate the
circuits behaviour and the conditions that lead to bi-stability. The genetic
network that reproduces the toggle switch in living systems is simple, as it is
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Figure 1.8: Toggle-switch. Schematic representation of a biological toggle-switch [47]; the

genetic toggle-switch was realized using a promoter-repressor pair, repressing each other. The reporter is

co-expressed as an operon with one of the two repressors, in order to monitor the state of the system.

composed by a promoter pair and the respective repressor molecules; a fluores-
cent reporter is used to monitor the status of the biological device (Fig. 1.8).
The circuit can switch between two opposite conditions: when repressor 1
reaches a concentration capable of switching off the transcriptional output of
promoter 1, the transcriptional activity of promoter 2 is maximal and the cir-
cuit reaches the ON state; conversely, when repressor 2 is capable of blocking
the promoter 2, the circuit is in its OFF state.

Switching between the ON and OFF states and viceversa is accomplished
by using chemical or physical stimuli, able to inhibit the repression of one spe-
cific repressor protein.
A mathematical model of this topology has been derived to define the specifi-
cations that have to be met to reproduce the electric toggle-switch behaviour
(Eq. 1.8).

d
dt
u = α1

1+vβ
− u

d
dt
v = α2

1+uγ − v
(1.8)

The two species u and v represent the concentration of repressors, α1 and
α2 the promoters maximal transcriptional activities that are modulated by
the concentration of the two repressors through the cooperativities β and γ.
On the basis of the model, the authors identify the conditions to obtain such
a circuit: the strengths of the two promoters have to be balanced and the
cooperativities have to be greater than one. In this case it is possible to obtain
a network with an unstable equilibrium and two stable equilibria with their
respective basins of attraction. On the basis of the parameters it is possible to
mathematically derive the conditions that determine the separation between
the two basins of attraction. In the practice these conditions are satisfied
tuning the transcriptional output of the promoters used in the assembly of
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the genetic network; this means that the output of the promoters, in terms
of repressor concentration, has to be tuned. This can be achieved varying
the strength of the RBSs used to drive the traslation process. Two main
versions of the toggle-switch have been designed and assembled: one based
on the couple of promoters PLac, inducible by IPTG, and PL, a promoter
from λ-phage, which can be repressed by the cI thermo-stable protein, which
degrades when temperature is raised from 30◦C to 42◦C; the other version
of the genetic toggle-switch is based on PLac and PTet, which is a promoter
inducible by anhydrotetracycline (aTc). Several RBSs were assembled in the
two versions of the circuit and the authors demonstrated the possibility to
assemble functional genetic toggle-switches, satisfying the conditions suggested
by the mathematical model, even if not all the combinations worked as it was
designed. Experimental tests showed the possibility to switch from the OFF to
the ON state and go back again to the OFF state; transition from one state to
the other can be smooth or present a kind of discontinuity. Also the switching
dynamics were taken into account and studied. The importance of this work
lies not only in the demonstration of the possibility to build up a digital-like
genetic circuit but also on the use of mathematical modelling tools to support
the early design steps of the device.

1.5.3 Oscillators

Another milestone of Synthetic Biology is a circuit implementing a ring os-
cillator in E. coli [48]. Like the previous system, it has been designed with the
support of a mathematical model in the early design steps, to investigate its
feasibility and the choice of components with qualitative behaviour compatible
with the expected one. A ring oscillator is a device composed by an odd num-
ber of NOT gates; these are connected in cascade, with the output of the last
one fed back to the input of the first one, so that the system is able to oscillate
autonomously between two logic states, ON and OFF. The repressilator is the
biological counterpart of a ring oscillator: it is basically built up of a cascade of
three inverters and a reporter, a GFP, which gives information about the state
of the system (Fig. 1.9). The authors derived a mathematical model of this
genetic network in order to find out if the system could actually act as a ring
oscillator. The model describes the time course of the cellular concentrations
of the three transcriptional regulators chosen to realize the repressilator : LacI,
TetR and cI, which respectively repress the PLac, PLtetO1 and PL promoters.
The negative feedback loop, essentially caused by three logic inverters, leads
to temporal oscillations in mRNA and protein levels. The equations describe
the repressor protein concentrations p and their corresponding mRNA concen-
trations m; as in [48] the indexes i, j denote the three species (i=LacI, TetR,
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Figure 1.9: The repressilator. The repressilator [48]: the plasmid on the left bears the

three repressors, LacI, tetR and cI, expressed by PL, PLac and PLtetO1 promoters, respectively. The other

plasmid is used to measure the state of the genetic circuit, monitoring GFP fluorescence.

cI; j=cI, LacI, TetR, respectively):

d
dt
mi = −mi +

α
(1+pnj )

+ α0

d
dt
pi = −β · (pi −mi)

(1.9)

In Eq. 1.9 the mRNA concentration is re-scaled by the translation effi-
ciency (ρ) while the protein concentration is re-scaled by the number of re-
pressors needed to half-maximally repress the promoter (KM); α is the maxi-
mum activity of promoter and α0 its basic activity; time is rescaled by mRNA
degradation rate; n is the Hill coefficient and, finally, β is the ratio of protein
degradation rate and mRNA degradation rate. The described model has been
studied in a symmetric framework, where amounts and parameters (α, β, α0,
and n) of the three repressors are identical, except the specificity towards their
corresponding promoter. Depending on the parameter values, the system can
converge to a stable equilibrium or to a sustained limit-cycle, leading to oscil-
lations. In order to meet the specifications for the oscillatory behaviour some
precautions were taken: repressor proteins were modified in order to have a
short half-life through a ssrA tag, which is recognized by proteases, while the
reporter half-life was reduced to 40 minutes [49]. Despite the rational approach
a few problems remain; in fact oscillations with a period of 160 minutes were
observed but the population was not synchronized because of noise in gene
expression, as revealed by single cell analysis. Another source of noise is cell
replication, which introduces another variability source in this genetic network.
A different topology was used in [50] to design an oscillatory network, coupling
a positive and a negative feedback loop in which a hybrid promoter, PLac/Ara,
inducible by arabinose complexed with the activator AraC and repressible by
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Figure 1.10: An example of oscillatory genetic circuit. Positive and negative

feedbacks coupled to obtain oscillations [50]; the coupling of both positive and negative feedbacks was

obtained using a hybrid promoter, PLac/Ara, which is at the same time induced by AraC and repressed by

LacI. It was placed upstream of the coding sequences of lacI, araC and yemGFP.

LacI, was placed upstream of the coding sequences of lacI, araC and a re-
porter: the monomeric yeast-enhanced green fluorescent protein (yemGFP)
(Fig. 1.10). In this way, the genetic network exhibits temporal oscillations
of LacI and AraC in presence of arabinose and absence of IPTG. Moreover,
the oscillation dynamics could be tuned by adding different amounts of IPTG
and/or arabinose, which affect the concentration of active LacI and AraC, re-
spectively. The behaviour of the system was assayed by monitoring the cells
behaviour through a microfluidic device which maintains the nutrient flow con-
stant for the duration of the experiments; the behaviour of the circuit resulted
to be robust, as a high percentage of the cells showed oscillations (99.5 %)
which persisted even in different experimental conditions such as broth type,
temperature and inducers concentration. As before, the cells were initially
synchronized but they lost synchronization after a limited number of replica-
tion cycles, leading to dump oscillations due to the asynchrony of the cells’
state. This circuit was also described by a mathematical model. During model
revision it was noted that different parameters values could lead to oscillations
of the output; moreover, on the basis of the model, the authors were also able
to predict that a constantly activated system with a controlled negative feed-
back loop could also work as an oscillator, in the absence of positive feedback
[50]. Thus, a new topology, where LacI inhibits its own production and the
production of yemGFP (Fig. 1.11), was designed and tested, revealing that in
this case oscillations persist even if they resulted to be less regular and less
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Figure 1.11: Alternative topology of oscillator. An alternative topology proposed

in [50] for oscillating cell cultures; in this topology LacI inhibits its own production and the production of

yemGFP, leading to temporal oscillation of the two species.

tunable by IPTG concentration.

Applying the same design principles as the two previous works, in [51] the
authors managed to synchronize the oscillations of a population of E. coli.
The genetic regulatory network in Fig. 1.12 exploits the genes responsible for
the quorum sensing mechanism of Vibrio fischeri, encoding for the transcrip-
tional factor LuxR and the autoinducer synthetase LuxI which produces the
signalling molecule AHL. This molecule activates the transcriptional regulator
LuxR which is then able to activate the transcription of the PLux promoter.
Another quorum sensing-linked enzyme, the lactonase AiiA, is able to degrade
AHL. LuxR is consitutively expressed, while luxI, aiiA and yemGFP CDSs are
placed downstream of PLux promoters. The dynamic production and degrada-
tion of AHL, upon expression of LuxI and AiiA, respectively, leads to temporal
oscillations of autoinducer and, as a consequence, of yemGFP. Synchronization
is due to the nature of the regulatory signal, which is diffusible throughout the
population and thus it is not affected by cell-to-cell variability as in the other
oscillator designs. A peculiar microfluidic system has been used to study the
behaviour of this genetic circuit: it is composed by a small chamber, where cells
are trapped, and a channel able to feed the chamber with fresh medium flowing
at user-defined velocity. In this way, cells and also the signalling molecule can
be washed out and this has to be taken into account as the flow velocity is
responsible for the AHL concentration and, hence, of the oscillations period.
Because AHL is washed away and enzimatically degraded by AiiA, when cell
density is low the PLux promoter is not able to start transcription; however,
when the cell density reaches a critical value the PLux promoter is activated
and the three genes are transcribed. For this reason it is possible to see a tran-
sient fluorescent signal, which then attenuates because of the short reporter
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Figure 1.12: Synchronized oscillator. Schematic representation of the regulatory network

that leads to synchronized oscillations in E. coli [51], exploiting the quorum sensing mechanism of the marine

bacterium V. fischeri to synchronize the cells behaviour. luxI, aiiA and yemGFP are placed downstream of

the PLux promoter; in this configuration the production and degradation of AHL lead to the oscillation of

yemGFP signal.

half-life and because the AiiA enzyme degrades the AHL signalling molecule
so that PLux promoter transcriptional activity is no more induced. Here the
AHL has a double role: it is responsible for the transcriptional activity of the
three genes and also is the way through which cells communicate and synchro-
nize their state. A mathematical model was used to quantitatively describe
the behaviour of this oscillator, finding that a broad range of parameters could
lead to oscillations; moreover, through simulation, it was demonstrated that
if communication between cells is avoided oscillations cannot be synchronized
anymore.

1.5.4 Pulse generator

Another interesting circuit that was considered in Synthetic Biology is the
pulse generator, which is a system capable of transiently switch on a pattern
generating a pulse with peculiar features, like, for example, its duration. The
pulse generator has been designed and assembled in [52] by using AHL as in-
put signal, which triggers the pulse generation. AHL can be either provided
exogenously or produced by a population of sender cells containing a LuxI
expression system. In order to realize such a genetic circuit in a general way,
a population of sender cells and a population of receiver cells were designed
(Fig. 1.13): senders harbour an inducible circuit that produces AHL upon aTc
induction, while receivers, i.e., the pulse generator cells, harbour a plasmid
for the constitutive production of LuxR transcriptional factor which, in the
presence of sufficiently high AHL concentrations, activates the PLux promoter.
This promoter has been assembled upstream of the coding sequence of the cI
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Figure 1.13: Pulse generator. Working of the pulse generator [52] when two different cell

populations are present: a sender population that generates the signal represented by AHL which is in turn

sensed by the receiver population that implements the pulse generator.

repressor, while a modified PLux promoter, with an additional cI operator site,
drives the transcription of an ssrA-tagged green fluorescent protein (GFP).
This way, when AHL induces the transcription of the PLux promoter, cI and
GFP are produced; however, when the cI repressor reaches a critical intracellu-
lar concentration, it binds the operator site placed downstream of the modified
PLux sequence, thus blocking the transcription of GFP. As a result, after AHL
induction, fluorescence increases, reaching a maximum value and then, after
the cI repressor blocks GFP production, it turns off again.

The authors first focused on the pulse generator cells in liquid cultures,
maintained by dilutions at optical densities of 0.1 - 0.3: a small library of cir-
cuits including RBSs of different strengths upstream of cI and two different cI
repressors (with different affinities towards the operator sites) was constructed
to test the possibility to obtain the desired behaviour and to tune the pulse
characteristics; it was found that not all the combinations lead to a pulse
generator-like genetic network. One of the functional candidates was tested
and several features of the circuit were discovered and investigated. First of
all, the pulse amplitude, i.e., the maximum fluorescence produced by cells, de-
pends on the concentration of AHL, reaching a saturation value around 50 nM.
Then the authors studied the behaviour of the system when AHL is added at
different rates: in this case they discovered that the faster the induction, the
faster the shut down. This was probably due to the delay introduced in the
system by the transcription and translation processes regarding the cI repres-
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sor. It was also found out that after the first pulse a refractory period occurs,
thus obtaining a fluorescence intensity similar to the first pulse after about 140
minutes.
The pulse generator was also studied in terms of spatio-temporal behaviour,
spotting a sender on a solid medium and observing the fluorescence of sur-
rounding pulse generator cells. As expected, the nearest cells acted as a pulse
generator, while the most distant cells did not induce. Obviously, the signal
propagates with finite velocity, so that the pulse of the farther cells is delayed
if compared to the one of the nearest cells.
Moreover, a mathematical model with 23 species has been derived; its 44 pa-
rameter values were mainly obtained from the literature or given reasonable
values. Focusing on the transcription, translation, and decay of cI and GFP,
1000 sets of randomly chosen parameters were taken into account to find the
combinations that best matched experimental observations [52]. Once the best
combination was identified, the model was used to further investigate the cir-
cuit behaviour: the model well described the behaviour of the system, although
it was not used for a pure bottom-up approach. However, it could be useful
when assembling new genetic networks similar to or relying on the pulse gen-
erator.

1.6 The importance of negative feedback reg-

ulation and examples of application

Arising from the control theory, in the last few years the assembly of reg-
ulatory networks capable of reacting to changes in environment, controlling
interesting pathways, has become more and more important. In fact there are
a lot of examples of pathways that need to be dynamically regulated, in order
to maximize the yield of the production of the molecule of interest. Up to the
present, several works focused on the possibility to rationally design and pre-
dict the level of expression for a particular gene of interest as a function of the
promoters strength [26, 30], the RBSs translation initiation rate [21, 28] and
the plasmid copy number [53]. In this framework, computational methodolo-
gies have also been developed, with the aim of studying gene deletion strategies
to maximize the fluxes of interest [54]. All of these strategies aim at determin-
ing an optimal flux through a pathway but they are poorly flexible as there is
not any sensor or feedback which could modify the flux dynamically regarding,
for example, cell density or the amount of a specific accumulated molecule. On
the other hand dynamical control could lead to better yields as it can prevent
the accumulation of toxic intermediates modulating fluxes but it is certainly
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much more difficult to achieve. Hence there is a trade-off between the easiness
of statically balancing a flux and dynamically controlling it, raising the yield
[55]. From these arguments derives the need to rationally design and realize
genetic regulatory networks that are able to sense the presence of toxic by-
products that can affect the yield of a process; for example, a robust negative
feedback controller can be useful in order to flexibly regulate the expression of
a gene of interest regarding some important parameters.
Negative feedback could be a solution to face the problem of dynamically reg-
ulating the output of a genetic circuit or reducing noise in gene expression. It
has been demonstrated in [56] that, with different topologies, a genetic regu-
latory network is able to reduce noise, shifting its frequency from low to high
values; this is very important as downstream modules can easily filter-out this
component of noise that cannot impact the system output anymore. Results
were confirmed through mathematical modelling of the three different topolo-
gies that were used as proof of concept. Another important proof of concept
was realized in Saccharomyces cerevisae where a testbed circuit, controlling
the expression of a target gene fused with a GFP as a reporter, has been mod-
elled and tested. This circuit implements a feedback regulation [57] that has
been studied in a particular microfluidic set-up, controlling its outcome as a
function of galactose and glucose concentration.
Several other works in Synthetic Biology have focused on the implementation
of negative feedback loops. For example, a genetic network that implements
the dynamic control of the production of a target protein has been realized, us-
ing a regulatory system which is capable of sensing the formation of inclusion
bodies, insoluble aggregates of recombinant proteins that need downstream
processing to become functional again [58] and produce stress on cells. The
regulation introduced by the authors can face all of those problems that affect
heterologous protein over-expression; in fact a lot of variables are involved in
this process (e.g., host strain, medium composition, process conditions) and
could impact on outcome and also the cells state. An IPTG inducible device
drives the production of the protein of interest while the accumulation of the
protein is able to induce a stress sensitive promoter, PIbpAB, that is placed
upstream of a repressor coding sequence, able to down-regulate the transcrip-
tion of the target product (Fig. 1.14). The sensing system, composed by the
PIbpAB promoter and its RBS was engineered in order to span dynamic range of
target protein expression. Following a model-based fine tuning approach, the
behaviour of the stress-inducible promoter was first investigated using RFP
protein as output and focusing on the different dynamic range obtained vary-
ing the stress sensitive promoter-RBS pair driving RFP expression. After this,
the whole genetic network was deeply examined. In order to have an easy to
measure quantity, the target protein of this work was the green fluorescent
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Figure 1.14: Negative feedback for protein production. Schematization of a

negative feedback control for the production of a recombinant protein [58]. The production of a recombinant

protein, using a regulated promoter, increases the stress of the cell; a stress sensitive promoter is used to drive

the transcription of the repressor protein that down-regulates the transcriptional activity of the promoter

placed upstream of the coding sequence of the recombinant protein.
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protein (GFP), while the input promoter was engineered in order to be re-
pressed by the TetR repressor. It was observed that the GFP yield without
the negative feedback was higher, even if in this case a great percentage (over
40 %) was insoluble due to the formation of inclusion bodies. In the case
of negative feedback regulation the total amount of GFP per cell was clearly
lower because of the regulatory mechanism, but in general the soluble fraction
was higher. A system of delayed differential equations was used to capture the
behaviour of the genetic circuit: it takes into account mathematical description
of the input device, the recombinant protein production and the stress-induced
expression of the repressor. Its parameters were partially estimated from ex-
perimental data, whereas some of them were retrieved from previous works:
the predictions were quite in agreement with experimental data, even though
some phenomena such as the depletion of the cell resources for the production
of TetR repressor were not modelled. However, despite some discrepancies,
this work demonstrated the possibility to increase the yield of a common path-
way used in industrial production of recombinant proteins, through a negative
feedback loop.

Similarly, in order to obtain a better yield in fatty acids ethyl ester (FAEE)
for biodiesel production from sugar, a dynamic sensor-regulator system (DSRS)
was proposed in [15]. This mechanism allows for optimal expression of the
genes involved in this particular metabolic pathway, preventing from the ac-
cumulation of toxic by-products that can slow down cultures growth or de-
termining adaptive responses that lead to suboptimal yield and productivity.
Considering fatty acids as the intermediate to control, the biosensors used in
this study exploit the fatty acid sensing protein FadR (a regulator protein
which regulates the fatty-acid beta oxidation, whose binding to the target se-
quence is inhibited by long chain fatty acyl-CoA compounds) and its cognate
regulator. The sensor module was engineered focusing on the promoter: the
PfadBA DNA binding sequence of natural E. coli promoter, which is a target for
FadR, was used to engineer the PL promoter from λ-phage and PR promoter
from phage T7. When fatty acids are absent, the output of these promoters
is expected to be low as the FadR regulator binds to the FadR recognition
sites of the promoter sequence; otherwise, when fatty acids are present they
are activated to acyl-CoA by acyl-CoA synthase (encoded by fadD) and FadR
binds to them, releasing the promoter. In this way, the authors managed to
obtain a 60-fold fluorescence change as a function of oleic acid, much higher
than that of native promoters. As reported in Fig. 1.15 the fatty-acid sensitive
promoter was placed upstream of the ethanol pathway genes, pdc and adhB,
and upstream of the fadD and atfA, respectively responsible for the produc-
tion of acyl-CoA synthesis from fatty acids and condensation of intermediates
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Figure 1.15: FAEE pathway. Representation of the complex pathway for the production of

FAEE in E. coli [15]; the authors introduced a negative feedback based on the sensing of the fatty acids

concentration through the mechanism of the FadR regulator protein. Module A is fundamental for the

production of fatty acids; module B contains the pdc and adhB genes for the conversion of sugars into

ethanol; the products of modules A and B are processed by the protein expressed by module C, an acyl-CoA

synthase FadD, and a wax-ester synthase, AtfA, to form FAEE.

to the final product, the FAEE. Ideally, this way, the production of FAEE
can be tuned dynamically by intermediates concentration, avoiding their accu-
mulation or their utilization to the detriment of cells basic functions, such as
membrane biosynthesis. Different DSRSs were implemented, obtaining good
results as the yield of the process reached 28 % of the theoretical maximum, in
contrast to the 9.4 % of the state of the art strain, which does not implement
dynamic feedback control [15]. These results were confirmed also comparing
the productivity of the DSRS strains to that of cultures implementing static
control. Moreover, a mathematical model of 26 rate constants and 19 molec-
ular species has been used to simulate the system and to compare the DSRS
and the static control; in accordance with the experimental data, it was found
out that the DSRS topology can improve the yield across a broad range of
promoter strengths.

A system that controls the growth of cell cultures through a negative feed-
back regulation has been implemented, again exploiting the quorum sensing
mechanism of V. fischeri [59].

The genetic circuit is represented in Fig. 1.16: the authors placed the luxR
and luxI genes under the transcriptional control of the PLac promoter, while the
ccdB gene, encoding a toxic protein, fused with lacZα, was placed downstream
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Figure 1.16: Controlling population dynamics. The system that controls population

growth through cell-cell communication [59]; cells induced with IPTG produce the AHL, whose concentration

is proportional to the number of cells. As the culture grows, the AHL reaches a critical concentration and

the ccdB toxic protein is expressed and causes cells death. R represents the LuxR transcription activator, I

the LuxI AHL synthetase, E the ccdB toxic protein.

30



1.6. The importance of negative feedback regulation and examples of application

of the PLux promoter. A mathematical model (Eq. 1.10) that captures the
main features of the system has been proposed.

d
dt
N = k ·N · (1− N

Nm
)− d · E ·N

d
dt
E = kE · A− dE · E

d
dt
A = vA ·N − dA · A

(1.10)

N is the number of cells, E the per cell concentration of the killing protein
and A the AHL concentration which is supposed to be the same inside and
outside the cells. d is the killing rate of cells due to the intracellular concen-
tration of E, kE is the production rate of E, dE its degradation; finally vA is
the rate constant for AHL production, proportional to N , while dA is the AHL
degradation. Parameters were identified from experimental data. At low cell
densities, the AHL concentration is not sufficient to activate the killing mod-
ule. When cells grow, AHL reaches a sufficient concentration that is capable
of triggering the production of the toxic protein. The pH-dependent stability
of AHL was exploited to reach the desired steady state of cell density: by us-
ing pH as a control signal, AHL reaches different concentration levels (higher
for lower pH values) and thus cells can reach different stationary phase levels.
However, the genetic tuning of the circuit was not tested, even if mathematical
models may aid such process.

Taken together, the provided examples have shown that complex engineering-
inspired circuits can be successfully realized and mathematical modelling is a
powerful tool to aid their design. The central issue in the engineering of biolog-
ical circuit is the bottom-up design: all the cited examples relied on trial-and-
error design approaches or model-guided semiquantitative design steps, but a
rigorous bottom-up process has not been validated yet on a large scale. Only
a few examples of successful prediction of interconnected networks, composed
of characterized modules, have been reported. Since negative feedback control
is widely used in the engineering world and, similarly, as described in the last
examples, it could bring to complex adaptive circuits in Synthetic Biology, this
thesis focuses on the bottom-up design of a synthetic close-loop controller in
E. coli.
The aim of this network is to regulate the concentration of a signalling molecule
(3-oxohexanoyl homoserine lactone - 3OC6-HSL, also called HSL or AHL) in
liquid bacterial cultures. In order to follow a pure bottom-up approach, a
mathematical model has been derived for the full circuit and its parameters
have been identified from ad-hoc acquired experimental data on subsystems
(smaller functional units of the whole network). Finally, the goodness of the
model is based on the comparison between predictions and experimental data
obtained from the full system. The thesis describes the whole design process
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of this circuit, from parts selection to the final circuit testing.
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Chapter 2
Materials and methods

In this chapter the laboratory materials, instruments and experimental
set-up used to study the genetic controller will be presented. Then, the de-
sign process adopted to engineer the circuit will be described. Finally, the
mathematical modelling techniques will be illustrated, focusing on the charac-
terization of the circuit subparts and subsystems and on the prediction of the
full system behaviour.

2.1 Materials

2.1.1 Media

LB broth was used to grow cultures propagating the plasmids of interest;
it was prepared according to the protocol reported in [60]:

• 10 g/L Bacto-tryptone;

• 5 g/L Yeast Extract;

• 10 g/L NaCl.

When preparing LB agar plates 15 g/L agar was added.
M9 medium [60] was used to grow bacteria in all the quantitative experiments
because of its low autofluorescence; it was prepared following this protocol:

• 739 mL/L of autoclaved deionized water;

• 100 µL/L CaCl2 1 M;

• 200 mL/L of 5 X M9 salts (M6030, Sigma Aldrich);
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2. Materials and methods

• 20 mL/L casamino acids 10%;

• 34 mL/L thiamine hydrochloride 10 mg/mL;

• 5 mL/L glycerol 80%;

• 2 mL/L MgSO4 1 M.

In promoters, enzymes and final system tests, M9 was pH-adjusted to 6 by
adding a proper volume of hydrochloric acid (Sigma Aldrich) to grant a higher
3OC6-HSL stability (see App. A); in 3OC6-HSL quantification experiments,
the pH was not adjusted and it was near 7.

2.1.2 Inducers

In this work three inducers were used; these chemical compounds regulate
the transcriptional activity of the promoters adopted in the realization of the
regulatory network presented and its subsystems.

• Anhydrotetracycline (aTc) (631310, Clontech) is a tetracycline ana-
logue, able to bind the TetR repressor and up-regulate the transcriptional
activity of the PTetR promoter, which is not repressed anymore by TetR.
Stock solution is 2 mg/mL concentrated and is stored at -20◦C.

• Isopropyl-β-D-1-thiogalactopyranoside (IPTG) (I1284, Sigma Al-
drich) is a non-metabolizable galactose analogue which is able to bind
the LacI repressor and triggers the activity of the PLac promoter, which is
not repressed anymore by LacI. IPTG is given at 200 mM concentration
and stored at -20◦C.

• 3-oxohexanoyl homoserine lactone (3OC6-HSL) (K3007, Sigma
Aldrich) is a chemical compound found in some marine bacteria such
as V. fischeri. This molecule was exploited in the experiments regarding
the activation of the PLux promoter and the 3OC6-HSL concentration
measurement. It is purchased as a powder stock, which is dissolved in
deionized water to prepare a 2 mM solution and stored at -20◦C.

2.2 Cloning

Each part used in this work is compliant to the BioBrick™ Standard [23,
24]. Consequently, every junction found between parts after assembly, the
so called scar, has the TACTAG sequence if the downstream part is a CDS
or, otherwise, the TACTAGAG sequence. TOP10 E. coli competent cells
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Figure 2.1: Tecan Infinite F200. Photograph of the Tecan Infinite F200 used in this

work to dynamically measure optical density and fluorescence in liquid cell cultures. It is composed by a

central unit, the bigger one, and an injection unit; the former contains the filters and the circuitry that

performs measurements and is designed to accomodate the 96-well microplates. The latter is composed by

the circuitry and the fluidics necessary to automatically dispense liquid in the plates. On the right, a typical

96-well microplate is also shown.

(Invitrogen) were used to propagate the intermediate parts while final parts
were transformed in home-made competent MG1655-Z1 cells [60]. Machery-
Nagel kits were used for DNA purification. Cells were selected with the proper
antibiotic: if transformed with pSB4C5 plasmid, then selection was made in
chloramphenicol at 12.5 µg/mL, while 20 µg/mL of kanamycin were used to
select cells transformed with pSB3K3 plasmid; if both plasmids were present,
the selection was done in 12.5 µg/mL chloramphenicol together with 20 µg/mL
kanamycin. Once transformed, they were long-term stocked in 20% glycerol at
-80◦C; glycerol stocks were prepared with 250 µL 80% glycerol and 750 µL cells
grown in LB with the proper antibiotic. All plasmids were assembled using
basic or composite parts from the Registry [22] 2009, 2010 or 2011 Distribution
(Tab. 2.1).

2.3 Instruments

2.3.1 Tecan Infinite F200

The Tecan Infinite F200 (Fig. 2.1) is a microplate reader that is used in
several applications, thanks to its flexibility and modularity. Different kinds of
microplates can be used for this instrument, ranging from 6 to 384 wells. The
machine is able to measure absorbance, fluorescence and luminescence through
a system including lamp, detectors and filter-containing slides. A mechanical
system that dispenses liquid in the wells is also available.

The i-control™ software is used to program the Infinite F200. Users can pro-
gram kinetic cycles to measure the quantities of interest at a specific sampling
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Table 2.1: List of parts and plasmids used to design the genetic de-
vices. BioBrick™ codes are reported according to the Registry of Standard Biological Parts. RBS strength

is reported as described in the individual Registry pages of RBSs (measured via a specific reporter system),

even though their efficiency may significantly change in different applications.

BioBrick™ Description
BBa J23101 constitutive promoter

used as a standard reference
BBa R0040 TetR-repressible

promoter
BBa R0062 LuxR-3OC6-HSL

inducible promoter
BBa B0030 medium-strong RBS
BBa B0031 weak RBS
BBa B0032 medium-weak RBS
BBa B0034 strong RBS
BBa C0060 AiiA lactonase from

Bacillus sp. 240B1 [61]
BBa C0061 luxI CDS,

3OC6-HSL synthetase
BBa E1010 RFP coding sequence
BBa B0015 double terminator
pSB1A2 high copy number plasmid

(pUC19-derived pMB1 replication origin) [24]
pSB3K3 medium copy number plasmid

(pMR101-derived p15A replication origin) [62]
pSB4C5 low copy number plasmid

(pSC101 replication origin) [24]
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2.3. Instruments

time. It is also possible to set the inner temperature of the instrument and
shaking movement of the microplate. In this way, several hour-long incubation
experimental tests can be performed, monitoring the quantities of interest. In
this work the instrument was used to measure mainly two quantities in liquid
cultures in 96-well microplates:

• the optical density at 600 nm (OD600) which is a quantity proportional
to the per-well cell number. It is defined as:

OD600 = − log10
I
I0

where I0 is the intensity of the incident radiation while I is the intensity
of the transmitted radiation;

• the red fluorescence of cultures (excitation wavelength: 535 nm; emission
wavelength: 620 nm).

In every experimental measurement performed with the Infinite F200 reader
experimental controls are used to normalize the two quantities of interest: in
particular, the optical density of sterile both is used to normalize the growth
of cultures while the fluorescence of a culture that does not produce the fluo-
rescent reporter of interest is used as blank for the fluorescence signal.

2.3.2 LAMBDA MINIFOR fermenter-bioreactor

The LAMBDA MINIFOR is a laboratory-scale fermenter-bioreactor that
can be used to carry out batch, fed-batch or continuous fermentation experi-
ments in a temperature/pH/oxygen-controlled environment (Fig. 2.2). In par-
ticular, the continuous operation mode is used to maintain a liquid culture at
a fixed density and, in this case, the set-up is also called chemostat (Sec. 2.8).
It is composed by:

• a 0.4 L glass vessel which can be autoclaved-sterilized; it has a set of
glass necks through which probes can be immersed in the contained liq-
uid and detect some parameters that need to be controlled in a typical
fermentation process (i.e., pH, temperature and pO2). These glass necks
can also be used to dispense acids or bases when controlling the pH or
to sample the culture contained in the vessel, through a sampling port,
without the risk of contaminating the inner environment;

• a screw cap that tightly closes the vessel and insulates it from the external
environment by a silicone membrane. A stirring axis is linked to it so
that it is possible to assemble mixing discs on it;
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Figure 2.2: The LAMBDA MINIFOR fermenter-bioreactor. Photograph

of the fermenter-bioreactor used in this work to maintain liquid cultures at a constant OD600.
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• a motor unit that moves the stirring axis in order to mix liquid cultures;

• a pO2 probe to monitor the concentration of dissolved oxygen in liquid
cultures;

• a pH-temperature probe which detects both the pH and temperature of
the liquid culture. In order to have reliable measurements the pH probe
is calibrated with gauging solutions;

• peristaltic pumps used to inject solutions, e.g., to adjust the liquid cul-
tures pH, or to extract the content of the vessel. Peristaltic pumps can be
either programmed by the user with a fixed flow rate (e.g., when running
experiments in chemostatic conditions) or they can be controlled by the
central operating unit which elaborates the parameters of interest and
calculates the rate of the pumps (e.g., for base addition in pH-controlled
experiments);

• a central operating unit that allows the user to set parameters such as
temperature, pH and stirring frequency. It also contains the heating
module and is responsible for the regulation of the above mentioned
parameters as it implements control algorithms that automatically set
the pump rates (if required) and the heating power.

2.4 Circuit design

The circuit design will be herein described; the choice of promoters, genes
and strain used to implement the negative feedback controller will be discussed.
The overview of the designed system is shown in Fig. 2.3 and will be extensively
discussed in the following sections.

2.4.1 Parts selection

The genetic parts used in this study come from the MIT Registry of Stan-
dard Biological Parts. The system, depicted in Fig. 2.3, controls the concentra-
tion of the 3-oxohexanoyl homoserine lactone (3OC6-HSL), a small signalling
molecule that freely diffuses through the E. coli cell membranes. The control
is actuated via luxI and aiiA genes. The former encodes for an autoinducer
synthetase from marine bacterium V. fischeri, which synthesizes the autoin-
ducer molecule 3OC6-HSL, while the latter encodes for a lactonase enzyme
from the Bacillus sp.240B1 that is able to degrade 3OC6-HSL intracellularly
[61]. Two regulated promoters are used to modulate the transcription of these
two genes: the PTetR promoter, inducible by anhydrotetracycline (aTc), drives
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the luxI transcription and the PLux promoter, whose transcriptional output
is inducible by 3OC6-HSL, modulates aiiA transcription. The PLux promoter
requires the LuxR transcriptional activator to be turned on by 3OC6-HSL:
LuxR is able to form a complex with 3OC6-HSL (two molecules of LuxR bind
two molecules of 3OC6-HSL, giving a heterotetramer) and finally this com-
plex binds the lux box DNA sequence, contained in PLux, to up-regulate its
transcriptional activity. The circuit contains a constitutive expression cassette
for the luxR gene, driven by the PLac promoter. On the other hand, the PTetR

promoter requires the TetR repressor to be an effective inducible system: TetR
(a homodimer) represses PTetR, but the aTc inducer can bind TetR, thus lib-
erating the promoter and triggering its activity. For this reason, the circuit
also requires a constitutive expression of TetR to be actually inducible by aTc.
Although the tetR gene is not explicitly present in the circuit, it is contained in
the strain genome, as it will be described in Sec. 2.4.2. The intracellular con-
centrations of LuxI and AiiA are function of the upstream promoters strength,
promoter induction level and RBS strength. For this reason, RBSs must be
chosen to ensure that the enzymes are properly translated from mRNA into
proteins.

Taken together, the described elements implement a negative feedback:
3OC6-HSL is produced by LuxI; when 3OC6-HSL reaches a critical concentra-
tion, it triggers AiiA production which degrades it, thus self-regulating its con-
centration. Fig. 2.3 illustrates the whole designed circuit and the interactions
among its elements. Each part has a code, which corresponds to the BioBrick™
code in the Registry of Standard Biological Parts. Since the RBSs of luxI and
aiiA require a proper tuning, their code is not included and it will be selected
from a list of candidates, compatible with the correct circuit behaviour. The
copy number of the described elements also needs to be tuned for the same
reasons, by selecting suitable plasmid vectors according to their replication
origins, which determine specific DNA copies per cell. The basic subsystems
of the circuit presented in Fig. 2.3 have been assembled or extracted from the
Registry collection to construct the final circuit and the required subsystems
to characterize promoters and enzymes. These subsystems are:

• PTetR promoter driving RFP transcription in pSB4C5 plasmid vector;

• PTetR promoter driving RFP transcription in pSB3K3 plasmid vector;

• PLux promoter driving RFP transcription in pSB3K3 plasmid vector;

• PTetR promoter driving luxI transcription in pSB4C5 plasmid vector;

• PTetR promoter driving aiiA transcription in pSB3K3 plasmid vector;

40



2.4. Circuit design

Figure 2.3: Schematic representation of the negative feedback for the
control of 3OC6-HSL in E. coli. Design of the synthetic genetic controller, realized in E.

coli MG1655-Z1. The TetR repressor is constitutively produced by the tetR gene, placed in the MG1655-Z1

genome. The PTetR promoter, inducible by aTc, is placed upstream of the luxI coding sequence, tuning

its transcription rate. Once translated, the LuxI enzyme produces the 3OC6-HSL which, together with the

LuxR transcription factor constitutively expressed by the PLac promoter, up-regulates the transcriptional

output of the PLux promoter. This, in turn, is placed upstream of the aiiA coding sequence, which encodes

for a lactonase, an enzyme able to degrade 3OC6-HSL. This mechanism, properly tuned, is expected to

regulate the concentration of 3OC6-HSL in E. coli cultures.
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• BBa J23101 reference promoter with RFP in pSB3K3 plasmid vector.

2.4.2 Strain selection

The MG1655 strain of E. coli [63] has a fully-sequenced genome, available
in biological databanks, and it is widely used in many research studies. A
particular engineered strain, called MG1655-Z1 and derived from MG1655,
was used in this work [64, 65]. It has a Z1 cassette integrated in its genome
in the λ-att locus. The Z1 cassette contains a constitutive over-expression
cassette for TetR and another one for LacI, which down-regulate the PTetR

and PLac transcriptional activities, respectively. In this way it is possible to
tune the PTetR and PLac promoters by adding a proper concentration of aTc
and IPTG, respectively. The designed close-loop controller circuit has a PTetR

promoter which can be effectively tuned to produce LuxI. The synthetic circuit
also contains a LuxR expression cassette driven by PLac, which is inhibited by
LacI in the MG1655-Z1 strain. In this case, the basic activity of PLac (i.e.,
its activity in the repressed state) is exploited to produce LuxR at low, but
sufficient levels to activate PLux in presence of 3OC6-HSL.

2.5 Data processing for Scell
SS computation

OD600 and RFP time series acquired with the Infinite F200 reader need
to be processed before evaluating the measures of interest, such as Scell. The
commonly used protocol, programmed via the i-control™ software (Tecan), is
a kinetic cycle with this features: linear shaking (3-mm amplitude, 15 s), wait
(5 s), OD600 measurement, fluorescence measurement (excitation at 535 nm,
emission at 620 nm, gain=50, to detect RFP signal), repeat cycle every 5
min. For each experiment, control wells were used to normalize the quantities
of interest: sterile broth was used as a blank for absorbance, while a non-
fluorescent culture was used to normalize the measured fluorescence. Raw
absorbance and fluorescence data were always subtracted the respective blank.
After data pre-processing, in order to compute the synthesis rate per cell (Scell),
the numerical derivative of fluorescence was divided by the respective OD600

time series. The signal was averaged during the exponential phase of cultures
growth, thus obtaining the synthesis rate per cell at the steady state, namely
Scell

SS. It was expressed as red fluorescent arbitrary units per cell per minute
(A.U.r cell

−1 min−1).
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2.6 Mathematical modelling and parameter iden-

tification

A mathematical model of the whole regulatory network herein presented
has been derived; it is based on Ordinary Differential Equations (ODEs) and
takes into account the dynamics of inducible promoters, enzymes and the sig-
nalling molecule 3OC6-HSL. According to the bottom-up approach adopted in
this work, the model was used to predict the behaviour of the whole designed
system, with parameter values identified from subsystems. This situation is
analogous to the retrievement of static/dynamic characteristics of the compo-
nents of interest from a data-book and the prediction of the interconnected
system behaviour from the knowledge of individual components quantitative
behaviour. Here, ad-hoc subsystems were designed, characterized and used to
identify all the full model parameters. Parameters were identified using the
lsqnonlin routine in MATLAB R2011b (MathWorks, Natick, MA).
The mathematical model of the whole genetic regulatory network will be in-
troduced, giving explanation of the parameters; then subsystems and their
relative models will be presented explaining the protocols and measurement
strategies adopted.

2.6.1 Model of the full synthetic close-loop regulator

An ODE model of the complete system presented in Fig. 2.3 has been de-
rived. It is useful to underline the hypotheses that lie behind the mathematical
formalization of the behaviour of the genetic circuit:

• as LuxR is constitutively produced under the control of the PLac pro-
moter, the model only takes into account the 3OC6-HSL concentration
to describe the transcription activation of the PLux promoter;

• all the molecules are expressed as intracellular concentrations except
3OC6-HSL, which can freely diffuse through cell membranes and, for
this reason, the inner and the outer concentrations are assumed to be
the same;

• protein production, triggered by a given chemical inducer concentration,
is modelled as described in Sec. 1.3 with the exception that transcription
is not explicitly modelled, while translation is described by a differen-
tial equation with protein synthesis rate per cell (P ); P is also a state
variable assumed to have a first-order dynamics, with time constant 1

rpX
.

It empirically summarizes the processes from transcription activation to
the synthesis of a functional protein. dP

dt
is expressed as a synthesis rate

per cell per min, A.U. cell−1 min−1;
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• OD600 is proportional to the cell concentration in liquid cultures and is
used to describe the cellular growth;

• growth of bacterial cultures was modelled as a logistic function described
by two parameters: the growth rate and the saturation value;

• the relation between the promoter output and inducer concentration was
modelled as a Hill function, described by a maximum output, a basal
activity, a dissociation constant and a Hill coefficient;

• the enzymes activities were modelled as Hill functions of the intracellu-
lar enzymes concentration. They are described by three parameters: a
maximum activity, a half-saturation constant and a Hill coefficient. In
this case no basal activity was introduced when no enzyme is present;

• first-order degradation for enzymes, due to a degradation tag in the pro-
tein sequence, is taken into account as well as the linear spontaneous
degradation of 3OC6-HSL.

The controller is described by the following equation system (Eq. 2.1) when
it is considered in batch cultures:

d
dt
OD600 = µ ·OD600 ·

(
1− OD600

OD600,max

)
d
dt
PTetR = −rPTetR

· PTetR + rPTetR
· αPTetR

·

δPTetR
+

1−δPTetR

1+

(
kPTetR
[aTc]

)ηPTetR


d
dt
PLux = −rPLux

· PLux+ rPLux
· αPLux

·

δPLux
+

1−δPLux

1+

(
kPLux
[HSL]

)ηPLux


d
dt
[LuxI] = PTetR− (µ+ γLV A) · [LuxI]

d
dt
[AiiA] = PLux− (µ+ γLV A) · [AiiA]

d

dt
[HSL] = OD600 ·

 kLuxI,max

1 +
(

kM,LuxI

[LuxI]

)ηLuxI

+

−

OD600 ·
kAiiA,max

1 +
(

kM,AiiA

[AiiA]

)ηAiiA
+ γHSL

 · [HSL]

(2.1)
The species modelled are the cell growth, OD600, the promoters synthe-

sis rate, PTetR and PLux, the enzymes per cell concentrations, [LuxI] and
[AiiA], and the 3OC6-HSL concentration, [HSL]. In Eq. 2.1 OD600,max is a
parameter that represents the saturation value for cultures growth, while cell

44



2.6. Mathematical modelling and parameter identification

growth rate is µ. Promoters Hill functions are described by αpX , δpX , kpX and
ηpX , while rpX describes the first-order dynamics of protein synthesis, following
promoter induction. kX,max, kM,X and ηX are the Hill parameters for enzymes
activity. Their intracellular level is modulated by the synthesis rates indirectly
triggered by promoter induction and by the degradation due to LVA tag, repre-
sented by γLV A

1, which was always set to the one estimated in [49]. Moreover,
enzymes are diluted because of cell division at the same rate of cells growth,
µ. Finally, the spontaneous degradation of 3OC6-HSL was described by γHSL.
Parameter description and measurement units are summarized in Tab. 2.2.

When considering the continuous culture mode (i.e., the chemostat, de-
scribed in Sec. 2.8), equations are slightly different as 3OC6-HSL is washed
away at the same rate of bacterial growth. The relative equation system is
shown in Eq. 2.2:

d
dt
OD600 = 0

d
dt
PTetR = −rPTetR

· PTetR + rPTetR
· αPTetR

·

δPTetR
+

1−δPTetR

1+

(
kPTetR
[aTc]

)ηPTetR


d
dt
PLux = −rPLux

· PLux+ rPLux
· αPLux

·

δPLux
+

1−δPLux

1+

(
kPLux
[HSL]

)ηPLux


d
dt
[LuxI] = PTetR− (µ+ γLV A) · [LuxI]

d
dt
[AiiA] = PLux− (µ+ γLV A) · [AiiA]

d

dt
[HSL] = OD600 ·

 kLuxI,max

1 +
(

kM,LuxI

[LuxI]

)ηLuxI

+

−

OD600 ·
kAiiA,max

1 +
(

kM,AiiA

[AiiA]

)ηAiiA
+ γHSL + µ

 · [HSL]

(2.2)

In this case, the OD600 was maintained at the constant level OD600(t0),
while the 3OC6-HSL decay accounts also for the dilution rate µ, which repre-
sents 3OC6-HSL wash due to culture dilution. The mathematical model was
used first of all to simulate the behaviour of the system and to verify the possi-
bility to obtain a controller varying the values of the parameters in a reasonable
range. Once the parameters from subsystems were estimated, the identified
model was used to check whether simulations match the actual behaviour of

1LVA tag is a sequence of amino acids recognized by specific intracellular proteases al-
lowing a faster protein degradation
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Table 2.2: Parameters of the model of the genetic controller. List of the

model parameters with their respective description and measurement units.

Parameters

Name Description Measurement Unit
µ Growth rate of liquid culture min−1

OD600,max Saturation value for liquid cultures optical density cell
rPTetR

Activation rate of PTetR promoter min−1

αPTetR
Maximum output of PTetR promoter A.U. cell−1 min−1

δPTetR
Percentage leakage of PTetR promoter -

kPTetR
Half saturation constant of PTetR promoter ng/mL

ηPTetR
Cooperativity of PTetR promoter -

rPLux
Activation rate of PLux promoter min−1

αPLux
Maximum output of PLux promoter A.U. cell−1 min−1

δPLux
Percentage leakage of PLux promoter -

kPLux
Half saturation constant of PLux promoter nM

ηPLux
Cooperativity of PLux promoter -

γLV A Degradation rate due to LVA tag min−1

γHSL Spontaneous 3OC6-HSL degradation rate min−1

kLuxI,max Maximum LuxI a expressed asctivity nM cell−1 min−1

kM,LuxI Half saturation constant of LuxI activity A.U. cell−1

ηLuxI Cooperativity for LuxI enzyme activity -
kAiiA,max Maximum AiiA activity cell−1 min−1

kM,AiiA Half saturation constant of AiiA activity A.U. cell−1

ηAiiA Cooperativity for AiiA enzyme activity -

the genetic controller in liquid E. coli cultures. Simulations were carried out
with MATLAB R2011b (MathWorks, Natick, MA) using the ode15s routine.
As uncertainty affects the parameter estimates of each of the above mentioned
subsystems, simulations of the behaviour of the circuit were carried out using
the Monte Carlo method in order to propagate the uncertainty of the param-
eters to the output of the device. The Monte Carlo method used to perform
this task is described in Sec. 2.9.

2.6.2 Promoters characterization

Promoters are responsible for the transcription of genes and they can be
constitutive or regulated (Sec. 1.2.1). In this work two inducible promot-
ers were used: the PTetR promoter, inducible in E. coli MG1655-Z1 by aTc,
as previously described, and PLux promoter, whose transcriptional activity is
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Figure 2.4: Subsystem for promoters parameters estimation. Schematic

representation of the genetic circuit used to estimate the promoters parameters: the promoter of interest

was assembled upstream of the coding sequence of the RFP reporter.

modulated by 3OC6-HSL concentration.

Promoters were ligated upstream of the RFP reporter in order to obtain
an observable output (Fig. 2.4). While the measurable output was an Scell

SS,
thus measured in A.U.r cell−1 min−1, the corresponding promoter activity is
expressed as A.U cell−1 min−1. The model in Eq. 2.3 was used to capture a
generic regulated promoter behaviour.

d
dt
P = −rP

(
P − αP ·

(
δP + 1−δP

1+
(

kP
[inducer]

)ηP

))
d
dt
I = P − (µ+ a) · I

Scell = a · I

(2.3)

In this model (Eq. 2.3), similarly to the equations described in Sec. 1.3, I
is the immature (non-fluorescent) protein concentration, which matures into a
fluorescent form with maturation rate a.

Steady-state characterization

Considering the model in Eq. 2.3 at the steady state, it is possible to obtain
the mathematical relations used to identify the static parameters relative to
the promoters. In fact:

P SS = αP ·
(
δP + 1−δP

1+
(

kP
[inducer]

)ηP

)

ISS =

αP ·

δP+
1−δP

1+( kP
[inducer])

ηP


(µ+a)

SSS
cell =

a
(µ+a)

· αP ·
(
δP + 1−δP

1+
(

kP
[inducer]

)ηP

) (2.4)

During the experimental tests regarding promoters static transfer func-
tion, the measured quantity is proportional to the RFP synthesis rate per cell,
Scell

SS, (given an inducer concentration), which is computed as described in
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Sec. 2.5. In order to obtain reliable measures across different experiments,
this quantity is divided by the Scell

SS of a reference culture, in this study the
BBa J23101 promoter expressing RFP (with the BBa B0034 RBS) in pSB3K3
plasmid in MG1655-Z1.

The protocol used for the identification of the above mentioned parameter
is the following: long-term glycerol stocks were streaked on LB agar plates
supplemented with the proper antibiotic in order to isolate single colonies,
considered as biological replicates. Plates were grown overnight at 37◦C, then
three single colonies for each construct were inoculated overnight in 0.5 mL
selective M9 pH 6 in 2-mL tubes, at 37◦C, 220 rpm. Then, cultures were
1:100 diluted in 1 mL fresh selective broth in 15-mL tubes, grown for 1 hour
and subsequently induced with 10 µL of aTc or 3OC6-HSL (100 x stock) at
different concentrations; for each concentration used at least three replicates
were considered. After 1-hour growth in the same conditions, 200 µL of each
culture were transferred into a 96-well microplate and assayed with the protocol
described in Sec. 2.5.

Dynamic characterization

The model shown in Eq. 2.3 was used to identify the rpX parameters, which
describe the dynamic behaviour of promoters given the Hill parameters previ-
ously identified via steady state characterization. Similarly to the protocol of
steady state characterization, long-term glycerol stocks were streaked on se-
lective LB agar plates and grown overnight at 37◦C; then, single colonies were
inoculated in 0.5 mL M9 pH 6 medium supplemented with the proper antibi-
otic in 2-mL tubes at 37◦C, 220 rpm. After overnight growth, cultures were
1:100 diluted in 200 µL of fresh broth in a 96-well microplate, which was incu-
bated in the F200 reader at 37◦C, monitoring absorbance. When cells reached
an optical density of 0.03-0.05, cultures were induced with 2 µL of inducer (to
yield a final concentration of 100 ng/mL of aTc or 1 µM of 3OC6-HSL) and the
microplate was incubated again, monitoring fluorescence and optical density
as previously described. Data were processed as described in Sec. 2.5 to obtain
the synthesis rate per cell (Scell) time series. The rpX parameter was identified
from such data (at least in triplicate), given the maturation rate a and the
parameters involved in the static induction curve, previously estimated.

Measurement of the RFP maturation rate

The RFP maturation rate was estimated from cultures bearing plasmid
with regulated or constitutive production of RFP. Long-term glycerol stocks
were streaked on selective LB agar plates with the proper antibiotic; single
colonies were inoculated and grown overnight at 37◦C in M9 pH 6 in 2-mL
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tubes, 220 rpm; then cultures were 1:100 diluted in 200 µL of fresh broth in a
96-well microplate. They were incubated at 37◦C, monitoring growth and fluo-
rescence as described in Sec. 2.5. Inducers (aTc and 3OC6-HSL) were properly
added at the beginning of the experiment. After a 3-hour growth, bacteria
are in exponential phase and gentamycin (1 mg/mL) was added, continuing to
monitor cultures growth and fluorescence. Gentamycin stops the translation
processes of cells by irreversibly binding the 30S ribosomal subunit, hence their
life cycle is stopped. In this way, the amount of immature protein that has been
accumulated in the culture at the time of gentamycin supplementation begins
to mature in its functional fluorescent form and no more immature protein is
synthesized, so the observed dynamics of fluorescence represents the RFP mat-
uration. Data were normalized by subtracting the initial value and expressing
the fluorescence as the percentage of the maximum in order to facilitate the
fitting procedure. A first-order exponential model with a delay (Eq. 2.5) was
used to estimate the maturation rate of RFP; in this model, A is an arbitrary
gain, a is the maturation rate expressed as min−1 and τ is the delay expressed
in min.

Normalized A.U.r = A ·
(
1− e−a·(t−τ)

)
(2.5)

2.6.3 Enzyme characterization

After having evaluated the parameters of promoters, the enzymes parame-
ters were considered. In particular, the production of the signalling molecule
3OC6-HSL by the LuxI enzyme and its degradation by AiiA were evaluated
from ad hoc assembled subsystems. The device producing 3OC6-HSL upon aTc
induction is represented in Fig. 2.5; in this system, the PTetR promoter is as-
sembled upstream of the luxI gene, driving its transcription. In this case there
are no terminators downstream of the CDS: the double terminator (BBa B0053
and BBa B0054) flanking the cloning site of the pSB4C5 plasmid was exploited
to stop transcription. For the same reason, when using the pSB3K3 plasmid,
the his terminator downstream of its cloning site was exploited.

Single colonies were picked after overnight growth at 37◦C on streaked
selective LB agar plates and inoculated in 0.5 mL M9 pH 6 at 37◦C, 220 rpm
overnight in 2-mL tubes. Then cultures were 1:100 diluted in 5 mL fresh broth
in 15-mL tubes and grown at 37◦C, 220 rpm. After one-hour growth they were
induced with different aTc concentrations (0, 0.2, 0.5, 1, 2, 4, 8, 100 ng/mL).
After one additional hour (starting point of the measurement) cultures began
to be monitored, sampling at this time point and after 1, 2 and 4 hours.
The growth of the cultures was monitored in terms of OD600. Samples were
centrifuged for 1 min at 13000 rpm, then the cell-free supernatants were stocked
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Figure 2.5: Subsystem for LuxI parameters estimation. Schematic represen-

tation of the genetic circuit used to estimate the LuxI enzyme parameters: the PTetR promoter is assembled

upstream of the luxI coding sequence. In this case, the transcriptional terminator downstream of the pSB4C5

or pSB3K3 cloning site (not shown in figure) is used to stop transcription.

at -20◦C and used to quantify the 3OC6-HSL concentrations through the use
of a biosensor (Sec. 2.7). As the PTetR transcriptional activity is assumed to
be at its steady state after 1-hour induction, the model used to estimate the
activity of LuxI does not take into account the activation dynamics of this
promoter. Moreover, because only the exponential phase is considered, the
OD600 equation does not include a logistic function, but it is simply constituted
by an exponential growth. The resulting model is reported in Eq. 2.6.

d
dt
OD600 = µ ·OD600

d
dt
[HSL] = kLuxI(aTc) ·OD600 − γHSL · [HSL]

(2.6)

In Eq. 2.6, µ is the culture growth rate estimated from data points and
γHSL is the spontaneous degradation rate of the 3OC6-HSL (it is reported in
the equation but actually it was set to zero as 3OC6-HSL half-life in these
conditions is much longer than the time needed in this experimental set-up,
see App. A). The kLuxI(aTc) parameter is referred to the production rate of
3OC6-HSL per OD600 unit and is considered a function of aTc concentration
as the PTetR output modulates the per cell concentration of the enzyme upon
aTc induction. This parameter, estimated from this experimental set-up, was
then used to identify the parameters of the equation that links the activity of
LuxI to the per cell enzyme concentration at the steady state:

kLuxI =
kLuxI,max

1 +
(

kM,LuxI

[LuxI]SS

)ηLuxI
(2.7)

The RFP level produced by a promoter in the same conditions as the en-
zyme expression subsystem (i.e., same strain, plasmid and RBS) was used to
estimate the intracellular level of LuxI, in the hypothesis that proteins pro-
duced in the same conditions as RFP follow the same trend as the fluorescent
protein, except for a possible scale factor. For this reason, the intracellular
concentration of LuxI is expressed in A.U. cell−1. Given the previously es-
timated activation parameters and aTc concentration, it is thus possible to
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estimate the per cell concentration of enzyme at the steady state of promoter
transcription. In particular, the LuxI protein at the steady state for an aTc
concentration is given by Eq. 2.8.

PTetR(aTc)SS = αPTetR
·

δPTetR
+

1− δPTetR

1 +
(

kPTetR

[aTc]

)ηPTetR

 (2.8)

The concentration of LuxI enzyme is described in Eq. 2.9.

d

dt
[LuxI] = PTetR− (µ+ γLV A) · [LuxI] (2.9)

Considering Eq. 2.9 at the steady state, it is possible to evaluate [LuxI]
(Eq. 2.10).

[LuxI](aTc)SS =
PTetR(aTc)SS

(µ+ γLV A)
(2.10)

The activity of the AiiA enzyme was characterized with a similar proce-
dure. The transcription of the aiiA gene was driven by the PTetR promoter,
as depicted by the schematic representation in Fig. 2.6. Single colonies were
inoculated from streaked selective LB agar plates in 0.5 mL M9 pH 6 medium
and grown overnight at 37◦C, 220 rpm in 2-mL tubes. They were then 1:100
diluted in 5 mL fresh broth in 15-mL tubes and grown again at 37◦C, 220 rpm.
After one-hour growth cultures were induced with different aTc concentrations
(0, 0.2, 0.5, 1, 2, 4, 8, 100 ng/mL), waiting for cells to grow for another hour.
Then 3OC6-HSL was added; its initial concentration was 100 nM. At this time
cultures began to be monitored in terms of OD600 and sampled (after 0, 1,
2 and 4 hours). Samples were centrifuged 1 min at 13000 rpm and cell-free
supernatants stocked at -20◦C; then, the biosensor (Sec. 2.7) was again used to
quantify the remaining 3OC6-HSL. Data were used to identify the parameters
of the model in Eq. 2.11, which links the activity of the AiiA enzyme to the
decay of 3OC6-HSL.

d
dt
OD600 = µ ·OD600

d
dt
[HSL] = − (kAiiA(aTc) ·OD600 + γHSL) · [HSL]

(2.11)

In Eq. 2.11, the first equation represents cultures growth while the second
one describes the decay of the signalling molecule due to the action of AiiA
enzyme. In particular, the AiiA per cell level is expressed as a function of aTc
due to the regulation of its transcription by the PTetR promoter in the used
subsystem of Fig. 2.6. Again, the estimated activities were used to identify the
parameters of the equation linking the intracellular concentration of AiiA to
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Figure 2.6: Subsystem for AiiA parameters estimation. Schematic represen-

tation of the genetic circuit used to estimate the AiiA enzyme parameters: the PTetR promoter is assembled

upstream of the aiiA coding sequence.

the activity of AiiA (Eq. 2.12). These parameters were identified considering
the steady state of AiiA concentration.

kAiiA =
kAiiA,max

1 +
(

kM,AiiA

[AiiA]SS

)ηAiiA
(2.12)

The intracellular concentration of AiiA enzyme as a function of aTc con-
centration was computed as in Eq. 2.13.

[AiiA](aTc)SS =
PTetR(aTc)SS

(µ+ γLV A)
(2.13)

After being estimated, the previously described parameters were used to
simulate the behaviour of the whole circuit, assuming that the identified pa-
rameters do not change when parts are used in a different context.

2.7 3OC6-HSL quantification

3OC6-HSL is able to diffuse through cell membranes and activate the tran-
scription of the PLux promoter, in presence of LuxR. For these reasons, it is
possible to measure 3OC6-HSL production and degradation in the cultures of
interest by taking supernatant samples and analyzing them, assuming that
intracellular and extracellular concentrations are identical due to diffusion. A
biosensor is used to carry out this task. A recombinant E. coli culture bearing
the PLux promoter upstream of the RFP gene was used as biosensor. The
circuit also includes a constitutive expression cassette for LuxR. Because the
RFP synthesis rate per cell is function of 3OC6-HSL concentration, it is pos-
sible to evaluate the inducer concentrations of real samples via the protocol
described below.

0.5 mL of selective M9 were inoculated with 1 µL of the biosensor glycerol
stock and incubated for 16 h at 37◦C, 220 rpm. Bacteria were 50-fold diluted
in fresh selective M9 and grown under the same conditions as before. After
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2-3 h from dilution, 190-µL aliquots were transferred into a 96-well microplate.
Cells at this point are at an OD600 of about 0.03 (exponential growth phase).
Wells were induced with 10 µL of properly diluted samples. Standard calibra-
tion curves were obtained by inducing the wells with 10 µL of properly diluted
inducer amounts; 10 µL of properly diluted supernatants (in order to fall into
the linear range of the biosensor) were assayed. The microplate was incubated
in the Infinite F200 reader and it was assayed with the following kinetic cy-
cle, programmed via the i-control™ software (Tecan): linear shaking (3-mm
amplitude, 15 s), wait (5 s), OD600 measurement, fluorescence measurement
(excitation at 535 nm, emission at 620 nm, gain=50, to detect RFP signal),
repeat cycle every 5 min. Each calibration curve dilution sample was prepared
in the same growth medium of the samples. A non-fluorescent culture and
sterile medium were always included in each experiment to estimate the back-
ground fluorescence and absorbance. Calibration curve points and unknown
samples points were assayed in duplicate.

The acquired time series were processed as previously described (Sec. 2.5)
to obtain a value proportional to the average RFP protein synthesis rate per
cell (Scell

SS), which is related to the inducer concentration in the wells.
The obtained standard calibration curve was fitted with the Hill function in
Eq. 2.14.

SSS
cell = αPLux

·

δPLux
+

1− δPLux

1 +
(

kPLux

[HSL]

)ηPLux

 (2.14)

The inducer concentration of the unknown samples was computed from
their Scell value via the following equation (Eq. 2.15).

[HSL] = kPLux
·
(
αPLux

· δPLux
− SSS

cell

SSS
cell − αPLux

) 1
ηPLux

(2.15)

When required, the resulting value was multiplied by the applied dilution
factor of the sample.

2.8 Chemostat experimental set-up

Chemostat is a term that refers to a generic bioreactor in which the volume
of liquid cell cultures is maintained constant by simultaneously adding fresh
medium and removing cultured broth.
In this work the chemostat was used to maintain the cell density at a fixed
value, in order to work in an experimental context in which cells remain in-
definitely in their exponential growth phase, during which their growth rate is
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Figure 2.7: Typical chemostat configuration. A typical configuration of a chemostat:

the fresh medium is withdrawn from a reservoir and put into the reactor at a desired flow rate, while

an overflow weir maintains the volume constant. Stirring is performed. Other devices for the control of

parameters such as oxygenation or pH could be present [66].

constant and maximum, and protein expression is not affected as in the satura-
tion phase. Moreover, this was done as the parameters of the model proposed
in Sec. 2.6.1 were identified during the exponential growth.
Fig. 2.7 shows a typical configuration for a continuous culture apparatus: stir-
ring is performed and cultures are continuously fed with fresh medium. At the
same time, an overflow weir or a levelling device washes away cultured medium
in order to maintain the volume inside the reactor constant.

In order to maintain the cell density inside the fermenter constant, cultures
need to be diluted at the same rate at which they are growing; given that
batch cultures growth in exponential phase can be mathematically described
by Eq. 2.16:
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d

dt
OD600 = µ ·OD600 (2.16)

the dilution rate D of Eq. 2.17 must equal µ.

d

dt
OD600 = µ ·OD600 −D ·OD600 (2.17)

The dilution rate is given by D = k
V
, where k is the inflow expressed as mL

min−1, and V is the volume of the culture, expressed in mL [66]. Thus, when
D equals the growth rate µ, which is dependent from the OD600 but in the
exponential phase is maximum, one could obtain indefinitely constant culture
density.
In the experimental set-up used in this work, the LAMBDAMINIFOR fermenter-
bioreactor (Sec. 2.3.2) was used to realize the chemostat: two peristaltic pumps
were used to put in fresh medium (IN pump) and to remove the cultured broth
from the 0.4 L vessel (OUT pump) through silicone tubes. The IN pump
needed to be calibrated: different velocities were used in order to estimate the
characteristic that relates the revolutions per minute of the pump to the actual
flow rate. The OUT pump was connected to the sampling port that was used
as a levelling device in order to maintain constant the culture volume in the
reactor. Oxygenation was monitored but not controlled; however, as typical
experiment volumes were between 25 - 30 mL, it was always maximal. Tem-
perature was set to 37◦ and stirring set to 10 Hz. Finally, pH was measured
through the pH probe (not controlled) to check the maintenance of pH 6.
The protocol used for continuous culture experiments is here described: glyc-
erol stocks were streaked on selective LB agar plates, then a colony was picked
and inoculated in 5 mL M9 pH 6 in a 15-mL tube and grown overnight at 37◦C,
220 rpm shaking. Then, the culture was 1:100 diluted in 35 mL fresh M9 pH 6
in the 0.4 L vessel and grown at 37◦C, stirring 10 Hz until the desired optical
density was reached. During this period OD600 was measured by sampling
each hour and measuring absorbance with the Infinite F200 reader. Data were
subtracted their blank and used to estimate the cultures growth rate µ; this
was fundamental in order to compute the flow rate of the IN pump and set its
revolution per minutes in relation to the previously estimated characteristic.
However, growth rate was highly reproducible among different experiments
with both open- and close-loop circuits. When cells reached the critical OD600

the chemostat mode started: the OUT pump was always set to 200 rpm while
the IN pump to the value given by k = µ · V . At this time point cultures were
induced with 100 ng/mL aTc, in order to tune on the production of 3OC6-HSL
in both the open- and close-loop genetic circuits; cells were subjected to a 100
ng/mL constant aTc concentration by adding a proper amount of this inducer
in the input reservoir. Cultures were then sampled each half an hour in order
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to monitor the optical density and properly tune the rpm of the IN pump, if
OD600 trend was significantly increasing or decreasing (due to possible errors
in tubes positioning). Moreover, an aliquot (∼ 100 µL) of the sample was
centrifuged (13000 rpm, 1 min) and the cell free supernatant stored at -20◦ for
the subsequent 3OC6-HSL quantification (Sec. 2.7).

2.9 Monte Carlo method for uncertainty prop-

agation

The model that describes the negative feedback for the control of 3OC6-
HSL is composed by 6 equations and 20 parameters. To verify the possibility
to bottom-up design a genetic circuit that performs a non-trivial function, ad
hoc assembled subsystems were considered for the parameters identification. In
this way, each subsystem is described by a mathematical model with a reduced
number of equations compared to the full circuit model, and parameters could
be identified from experiments on such subsystems.
The uncertainty affecting the parameters needs to be propagated from the
simplest subsystems to the whole genetic controller, giving the measure of the
confidence intervals of the observable output, i.e., the concentration of 3OC6-
HSL. Thus, it is important not only to estimate the parameters on the basis
of the experimental tests but also to give an estimate of their distributions.
Eq. 2.18 describes the output y(t) of a generic system, where g is the model
output prediction and p represents the vector of the M parameters that have
to be identified.

y (t) = g (t, p) (2.18)

The observations, zk, can be described by Eq. 2.19, in which the index k
(1 ≤ k ≤ N) represents the k-th sample.

zk = y (tk) + νk = g (tk, p) + νk (2.19)

In Eq. 2.19, the νk term is an additive error that affects the zk samples and
it is usually modelled as a random variable with zero-mean; its variance could
be constant, σ2

ν , or dependent on the measurement itself, σ2
ν,k, considering, for

example, a constant CV model. Eq. 2.19 can be rewritten in matrix notation
as in Eq. 2.20, given that z = [z1, ..., zN ]

T , g = [g (t1, p) , ..., g (tN , p)]
T and

ν = [ν1, ..., νN ]
T .

z = g (p) + ν (2.20)
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From these hypotheses, it could be stated that E[ν] = 0 and Σν = E[ννT ].
Moreover, the matrix Σν can be rewritten as in Eq. 2.21, where B is an N-by-N
matrix.

Σν = σ2
νB (2.21)

Considering a constant variance model, it could be assumed, as it was
done in this study, B = I, namely the N-by-N identity matrix. Under this
assumptions, the covariance matrix Σν is known, except for a scale factor
σ2
ν . As the noise affecting observations was hypothesized to be additive, the

residuals r (Eq. 2.22) can be considered a realization of the random variable
ν, with the same statistical properties.

r = z − g (p) (2.22)

The goal of parameter estimation is to minimize the sum of squared resid-
uals (Eq. 2.23).

J (p) =∥ z − g (p) ∥2 (2.23)

Thus, the parameters vector p̂ is given by Eq. 2.24.

p̂ = arg
p

min J (p) (2.24)

If the minimization problem is linear (i.e., g (p) linearly depends on p), then
p̂ can be evaluated analytically; otherwise, several algorithms have been pro-
posed in order to approximate the solution (e.g., the Gauss-Newton algorithm).
Moreover, it is of interest to give some statistical details about the dispersion
of the parameters in terms of standard deviation or percentage coefficient of
variation (CV). Unless hypothesizing a normal distribution of the parameter
estimation error, it is not possible to evaluate the confidence intervals or to
obtain the parameters distribution; consequently, it would not be possible to
propagate the uncertainty from the simplest subsystems to the output of the
model here proposed. Under the assumption that the parameter estimation
error is normally distributed, the covariance matrix can be approximated by:

Σp = (STΣ−1
ν S)−1 (2.25)

where S is the Jacobian matrix evaluated by the minimization routine. The
diagonal elements of the covariance matrix are the parameters variances.
Moreover, the unknown σ2

ν needed to define Σν , can be computed from the
sum of squared residuals evaluated for p̂ (Eq. 2.26).

σ̂2
ν =

J (p̂)

N −M
(2.26)
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There are several techniques specifically designed to obtain the parameters
distributions; the one implemented here relies on Monte Carlo simulations.
This is a useful methodology, based on random sampling, used in several ap-
plications such as physics or mathematics, when it is not possible to obtain a
closed-form expression for the solution of a problem. The general Monte Carlo
algorithm applied to parameter estimation consists in performing a large num-
ber of parameters estimations on synthetic data sets. In particular, the first
step of the algorithm is the generation of several synthetic data sets; these have
to maintain the same features as the original observations. For this purpose,
noise sampled from a suitable distribution is added to the model predictions
evaluated in p = p̂, i.e., ŷ = g(t, p̂); assuming that noise is normally distributed,
with zero mean and variance σ̂2

ν , the synthetic data sets are generated accord-
ing to Eq. 2.27:

yinoisy = ŷi + hi (2.27)

where 1 ≤ i ≤ W refers to the i-th synthetic data set generated, while h is
an additive noise independently sampled from the gaussian distribution with
zero mean and variance σ̂2

ν .
Then, as a second step, parameters are iteratively estimated on each of the W
synthetic data sets generated and according to Eq. 2.22, residuals are evaluated
as:

ri = yinoisy − g(t, pi) (2.28)

In this way, a large number of estimates can be done in order to obtain the
parameters distributions. It is also possible to give a measure of the dispersion
of the parameters, evaluating the standard deviations, the CVs, or exploiting
the percentiles. When the model depends on previously estimated parameters,
during the identification procedure, they are extracted from the already esti-
mated distributions.
In this study, after having a posteriori estimated the variance of the data, ac-
cording to Eq. 2.26, a normal distribution was assumed for ν, with zero mean
and variance σ̂2

ν . Noise was added to model nominal predictions, generating
104 synthetic data sets that were subsequently used for parameters estimation.
The uncertainty was propagated from the simplest systems (i.e., the ones that
do not require “upstream” parameters to be identified) to the more complex
ones (i.e., the ones that rely on the estimated values of other parameters, which
are characterized by a distribution) and then to the whole model of the nega-
tive feedback network herein proposed.
Not all the parameters were considered to be affected by uncertainty; in fact,
the cultures growth rate µ, the saturation growth value OD600,max, the spon-
taneous 3OC6-HSL degradation γHSL and the protein degradation rate due
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to the LVA tag, γLV A, were set to fixed values. The identification of the
RFP maturation rate, a, is the starting point for uncertainty propagation as
it appears in the model of the promoters activation (Eq. 2.3). Once the RFP
maturation rate distribution was estimated, it was used to propagate the vari-
ability to the steady state characterization of the promoters. In particular,
once obtained 104 synthetic data sets generated by adding noise to the model
predictions, given the nominal values for the parameters, 104 runs of identi-
fication for αpX , δpX , kpX and ηpX were performed, sampling a from its own
distribution. Subsequently, applying the same strategy, the distributions of
the poles characterizing the promoters dynamics were estimated, generating
104 synthetic data sets by adding noise to the model predictions evaluated for
the nominal parameters, and sampling from the distributions of αpX , δpX , kpX ,
ηpX and a at each identification step. Regarding enzyme activities, for each
experiment performed on cultures expressing LuxI or AiiA, the predictions of
the model, estimated on the basis of the experimental observations, were used
to generate 104 synthetic data sets by adding gaussian noise to the model pre-
dictions and to obtain the distributions of kLuxI(aTc) and kAiiA(aTc), given
an aTc concentration. The distributions of the per cell concentrations of the
enzymes at the steady state, given an aTc concentration, were obtained by
sampling from the distributions of steady state promoters parameters, as the
PTetR promoter was considered at its steady state as hypothesized in Sec. 2.6.3.
Finally, sampling from the distributions of the per cell enzymes concentrations
and the enzymes activities at the same aTc concentration, it was possible to
generate the synthetic data sets used to estimate the parameters describing
the enzymes activities in terms of the Hill functions shown in Sec. 2.6.3 (see
Eq. 2.7 and Eq. 2.12).
Once the distributions of all the parameters involved in the full model of the
feedback circuit were obtained, the 95% confidence interval of the simulated
output could be evaluated, randomly sampling from the parameters distribu-
tions previously computed.
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Chapter 3
Results

This chapter is dedicated to the results obtained for the negative feedback
controller. First, simulations are performed to study the behaviour setting
the parameters to plausible values, focusing on the possibility of realizing such
a genetic circuit. Then, parameter identification from subsystems will be il-
lustrated. As data are affected by noise, parameter values uncertainty was
propagated to the observable output by Monte Carlo method, thus having the
possibility to obtain its confidence intervals. A discussion on the experimental
set-up used to test the performances of the whole close-loop circuit will follow
and, finally, the simulations and experimental results will be shown. The full
circuit was tested in growing cultures (batch culture mode) and in chemostatic
conditions (continuous culture mode, Sec. 2.8). The latter condition is used
to maintain a defined cell density over time, thus preventing the cultures to
enter the saturation growth phase, in which cells may exhibit an unpredictable
behaviour.

3.1 Simulation results

The mathematical model presented in Sec. 2.6.1 has been derived relying
on the a priori known molecular interactions and transcription regulations of
the two involved promoters, considering that PTetR drives the production of
the target molecule and PLux acts as a sensor, driving the transcription of aiiA
in relation to the 3OC6-HSL concentration. Initially, plausible values were
assigned to the parameters in order to establish if, in principle, the designed
genetic circuit could work as a negative feedback controller in the batch cul-
ture mode (Fig. 3.1). Different parameter combinations have been tested and
compared with the open-loop condition, a situation in which no regulation is
present in the synthetic genetic program and the target molecule is continu-
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Table 3.1: Parameter values used in simulations. Parameters are reported with

their values used in simulations.

Parameter Value
µ 0.0126

OD600,max 1
rPTetR

0.05
αPTetR

1
δPTetR

0.01
kPTetR

2.5
ηPTetR

5
rPLux

0.1
αPLux

2
δPLux

0.01
kPLux

150
ηPLux

1
γLV A 0.0173
γHSL e-4

kLuxI,max 8
kM,LuxI 12
ηLuxI 2

kAiiA,max 0.5
kM,AiiA 25
ηAiiA 3

ously produced without being degraded by AiiA. If not differently reported, the
parameters used for simulations are reported in Tab. 3.1; most of the param-
eters were set to reasonable values on the basis of previous experiments (data
not shown) while some of them were set to values found in the literature.

It can be observed from Fig. 3.1 that αPTetR
and kLuxI,max impact on the

dynamics and the steady state value of 3OC6-HSL concentration; if they in-
crease, the 3OC6-HSL at the steady state increases, reaching its maximum
more and more quickly. αPLux

is related to the controller which is faster and
more effective as the value of this parameter increases. The same behaviour can
be observed for kAiiA,max; when this parameter was set to zero, the open-loop
condition was reproduced, as no regulation occurs.

Analogously, several parameter sets were used to simulate the continuous
culture condition and highlight the differences between the non regulated and
the regulated system. The difference between the open-loop and the close-loop
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3.1. Simulation results

Figure 3.1: Simulations for different parameter values in batch culture
mode. Effects of parameters variation on the steady state concentration of 3OC6-HSL: the parameters

considered are αPTetR
, αPLux

, kLuxI,max and kAiiA,max. The starting OD600 was set to 0.02. When

kAiiA,max is set to zero the behaviour is analogous to an open-loop circuit, i.e., a device that only produces

the signalling molecule without degrading it.
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3. Results

Figure 3.2: Simulations for different parameter sets in continuous liq-
uid cultures. Effects of parameters variation on the steady state concentration of 3OC6-HSL: the

parameters considered are αPTetR
, αPLux

, kLuxI,max and kAiiA,max. The constant OD600 was set to 0.12.

When kAiiA,max is set to zero the behaviour is analogous to an open-loop circuit only producing the sig-

nalling molecule. Unlike growing liquid cultures, in this case the signalling molecule is diluted at a constant

rate equal to the cells growth rate.

is visible at the steady state also in the chemostat mode (Fig. 3.2); it is of
interest to underline that the continuous culture mode is characterized by the
fact that the 3OC6-HSL is not only degraded by the AiiA enzyme but also
diluted by a factor equal to cell growth rate (Sec. 2.8).

Again αPTetR
and αPLux

impact on the steady state in an opposite direction,
as increasing the former means increasing the 3OC6-HSL steady state concen-
tration while increasing the latter means degrading the signalling molecule
faster. The parameters related to the enzymes behave in a similar manner as
the higher kLuxI,max, the higher the steady state, while the higher kAiiA,max, the
lower the concentration at the steady state. In both cases, i.e., batch culture
and chemostat, when introducing a degrading action, which is biologically car-
ried out by the AiiA enzyme, the concentration of 3OC6-HSL reaches a steady
state which can vary depending on the parameters values; conversely, when
the degradation is not present, in the case of growing cultures the steady state
concentration of the signalling molecule grows continuously as a function of the
increasing optical density, while in the case of continuous cultures it reaches a
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3.1. Simulation results

Figure 3.3: Steady state concentration as a function of optical density
in continuous cultures. In the case of the non-regulated genetic circuit the steady state

concentration of 3OC6-HSL is predicted to be linearly dependent on the optical density, while, when cells

implement the negative feedback, the action of AiiA enzyme is clearly visible as the steady state value grows

significantly slower when optical density is increased.

steady state higher than in the presence of the negative feedback.
Simulations also show the steady state concentration as a function of cell den-
sity in chemostatic conditions; the model was simulated for the open- and
close-loop (Fig. 3.3). When no negative feedback is present, the steady state
concentration grows linearly with the optical density, while in the case of the
regulatory genetic network the concentration at the steady state also grows
with optical density but with a significantly lower slope, reaching stationariety
at sufficiently high density values.

According to the shown results, in principle the circuit can work as a neg-
ative feedback regulator. It reaches a steady state that should be independent
of cell density for a wide range of OD600 values, while the open-loop configu-
ration shows a linear dependence of steady state 3OC6-HSL with cell density.
Theoretically, given the circuit architecture, the steady state could be tuned
by increasing or decreasing the produced LuxI and/or AiiA enzymes via cir-
cuit modifications, e.g., by changing their RBSs or plasmid copy number (see
Fig. 3.1 and Fig. 3.2). Another modification that could affect the 3OC6-HSL
value is the expression level of LuxR, which binds 3OC6-HSL and activates
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3. Results

Table 3.2: RBSs efficiencies RBSs strengths as declared in the Registry of Standard Biological

Parts; BBa B0034 is the reference RBS and has efficiency 1.

RBS (BioBrick Code) Declared efficiency
BBa B0031 0.07
BBa B0032 0.3
BBa B0030 0.6
BBa B0034 1

PLux: this modification is expected to change the switch point of the Hill func-
tion describing PLux activation, thus changing the AiiA production profile upon
induction by 3OC6-HSL (simulations not shown). Before proceeding with sub-
systems characterization, parameter identification and full circuit testing, it is
important to choose parts that provide non-zero activity of the two enzymes.
In fact, it is well known that promoters with low activity can lead to insuffi-
cient levels of mRNA and thus of protein; even with a high level of mRNA,
low-strength RBSs can lead to insufficient amount of translated protein; simi-
lar effects leading to insufficient enzyme levels can occur if the circuit is present
at a too low copy number. Given the PLux and PTetR promoters, the selection
of suitable RBSs and plasmids was performed.

3.2 Ribosome Binding Sites and plasmid se-

lection

RBSs are important for mRNA stability and can strongly impact on the
process of production of a protein. Several efforts have recently been done in
order to predict the translational output of a RBS (in terms of transcriptional
initiation rate) given the downstream sequence [28, 21]. In fact the strength of
an RBS is strongly dependent on the downstream sequence, thus giving con-
flicting results when two different coding sequences are considered. As regards
the RBSs used in this work, their efficiencies have been previously evaluated
via a specific fluorescent reporter system (see Tab. 3.2) and documented in the
Registry [22]. However, there is no guarantee that the efficiency is the same
when used with a different gene downstream. For this reason, the four RBSs
were tested with luxI and aiiA to check if translational efficiency was sufficient
to detect enzyme activity.

The RBS with the highest efficiency is BBa B0034 while the weakest is
BBa B0031; BBa B0032 and BBa B0030 have a medium strength (Tab. 3.2).
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3.3. Parameters identification from subsystems

The PTetR promoter was used to regulate the transcription, maximally induced
with 100 ng/mL aTc in E. coli MG1655-Z1. The low copy plasmid pSB4C5
was used for these tests. The results were quite different from the ones reported
in Tab. 3.2. Results showed that no significant AiiA activity could be detected
in low copy plasmid with any RBS at full induction of PTetR (data not shown).
Conversely, LuxI could be effectively tuned as a function of the RBS, yielding a
detectable activity with the BBa B0030 and BBa B0034 RBSs (Fig. 3.4). The
aiiA gene with the four RBSs was also tested in the pSB3K3 medium copy
plasmid, again under the control of PTetR. AiiA gave significantly detectable
activity in two conditions, with BBa B0034 and BBa B0031 RBSs (Fig. 3.5).
The luxI gene was also tested in pSB3K3, only with the BBa B0030 RBS,
yielding similar activity compared to the low copy condition (data not shown).
Finally, AiiA was tested via the same PTetR inducible system in the high copy
plasmid pSB1A2 with the four RBSs, yielding similar results in terms of abso-
lute activities compared to the medium copy plasmid (data not shown). For
these reasons, in the final circuit, the luxI gene under the control of PTetR was
placed in a low copy plasmid (pSB4C5) and used with the BBa B0030 RBS,
while the aiiA gene under the control of PLux was placed in a medium copy
plasmid (pSB3K3) and used with the BBa B0034 RBS (Fig. 3.6). The non reg-
ulated counterpart is represented in Fig. 3.7; here, no enzymatic degradation
occurs as AiiA is not produced by cells. The relative activities of the enzymes
are very different for AiiA and LuxI. Moreover, they are not in accordance
with the RBS efficiencies predicted with the RBS Calculator tool [21], given
the downstream sequence and assuming that enzyme activity is proportional
to enzyme concentration (data not shown).

3.3 Parameters identification from subsystems

Promoters and enzymes parameters were estimated studying the subsys-
tems presented in Sec. 2.6.2 and Sec. 2.6.3. Parameters were thus identified
on simple functional modules in order to guarantee the identifiability of the
models on the basis of the experimental set-up and observations. Moreover,
subsystems were studied during the exponential phase of bacterial growth, thus
the predictions made by the model are consistent only assuming that the cells
are growing exponentially.

3.3.1 Steady-state characterization of promoters

The two promoters of interest for the realization and investigation of the
regulatory network proposed are PTetR and PLux. Both are characterized by a
static and a dynamic behaviour: the first one regards the input-output charac-
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3. Results

Figure 3.4: Preliminary screening for LuxI 3OC6-HSL production at
full induction (100 ng/mL aTc). Production of 3OC6-HSL varying the RBS strength

for LuxI in low copy number plasmid. Curves are identified by the code of the RBS used for the genetic

construct.
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3.3. Parameters identification from subsystems

Figure 3.5: Preliminary screening for AiiA 3OC6-HSL degradation at
full induction (100 ng/mL aTc). Degradation of 3OC6-HSL varying the RBS strength

for AiiA in medium copy number plasmid. Curves are identified by the code of the RBS used for the genetic

construct.
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3. Results

Figure 3.6: Schematic representation of the feedback negative con-
troller with RBSs. The scheme represents the version of the genetic circuit that was investigated

in this work: the BBa B0030 was chosen as the RBS upstream of the luxI coding sequence and tested in

the low copy number plasmid pSB4C5; BBa B0034 was placed upstream of the aiiA gene and tested in the

medium copy number plasmid pSB3K3.
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3.3. Parameters identification from subsystems

Figure 3.7: Schematic representation of the open-loop configuration.
The scheme represents the open-loop configuration, in which the BBa B0030 RBS was placed upstream of

the luxI coding sequence. In this case no AiiA expression occurs, thus lacking a negative feedback.

teristic function while the second one the activation of the transcription upon
induction. The parameters of interest for the static transfer function are αP ,
δP , ηP and kP , while the rP is linked to the dynamic of transcription activa-
tion (see Eq. 2.3). When studying promoters it was essential to estimate the
maturation rate of the reporter used, the Red Fluorescent Protein (RFP).

RFP maturation rate

The experimental set-up for RFP maturation rate estimation was previ-
ously described (Sec. 2.6.2). In order to estimate this parameter, a constitutive
promoter, BBa J23101, in both the pSB3K3 and pSB4C5 plasmids, and the
two above mentioned promoters, PTetR and PLux were studied. For each of
these devices three independent replicates were considered and the maturation
rate was jointly estimated from the data collected and processed from each
run. The four conditions were studied together as, despite the differences be-
tween the expression system (i.e., promoter, RBS and plasmid copy number),
the reporter is the same for all of them, so it is reasonable to consider the same
maturation rate. An independent value for the static gain A was assigned to
each of the twelve time series; the same was done for the delay τ , while the
maturation rate a was the same for all the tested conditions.
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3. Results

Figure 3.8: RFP maturation rate. In the above figure an example of fitting of the

maturation data is depicted; particularly it refers to one of the 3 replicates of the PTetR promoter induced

with 100 ng/mL aTc. Individual A as well as τ parameters were estimated, while a, the maturation rate, was

simultaneously estimated for all the conditions. t=0 corresponds to the time point of gentamycin addition.
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3.3. Parameters identification from subsystems

A representative maturation profile is shown in Fig. 3.8. The estimated
value was 0.0157 min−1 with a coefficient of variation (CV) of 1.52%; sepa-
rate fittings for each of the twelve conditions gave a similar maturation rate
value (data not shown). Results are consistent with the RFP maturation rate
reported in literature [67].

Steady state transfer function of promoters

Promoters input-output function at the steady-state was measured using
the protocol described in Sec. 2.6.2. The RFP reporter was assembled down-
stream of the two promoters of interest, PTetR and PLux, and their activity
was measured upon different inducers concentrations. The PLux promoter was
tested in pSB3K3 with the BBa B0034 RBS upstream of RFP, since this is
the context in which PLux will be used in the final circuit (except RFP that
is replaced by aiiA). The PTetR promoter in the final circuit will be used in
pSB4C5 upstream of luxI with the BBa B0030 RBS. However, for subsystem
characterization, it is also used in pSB3K3 to drive aiiA (with the BBa B0034
RBS). For these reasons, PTetR was tested in these two contexts, where the en-
zyme CDSs were replaced with RFP. For each induction and each subsystem,
at least three independent replicates were considered. After calculating the
synthesis rate per cell signal, in terms of red fluorescence arbitrary units A.U.r
per cell per minute, each of the replicates was normalized for the output of the
BBa J23101 promoter in pSB3K3, used as internal standard reference. Fig. 3.9
shows the activity of PTetR in pSB4C5 with BBa B0030 upon increasing aTc
concentration; the signal starts increasing at 1 ng/mL aTc and reaches its
maximum (1.0261 A.U. cell−1 min−1, that corresponds to ∼ 0.57 A.U.r cell−1

min−1) at 10 ng/mL or greater concentrations; accordingly, Tab. 3.3 shows that
the half saturation constant for the PTetR promoter is 3.1102 ng/mL. Analo-
gously, Fig. 3.10 shows the results of PTetR in the pSB3K3 with BBa B0034
condition, with the identified Hill parameters reported in Tab. 3.3; in this
case, the half saturation constant is 1.8676 ng/mL and the maximum activ-
ity increases, as expected, to 2.9938 A.U. cell−1 min−1 (which corresponds to
a

Scell
signal of ∼ 1.75 A.U.r cell−1 min−1). A basal activity near zero was

observed when no inducer was added. The PLux promoter transfer function
is shown in Fig. 3.11. The output signal of the genetic device begins to be
significantly different from zero at 3OC6-HSL concentrations greater than 5-10
nM. Parameters values are summarized in Tab. 3.3.

Activation dynamics of promoters

Promoters transcription activity is modulated by inducers supplementation
which increases the measurable output with a dynamic activation that the
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3. Results

Figure 3.9: Static transfer function for PTetR. Input-output transfer function for

PTetR promoter with BBa B0030, in pSB4C5 plasmid: data were fitted with a Hill activation function.

Figure 3.10: Static transfer function for PTetR. Input-output transfer function for

PTetR promoter with BBa B0034, in pSB3K3 plasmid: data were fitted with a Hill activation function.
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3.3. Parameters identification from subsystems

Figure 3.11: Static transfer function for PLux. Static transfer function for PLux

promoter: data were fitted with a Hill function.

Table 3.3: PTetR and PLux input-output transfer function parameters.
Estimated parameters for the two promoters of interest; PTetR transcriptional activity was evaluated with

RBS BBa B0030 in pSB4C5 low copy number plasmid and with RBS BBa B0034 in pSB3K3 medium copy

number plasmid, while PLux activity was evaluated with BBa B0034 in pSB3K3 medium copy number

plasmid. Parameters are reported together with the respective CV in brackets.

PTetR with RBS BBa B0030 in pSB4C5
αPTetR

δPTetR
kPTetR

ηPTetR

1.0261 (1.36%) 0.0165 (≫ 100%) 3.1102 (1.18%) 3.0373 (2.37%)
PTetR with RBS BBa B0034 in pSB3K3

αPTetR
δPTetR

kPTetR
ηPTetR

2.9938 (0.67%) 6 e-11 (≫ 100%) 1.8676 (3.37%) 2.7063 (7.37%)
PLux with RBS BBa B0034 in pSB3K3

αPLux
δPLux

kPLux
ηPLux

5.3930 (0.45%) 0.0147 (≫100%) 529.6090 (0.02%) 0.7574 (8.50%)
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3. Results

Figure 3.12: Activation dynamics for PTetR and PLux promoters. Data

fitting for dynamic activation profiles of the two promoters of interest: PTetR driving RFP expression with

RBS BBa B0030 induced with 100 ng/mL aTc and PLux driving RFP expression with RBS BBa B0034

induced with 1µM 3OC6-HSL.

model described in Sec. 2.6.2 tries to capture. In this model the maturation
rate of the reporter as well as the steady state promoter parameters must
be known or already estimated in order to identify the activation rate rP .
The dynamics was estimated for the two promoters used in the regulatory
network on the basis of the synthesis rate per cell evaluated from growth and
fluorescence data. The a, αpX , δpX , kpX and ηpX parameters were fixed to the
previously estimated values. The PTetR promoter was induced with 100 ng/mL
aTc while the PLux was induced with 1 µM 3OC6-HSL. Results are shown in
Fig. 3.12 and estimated values for the promoters activation rates are reported
in Tab. 3.4.

As shown in Tab. 3.4, it appears that PTetR transcriptional activation from
the basal level to its maximum is faster than the one of PLux, although its
estimate is also affected by a much higher CV. Promoter activation dynamics
reflect the dynamic response of the final circuit in the production of 3OC6-HSL
upon induction with aTc (in the case of PTetR) and in the lactonase production
upon induction with 3OC6-HSL (in the case of PLux). Since the PTetR promoter
in pSB3K3 and in pSB1A2 was used for subsystems characterization only at
the steady state, its dynamics was not estimated.
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3.4. Enzymes parameters identification

Table 3.4: Estimated rate constants for PLux and PTetR activation. Esti-

mated values for rpTetr in pSB4C5 and rPLux
in pSB3K3 induced with 100 ng/mL aTc and 1µM 3OC6-HSL

respectively; parameters are shown with their respective CV in brackets.

Promoter rate constant Estimated value [min−1]
rPTetR

0.0824 (45.80%)
rPLux

0.0551 (21.68%)

3.4 Enzymes parameters identification

The characterization of the two enzymes of interest was carried out using
the subsystems presented in Sec. 2.6.3, where the expression of the two pro-
teins was driven by the PTetR promoter. This was necessary as the 3OC6-HSL
concentration must not influence the input of the system in a self regulating
fashion as it could result by placing the PLux promoter upstream of the two
coding sequences. This way it was possible to evaluate the only production or
degradation of 3OC6-HSL by the enzyme of interest, given a set of experimental
conditions (such as the induction of the promoter or the cultures growth).

3.4.1 LuxI parameters identification

The parameters linked to the production of the signalling molecule by the
LuxI enzyme are presented in Sec. 2.6.3.
In the model presented in Eq. 2.6, the kLuxI parameter is a function of the aTc
concentration, since it determines the intracellular level of enzyme. From these
experiments, in which the cultures growth and the production of 3OC6-HSL
were monitored over time, the initial OD600 and 3OC6-HSL, the growth rate
of the cultures, µ, and the production rate kLuxI(aTc) were simultaneously
estimated. Fig. 3.13 is an example in which the PTetR promoter, driving the
transcription of luxI in a medium copy number plasmid, was induced with
100 ng/mL aTc. As the culture grows in its induced state, the 3OC6-HSL,
measured by the biosensor (Sec. 2.7), increases, as no enzymatic degradation is
present and the spontaneous decay of the signalling molecule can be neglected
on this time scale. The kLuxI(aTc) parameter was estimated for different aTc
concentrations (0, 0.5, 1, 2, 4, 8, 100 ng/mL) in low copy number plasmid
while the only 100 ng/mL concentration was used to test the circuit put in the
medium copy number plasmid.

Once the parameter linked to the production of 3OC6-HSL was identified
in several independent experiments, the subsequent step consisted in the es-
timation of the parameters that express the relation between per cell enzyme
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3. Results

Figure 3.13: Results for LuxI 3OC6-HSL production rate. Growth and 3OC6-

HSL production for culture bearing a medium copy number plasmid encoding for LuxI enzyme, induced with

100 ng/mL aTc; data were fitted using the model presented in Sec. 2.6.3.
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3.4. Enzymes parameters identification

Figure 3.14: LuxI activity as a function of LuxI per cell amount. LuxI

activity is presented as a function of LuxI amount per cell (reported in a log10 scale), which was estimated

from PTetR activation parameters at the steady state; the activity corresponding to the maximum amount

per cell was estimated for BBa B0030 as RBS and in a medium copy number plasmid.

level and the activity of LuxI, via a Hill function. In this case the enzyme
amount was calculated on the basis of the parameters of PTetR activation at
the steady state and used to identify kLuxI,max, kM,LuxI and ηLuxI . Results are
shown in Fig. 3.14.

The estimated parameters are reported in Tab. 3.5 with their respective
CVs. As expected from the lack of data for activities between the minimum
and the maximum, ηLuxI resulted to be affected by great uncertainty. Although
other data points at intermediate intracellular levels could help the identifica-
tion procedure, such task was not performed. The main reason is that the
intracellular levels of 7.5907 and 23.6736 A.U. correspond to aTc inductions of
2 and 4 ng/mL, which is a very narrow concentration window; other induction
experiments spanning such window are not expected to improve fitting. The
use of another inducible system could overcome such steep effect by provid-
ing estimated intracellular enzyme levels that weakly change as a function of
induction.
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3. Results

Table 3.5: Estimated parameters for LuxI activity. Parameter values for

kLuxI,max, kM,LuxI and ηLuxI ; estimated parameter CV is reported in brackets.

Parameter Estimated value Measurement Unit
kLuxI,max 5.9875 (13.62%) nM cell−1 min−1

kM,LuxI 10.7426 (39.14%) A.U. cell−1

ηLuxI 3.9812 (98.08%) -

3.4.2 AiiA parameters identification

Similarly to LuxI characterization, cells expressing AiiA enzyme were in-
duced with increasing aTc concentrations (0, 0.2, 0.5, 1, 2, 4, 8, 100 ng/mL) ,
as reported previously (Sec. 2.6.3). The kAiiA(aTc) parameter was estimated in
cells bearing the AiiA expression system in the medium copy plasmid pSB3K3.
The full induction condition (100 ng/mL) was also tested in the high copy
number plasmid pSB1A2. The decay of exogenous 3OC6-HSL, added at the
starting point of the experiment, as well as the cultures growth, were measured
(Fig. 3.15). These data were used to simultaneously estimate the parameters
of the model reported in Eq. 2.11, i.e., the initial OD600 and 3OC6-HSL, the
growth rate of the cultures, µ, and the enzyme-dependent 3OC6-HSL degra-
dation rate kAiiA(aTc). Then, with the obtained kAiiA(aTc), it was possible
to identify the parameters of the Hill activation function of the AiiA enzyme
(Eq. 2.12). In particular, as it was carried out for LuxI, the enzyme activity
was plotted against the estimated intracellular concentration of AiiA, deter-
mined by the aTc concentration, to identify the kAiiA,max, kM,LuxI and ηLuxI
parameters. Their estimated values are reported in Tab. 3.6.

As it is evident in Fig. 3.16, data are noisy and the estimation procedure
resulted hard to perform especially because the transition from the minimum
to the maximum activity is determined for inductions that, in terms of con-
centration of aTc, are not so different. In particular, activity rises from zero to
high values (0.2583 cell−1 min−1) for estimated AiiA levels of 2.7614 to 15.6443
A.U. cell−1, respectively. They correspond to aTc concentrations of 0.5 and
1 ng/mL, respectively, which are not so different. As reported previously for
LuxI, which shows the same problem, the AiiA activity investigation was not
carried out between these two concentrations. This steep behaviour could be
overcome by using different inducible systems. The illustrated behaviour re-
sults in high uncertainty in the kM,AiiA and ηAiiA parameter identification, as
reported in Tab. 3.6.
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3.4. Enzymes parameters identification

Figure 3.15: Results for AiiA 3OC6-HSL degradation rate. Growth and

3OC6-HSL degradation for cultures bearing the AiiA lactonase expression system inducible by PTetR, in-

duced with 1 ng/mL aTc; data were fitted using the model presented in Eq. 2.11.

Table 3.6: Estimated parameters for AiiA activity. Parameters value for

kAiiA,max, kM,AiiA and ηAiiA; parameters are reported as average value and percentage coefficient of

variation.

Parameter Estimated value Measurement Unit
kAiiA,max 0.4020 (10.81%) cell−1 min−1

kM,AiiA 13.6334 (≫ 100%) A.U. cell−1

ηAiiA 4.9716 (≫ 100%) -
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3. Results

Figure 3.16: AiiA activity as a function of the estimated intracellular
level of enzyme. The activity of the enzyme is reported to the amount of enzyme per cell (reported

in log10 scale) as described in Sec. 2.6.3.
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3.5. Uncertainty propagation results via Monte Carlo method

3.5 Uncertainty propagation results via Monte

Carlo method

Since the identified parameters are affected by uncertainty, a Monte Carlo-
based strategy was adopted in order to propagate this uncertainty towards the
output of the proposed genetic controller. This process consists in estimating
the distribution of model parameter values and then providing a distribution
of the full circuit output that can be used to perform comparisons with experi-
mental values. The description of the Monte Carlo approach used in this work
is reported in Sec. 2.9. Here, only the results will be reported and commented.

The Monte Carlo method was applied to the estimates of the RFP matura-
tion rate; in this case the simultaneous fitting of the 4 conditions considered (2
constitutive promoters and 2 inducible promoters, 3 replicates for each one, see
Sec. 3.3.1), was carried out. 104 simulations were used to estimate the matu-
ration rate and obtain its distribution which is reported in Fig. 3.17. Each run
the RFP maturation rate was jointly estimated for all the 12 replicates, while
static gain, A, and delay, τ , were separately assigned to each of the tested
conditions. A Kolmogorov-Smirnov test was performed and the maturation
rate of RFP resulted to be normally distributed around its mean value, which
is 0.0157 min−1, with a CV of 1.54%.

By propagating the uncertainty of RFP maturation rate, the static pro-
moters functions were studied applying the Monte Carlo method in order to
evaluate the variance of the Hill equation parameters. As regards the PTetR

promoter, the distribution of its parameters is shown in Fig. 3.18. Performing
Kolmogorov-Smirnov test on each parameter, it resulted that only αPTetR

is
normally distributed, while the others are not; in particular, δPTetR

shows a
peak near zero as the leakage of this promoter can be considered negligible.

As reported in Tab. 3.7 parameter estimates are close to the ones resulting
from the lsqnonlin routine (reported in Tab. 3.3), even though CVs are slightly
different.

Table 3.7: PTetR promoter parameters in low copy number plasmid
average and percentage coefficient of variation. For each of the parameters of

the input-output curve of PTetR promoter in low copy number plasmid, the average and the percentage

coefficient of variation is reported after applying Monte Carlo method.

αPTetR
δPTetR

kPTetR
ηPTetR

1.0274 (3.28) 0.0193 (95.92) 3.1311 (8.70) 3.1858 (22.68)
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3. Results

Figure 3.17: RFP maturation rate distribution. RFP maturation rate distribution

obtained generating 104 samples through Monte Carlo method.

Figure 3.18: PTetR parameters distributions in low copy number plas-
mid after applying Monte Carlo method. PTetR promoter parameters distributions

in low copy number plasmid are reported: each histogram was obtained from 104 samples.
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3.5. Uncertainty propagation results via Monte Carlo method

Finally, a plot of the results of the Monte Carlo algorithm against exper-
imental measurements is given (Fig. 3.19). In some cases, as for the highest
inductions, data are very noisy and, in some cases, as for the highest induc-
tions, they are out of the evaluated 95% confidence intervals.

Figure 3.19: PTetR in low copy number plasmid input-output curve
estimated with Monte Carlo algorithm against data. PTetR promoter input-

output curve obtained from 104 samples; blue line represents the median of the output evaluated with Monte

Carlo strategy, while light blue areas represent its 95% confidence intervals.

The PTetR promoter was also tested in the medium copy number plasmid
pSB3K3 and the same methodology was used to propagate the uncertainty of
the parameters of its Hill activation function. In this case, only αPTetR

resulted
to be normally distributed (Fig. 3.20), according to the performed Kolmogorov-
Smirnov test. The values and CVs of these parameters are reported in Tab. 3.8:
while αPTetR

and kPTetR
are similar to the ones reported in Sec. 3.3.1, δPTetR

and ηPTetR
show very different CVs. In particular the CV of δPTetR

decreases
while the one of ηPTetR

increases; because of this effect, predictions of Monte
Carlo approach are the ones depicted in Fig. 3.21.

Finally, the same strategy was applied for the PLux promoter. As shown in
Fig. 3.22, similarly to PTetR, the leakage, namely δPLux

parameter, has a peak
near zero; none of the parameters is normally distributed according to the
Kolmogorov-Smirnov test. Average values and CVs are reported in Tab. 3.9,
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3. Results

Figure 3.20: PTetR parameters distributions in medium copy number
plasmid after applying Monte Carlo method. PTetR promoter parameters distri-

butions in medium copy number plasmid are reported: each histogram was obtained from 104 samples.

Table 3.8: PTetR promoter parameters in medium copy number plas-
mid average and percentage coefficient of variation. For each of the parameters

of the input-output curve of PTetR promoter in medium copy number plasmid, the average and the percent-

age coefficient of variation is reported after applying Monte Carlo method.

αPTetR
δPTetR

kPTetR
ηPTetR

3.0032 (4.63) 0.02 (>100) 1.9531 (15.43) 5.4960 (>100)
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3.5. Uncertainty propagation results via Monte Carlo method

Figure 3.21: PTetR in medium copy number plasmid input-output curve
estimated with Monte Carlo algorithm against data. PTetR promoter input-

output curve obtained from 104 samples; blue line represents the median of the output evaluated with Monte

Carlo strategy, while light blue areas represent its 95% confidence intervals.
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while the Monte Carlo 95% confidence intervals of the output are reported
together with data in Fig. 3.23.

Figure 3.22: PLux parameters distributions after applying Monte Carlo
method. PLux promoter parameters distributions are reported: each histogram was obtained from 104

samples.

Table 3.9: PLux promoter parameters average and percentage coeffi-
cient of variation. For each of the parameters of the input-output curve of PLux promoter the

average and the percentage coefficient of variation is reported after applying Monte Carlo method.

αPLux
δPLux

kPLux
ηPLux

5.4136 (5.72) 0.0173 (95.76) 559.3358 (26.93) 0.7778 (14.25)

Also in this case Monte Carlo estimates were compared to the lsqnonlin
routine: parameter values were similar but coefficients of variation were differ-
ent. In particular, the estimated CV of αPLux

, kPLux
and ηPLux

increase while,
conversely, the CV of δPLux

decreases compared to the values obtained without
the Monte Carlo method (compare with values in Tab. 3.3). As before, in
Fig. 3.23, Monte Carlo predictions are compared to the experimental data.

Subsequently, the promoters dynamic activation was considered and inves-
tigated using the Monte Carlo method, generating 104 samples for each of the
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3.5. Uncertainty propagation results via Monte Carlo method

Figure 3.23: PLux input-output curve estimated with Monte Carlo al-
gorithm against data. PLux promoter input-output curve obtained from 104 samples; blue line

represents the median of the output evaluated with Monte Carlo strategy, while light blue areas represent

its 95% confidence intervals.
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3. Results

Figure 3.24: Poles distribution for dynamic promoters activation. Dis-

tributions of rPTetR
and rPLux

, obtained generating 104 samples through Monte Carlo method.

two promoters. The promoters parameters and the RFP maturation rate used
to estimate the values of the poles rPTetR

and rPLux
were sampled from the

previously shown distributions in order to propagate the uncertainty of the
parameters estimation from the previous steps. The differential equation sys-
tem shown in Eq. 2.3 was identified in order to obtain the poles distributions.
As considering rPTetR

and rPLux
greater than 1 does not affect the activation

dynamics of the two promoters (data not shown), this value was set as the
upper limit. In this way, the distributions shown in Fig. 3.24 were obtained,
where rPLux

has a narrower distribution than rPTetR
. The mean values and their

CVs are reported in Tab. 3.10. Parameter values are slightly higher, as well
as their CVs, compared to the estimation without the Monte Carlo method
(compare to values in Tab. 3.4).

Median and 95% confidence intervals obtained with the Monte Carlo strat-
egy were reported in Fig. 3.25 to compare the results of Monte Carlo simula-
tions and data. In both cases the 95% confidence interval is larger, i.e., the
uncertainty is higher, in the transient than at steady state, due to the un-
certainty affecting the poles value together with the uncertainty affecting the
maturation rate of RFP.

The attention was then focused on the enzymes parameters which were
estimated using the Monte Carlo method again, by sampling the promoters
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3.5. Uncertainty propagation results via Monte Carlo method

Table 3.10: PLux and PTetR poles mean and coefficients of variation.
rPTetR

and rPLux
average and coefficients of variation obtained from 104 Monte Carlo simulations.

Promoter pole Estimated value [min−1]
rPTetR

0.1057 (85.19%)
rPLux

0.0586 (37.29%)

Figure 3.25: Dynamic promoters activation: Monte Carlo predictions
against data. Monte Carlo 95% confidence intervals (light blue area) and median (blue line), obtained

from 104 simulations, are reported together with experimental data of promoters activation dynamics.
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3. Results

Figure 3.26: Example of kLuxI(aTc) distribution. Distribution of kLuxI(aTc) in

cultures bearing PTetR driven luxI in a low copy number plasmid, induced with 100 ng/mL aTc.

parameters from the previously shown distributions; in fact, promoters param-
eters are used to evaluate the concentration of enzyme per cell at the steady
state (see Eq. 2.10 and Eq. 2.13). LuxI parameters were evaluated from 104

samples generated through the Monte Carlo method; each performed experi-
ment was used to generate a distribution of the parameters of the model shown
in Eq. 2.6. The distribution of kLuxI(aTc) is particularly important as it was
used to evaluate, in the next step of uncertainty propagation, the parameters
of enzyme activity as a function of the per cell level of enzyme: kLuxI,max,
kM,LuxI and ηLuxI . In particular, each individual LuxI assay generated a dis-
tribution for kLuxI(aTc) according to the Monte Carlo method performed on
OD600 and 3OC6-HSL sampled data; then, such distributions were used in
another Monte Carlo method step to estimate AiiA parameters as a function
of the estimated intracellular level of enzyme. Fig. 3.26 shows an example
of kLuxI(aTc) distribution, obtained in a single experiment where the culture
bearing the subsystem with luxI was induced with 100 ng/mL of aTc.

While for high (4 to 100 ng/mL) aTc inductions the value of kLuxI(aTc)
parameter appears to be normally distributed, for low aTc inductions (ranging
from 0 to 2 ng/mL) the enzyme activity is null or very low and Monte Carlo
estimates show a distribution with a peak near zero (data not shown). More-
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3.5. Uncertainty propagation results via Monte Carlo method

Figure 3.27: Monte Carlo predictions and data for LuxI enzyme activ-
ity. Median and 95% confidence intervals of enzyme activity from 104 Monte Carlo simulations compared

to experimental data.

over, in order to obtain biologically plausible values for kLuxI , its maximum
was set to 10 nM cell−1 min−1; this also prevented from obtaining parame-
ter values that give integration problems in the ode15s routine. The activity
of the enzyme, in terms of Hill function parameters (given their intracellular
level), was then considered, sampling from the distribution of promoter Hill
function parameters to estimate the per cell enzyme concentration and sam-
pling from the previously described enzyme activity distributions. Again, 104

samples were generated through Monte Carlo method and the model parame-
ters presented in Eq. 2.7 were identified. On the basis of these simulations, the
95% confidence intervals of the function that describes the enzyme activity in
relation to its per cell level is shown in Fig. 3.27. The variability that affects
kLuxI,max and kM,LuxI parameters, along with the uncertainty of the per cell
enzyme concentration, results in a broad distribution of the output, especially
for values around the half activation, even if experimental data points showed
a broader distribution.

The identified parameters and their respective CVs are reported in Tab. 3.11.
Estimates are not so different from the ones reported in Tab. 3.5, even though
kLuxI,max and kM,LuxI slightly increase their values. CVs are different from the
previously evaluated ones, especially for ηLuxI which is now 50% of the one
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Table 3.11: Parameters for LuxI enzyme activity estimated with
Monte Carlo method. After performing 104 simulations sampling from the estimated LuxI

intracellular level and LuxI activity distributions previously obtained, average parameters values and their

CVs were estimated.

Parameter Estimated value Measurement Unit
kLuxI,max 6.4584 (11.34%) nM cell−1 min−1

kM,LuxI 14.6515 (19.59%) A.U. cell−1

ηLuxI 4.1011 (41.71%) -

reported in Tab. 3.5.

In the same way, the uncertainty of the parameters was propagated to
the activity of AiiA, sampling from the distribution of the per cell enzyme
level (given the aTc induction) and the activity of the lactonase. Monte Carlo
method was initially applied to the independent experiments regarding 3OC6-
HSL decay in liquid cultures, in order to obtain distributions of the kAiiA(aTc)
parameter, as shown in the example of Fig. 3.28.

Also in this case enzyme intracellular concentration and enzyme activity
were sampled 104 times from previously evaluated distributions and parame-
ters estimated. In Tab. 3.12 parameters are reported with their CVs and the
relation between the per cell enzyme level and the enzyme activity is depicted
in Fig. 3.29. As kM,AiiA and ηAiiA are affected by a greater uncertainty than
kAiiA,max the distribution of the output in the proximity of the half activity
is clearly broader than for enzyme concentration at saturation. In this case
parameter values are not so different from the ones reported in Tab. 3.6, but
the CVs of kM,AiiA and ηAiiA are much smaller.

PTetR in low copy plasmid and RBS BBa B0030 and PTetR in medium copy
number plasmid with BBa B0034 were used to tune the expression of luxI
and aiiA genes respectively; during uncertainty propagation, their parameters
were sampled from the previously obtained distributions for different aTc con-
centrations. When luxI and aiiA were expressed in pSB3K3 medium copy
number and pSB1A2 high copy number plasmids respectively, the PTetR pro-
moter parameters were sampled from the distributions of the only full induction
conditions (100 ng/mL aTc) that were previously tested with RFP.

Once the uncertainty was propagated, the distributions of the parameters
were used to evaluate the output of the whole system. Again, parameters
were sampled from their own distributions and used to predict the 3OC6-HSL
concentration of the open- and close-loop. When performing these simula-
tions, three parameters were set to a fixed value: the growth rate of cells, µ,
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3.5. Uncertainty propagation results via Monte Carlo method

Figure 3.28: Example of kAiiA(aTc) distribution. Distribution of kAiiA(aTc) in

cultures bearing PTetR driven aiiA in a medium copy number plasmid, induced with 100 ng/mL aTc.

Table 3.12: Parameters for AiiA enzyme activity estimated with
Monte Carlo method. After performing 104 simulations sampling from the estimated AiiA

intracellular level and AiiA activity distributions previously obtained, average parameter values and their

CVs were estimated.

Parameter Estimated value Measurement Unit
kAiiA,max 0.4266 (8.93%) cell−1 min−1

kM,AiiA 11.7440 (43.70%) A.U. cell−1

ηAiiA 3.0296 (64.73%) -
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3. Results

Figure 3.29: Monte Carlo predictions and data for AiiA enzyme ac-
tivity. Median and 95% confidence intervals of AiiA enzyme activity from 104 Monte Carlo simulations

compared to experimental data.
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3.6. Simulations and experimental results

which was evaluated from growth data and set to 0.0125 min−1, the 3OC6-HSL
spontaneous degradation rate,γHSL which was evaluated in ad-hoc designed ex-
periments (see App. A) and set to 2.2470 e-04 min−1, and the enzyme degrada-
tion due to the presence of an LVA tag, γLV A, which was set to 0.0173 min−1,
namely, the value presented in [49]. Simulations were run and confidence inter-
vals of the genetic circuit output were given and compared to the experimental
measurements.

3.6 Simulations and experimental results

3.6.1 Results for growing liquid cultures in batch mode

The model of Eq. 2.1 is expected to provide reliable predictions only in
the exponential growth phase of recombinant bacteria bearing the close-loop
regulator circuit, because:

• the experimental measurements performed in the identification steps on
the subsystems were all performed in that phase;

• promoters in stationary phase can have unpredictable activities;

• the hypothesis of intracellular species dilution due to cell growth is valid
when bacteria duplicate at the constant rate µ, i.e., only in the exponen-
tial growth phase.

In order to perform long experiments for the close-loop regulator, exponen-
tial phase must be maintained and, for this reason, the system was tested in
chemostatic condition. However, before presenting the experimental results
in such condition and the related model predictions, the system was prelimi-
narily tested in batch condition in a 15-mL tube (5 mL culture volume) and
compared to the open-loop configuration. Results are reported in Fig. 3.30.
Even though growth curves are comparable, the two circuits show a different
behaviour, with the open-loop circuit reaching a higher 3OC6-HSL value than
the close-loop. This is qualitatively in accordance with the expected behaviour
of the circuits, since 3OC6-HSL should be feedback-regulated in the close-loop
circuit by AiiA.

3.6.2 Results in chemostat

A chemostat (Sec. 2.8) was realized and used to study the genetic controller
and its non regulated counterpart at several constant OD600 values. Using this
experimental set-up, cells were maintained around a target OD600 (Fig. 3.31)
during the time of the measurements (generally between 4.5 and 6.5 h). Both
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3. Results

Figure 3.30: Regulated VS non-regulated 3OC6-HSL production in
batch cultures. Comparison between close (red dashed line) and open-loop (blue dashed line)

behaviour in growing liquid cultures induced with 100 ng/mL aTc; data points represent the average of at

least two independent replicates with their 95% confidence intervals. In the two graphs both the 3OC6-HSL

concentration and the cultures growth are reported.
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3.6. Simulations and experimental results

Figure 3.31: OD600 over time in chemostat mode. Time series of typical chemostat

OD600; in this experimental set-up culture density is maintained as constant as possible at a fixed OD600

by properly diluting cultures as explained in Sec. 2.8. Circles represent open-loop experiments while squares

were used for close-loop experiments; similar colors were used for similar OD600 values.

the open- and the close-loop circuits were considered in order to verify if dif-
ferences in 3OC6-HSL control occur and if such differences were quantitatively
predicted by the developed mathematical model. In these experiments OD600

and 3OC6-HSL were measured, sampling from the bioreactor every 30 min;
while OD600 was measured with Tecan Infinite F200, the signalling molecule
was quantified using a biosensor, as described in Sec. 2.7.

The genetic open-loop circuit was investigated at the OD600: 0.06, 0.09,
0.12, 0.21 and 0.38. From the model simulations, it was expected that the
steady state concentration of the signalling molecule in the extracellular en-
vironment would increase proportionally to the optical density of the culture
as in Fig. 3.3. Fig. 3.32 (panel A) shows the experimental data of steady
state 3OC6-HSL in open-loop configuration as a function of bacterial density
in chemostat and predicted values are also shown.

The expected behaviour was observed despite, at OD600 of 0.2, the model
prediction underestimates the circuit output against the experimental value of
142 nM (see Fig. 3.32). Importantly, OD600 values higher than 0.3 were never
tested in the subsystems characterization stage, since the exponential phase
in 15-mL tubes ends up at a lower density than in the bioreactor (data not
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Figure 3.32: Comparison between Monte Carlo predictions and ex-
periments. Data were compared to the predictions calculated with the Monte Carlo method: both,

open and close-loop are depicted. For Monte Carlo simulations the average value and the intervals were

evaluated on the distribution of the 3OC6-HSL steady state estimated concentration while for experimental

data the average value and confidence intervals were evaluated on the basis of the last three measurements

of each experiment (assumed to represent the steady state value).
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Figure 3.33: Open-loop 3OC6-HSL concentration over time in chemo-
stat experiments at OD600 0.09. Comparison between open-loop behaviour in chemostat

at OD600 = 0.09 induced with 100 ng/mL aTc and model predictions based on Monte Carlo method; data

points represent the average of two measurements with their 95% confidence intervals, while the plotted area

represents the 95% confidence interval of the predicted output by the Monte Carlo method. Red and green

dashed lines are two independent replicates, while the blue line represents the median obtained with Monte

Carlo method.

shown), probably for the intensive oxygenation of cultures in chemostat, com-
pared to closed tubes; however, for OD600 of 0.38 model predictions are quite
in accordance with the experimental data (Fig. 3.34). Model predictions are
generally consistent with experimental data, demonstrating that the identified
model can correctly capture steady state values (see Fig. 3.33, green curve, for
an example). However, in one case, a biological replicate gave an inconsistent
steady state value (see Fig. 3.33, red dashed line). Finally, the dynamic be-
haviour is generally not well predicted, giving both slower and faster trends
than observed in experimental data.

As regards the close-loop circuit, tests were carried out at the constant
OD600 of 0.06, 0.08, 0.12, 0.14, 0.18 and 0.36. As shown in Fig. 3.32 (panel
B), its steady-state prediction resulted more difficult than in the open-loop
case. This was expected, since the close-loop circuit is the result of intercon-
nection of modules never characterized together, while the open-loop circuit
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Figure 3.34: Open-loop 3OC6-HSL concentration over time in chemo-
stat experiments at OD600 0.38. Comparison between open-loop behaviour in chemostat

at OD600 = 0.38 induced with 100 ng/mL aTc and model predictions based on Monte Carlo method; data

points represent the average of two measurements with their 95% confidence intervals, while the plotted area

represents the 95% confidence interval of the predicted output by the Monte Carlo method with the median

plotted as a blue line.
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was already used to obtain the LuxI parameters, although it was never tested
in chemostatic conditions at different OD600 values. The close-loop circuit
gave predictable results for low OD600 values (see for example Fig. 3.35), while
for higher cell densities the 3OC6-HSL steady state is significantly underesti-
mated, by about 3-fold (see for example Fig. 3.36). In particular, at OD600

of 0.12 the steady state is not significantly different from the one obtained for
the open-loop circuit at the same density.
As it happened for the open-loop configuration, also in this case the dynamic
behaviour is not well predicted, showing faster or slower 3OC6-HSL trends com-
pared to experimental time series. Even though the absolute predicted steady
state values are inconsistent with experimental data, their values did not signif-
icantly change for OD600 higher than 0.12, consistently with circuit qualitative
predictions (see Fig. 3.3), while in the open-loop circuit steady state values
showed an OD600-dependent trend, as described above. This suggests that the
feedback configuration of the close-loop circuit works, but its behaviour could
not be quantitatively captured by the model. In particular, the qualitative
observed trend of 3OC6-HSL steady state values in the close-loop circuit (i.e.,
low values for low OD600 values, constant values for higher OD600) is well pre-
dicted by the mathematical model (see Fig. 3.37), although the absolute values
of 3OC6-HSL and OD600 were different compared to Fig. 3.32.

In summary, the designed close-loop regulator was characterized and had a
significantly different behaviour from the open-loop circuit, as expected, sug-
gesting a successful design architecture. However, the steady state behaviour
was not quantitatively consistent with model predictions and the dynamic be-
haviour had significant predictability problems, also in the open-loop configu-
ration. The results suggest that more replicates at more cell densities would
be useful to depict the actual experimental behaviour of the close-loop circuit;
moreover, the reasons why the quantitative predictions are not consistent will
have to be identified.
Several simulations were performed, varying parameter values (one at a time)
concerning the degrading action of AiiA (i.e., αPLux

, kPLux
, kAiiA,max and kM,AiiA).

Fig. 3.38 shows these results: parameters were changed but the predicted out-
put did not seem to exactly reproduce the situation observed in experimental
data (Fig. 3.32). This is particularly clear as in experimental data the steady
state concentration moves from 30-40 nM for OD600 values smaller than 0.1, to
the concentration of 60-100 nM for OD600 values greater than 0.1 (considering
that the output of the open-loop is about 90 nM at OD600=0.12 and about
150 nM when OD600 is 0.21). However, simulations can predict a steady state
value of about 100 nM for high OD600 (0.2-0.4) when, for example, kM,Aiia is
increased.
These discrepancies were probably due to the fact that the model did not take

103



3. Results

Figure 3.35: Close-loop 3OC6-HSL concentration over time in chemo-
stat experiments at OD600 = 0.08. Comparison between close-loop behaviour in chemostat

at OD600 = 0.08 induced with 100 ng/mL aTc and model predictions based on Monte Carlo method; data

points represent the average of two measurements with their 95% confidence intervals, while the plotted area

represents the 95% confidence interval of the predicted output by the Monte Carlo method with the median

plotted as a blue line.
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Figure 3.36: Close-loop 3OC6-HSL concentration over time in chemo-
stat experiments at OD600 = 0.12. Comparison between close-loop behaviour in chemostat

at OD600 = 0.12 induced with 100 ng/mL aTc and model predictions based on Monte Carlo method; data

points represent the average of two measurements with their 95% confidence intervals, while the plotted area

represents the 95% confidence interval of the predicted output by the Monte Carlo method with the median

plotted as a blue line.
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Figure 3.37: 3OC6-HSL concentration predictions of close-loop with
estimated parameters. After parameters estimation on subsystems, simulations were carried

out, using the nominal parameters estimated, in order to predict the 3OC6-HSL concentration at the steady

state as a function of OD600.
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3.6. Simulations and experimental results

Figure 3.38: Simulations for different parameter configurations. αPLux
,

kPLux
, kAiiA,max and kM,AiiA were varied in order to verify the possibility to obtain the observed behaviour

of the close-loop device. The other parameters were set to their nominal estimated values.
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into account some details such as the molecular interactions between AiiA and
3OC6-HSL or density-dependent diffusion of 3OC6-HSL which might affect
AiiA activity. However the overall results highlight the importance of mathe-
matical modelling tools in Synthetic Biology and the difficulty in carrying out
a rigorous bottom-up design process.
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Chapter 4
Conclusions

Synthetic Biology has emerged in the last decade as an ambitious disci-
pline which aims at operating on living systems on the basis of the engineering
principles of standardization and modularity. Working in a biological context
makes modularity difficult to achieve. The possibility to interconnect well
characterized parts, obtaining a system with a predictable behaviour is still an
ongoing issue in Synthetic Biology; in fact, biological parts could be affected
by context dependent effects, such as retroactivity or fan out (described in
Ch. 1), that can lead to unpredictability of the behaviour of a system resulting
from the interconnection of pre-characterized modules.
This thesis has focused on the possibility to build up a genetic controller for
the 3OC6-HSL signalling molecule in E. coli through a bottom-up approach.
This close-loop circuit is composed by a module for the production of the
LuxI enzyme, which synthesizes 3OC6-HSL, and by a second module, which
expresses the AiiA enzyme, which degrades it, in a regulated manner. This
regulation is implemented as a negative feedback, i.e., the production of AiiA is
dependent on the 3OC6-HSL concentration. The open-loop configuration, by
contrast, lacks the AiiA expression module. Mathematical modelling has been
exploited as a tool to predict the behaviour of the composite system from the
characterization of basic parts. In fact, describing the proposed system with
a set of differential equations can help the assembly of the genetic controller
and facilitate the identification of the parameters that mostly impact on the
output, thus guiding the choice of some factors, such as RBS strength and/or
plasmid copy number. The ODE models for the whole circuits (in both the
close- and open-loop configurations) and their subparts are reported in Ch. 2.
The parameters of the sub-models were identified from experiments in which
batch cultures were monitored to measure the quantities of interest during
their exponential growth (Ch. 3) and the estimated parameters were used to
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predict the behaviour of the whole feedback system. The experimental data
regarding the complete genetic controller and its non-regulated counterpart
were collected by using the chemostat configuration, i.e., in continuous culture
mode (Sec. 2.8), thus testing the bottom-up approach by comparing in vivo
and in silico data.
As an element of novelty, the Monte Carlo method was coupled to the bottom-
up approach. This was necessary as, in order to propagate the uncertainty
of the subsystems parameters on the output of the composite circuit, the pa-
rameters distributions were needed. In order to obtain these distributions, the
Monte Carlo approach has been applied at each step of parameter estimation,
adding to the nominal prediction a gaussian noise with zero mean and vari-
ance estimated from the experimental data (for a comprehensive explanation,
see Sec. 2.9). Thus, predictions were evaluated by sampling from parameters
distributions.
The prediction of the steady state value reached by the open-loop circuit, in
which the negative feedback on the 3OC6-HSL was absent, was in accordance
with experimental measurements, thus confirming that the LuxI enzyme activ-
ity was similar both in the batch and chemostat mode. This circuit was used
as a control of the designed close-loop controller. The close-loop circuit gave
a more problematic prediction than the open-loop one, as the steady state be-
haviour in chemostat mode could not be predicted by the full identified model.
This was probably due to non modelled secondary effects (e.g., 3OC6-HSL dif-
fusion or AiiA enzyme interactions with the signalling molecule) that led to
a constant underestimation (about 3-fold) of the close-loop circuit output, as
shown in Ch. 3. However, the qualitative behaviour of the genetic circuit im-
plementing the negative feedback on 3OC6-HSL was consistent with the model
predictions; in fact, the close-loop reached a saturation value of ∼ 60-100 nM
which was maintained for OD600 ranging from 0.12 to 0.36, while the open-
loop circuit showed a linearly increasing steady state output as a function
of the culture density, reaching a concentration >150 nM at OD600 of 0.38.
For the described reasons, the designed architecture of the controller could be
considered successful, but improvements should be performed to enhance the
quantitative prediction capability of the developed mathematical model. Sim-
ilarly, the dynamic behaviour of the controller, i.e., its response time, could
not be precisely predicted, as described in Sec. 3.6.2, thus confirming the need
of model refinement. Considering the steady state behaviour, even by tuning
the model parameters (e.g., varying the model parameters of PLux activation
or AiiA activity), it was not possible to simulate the observed behaviour, i.e.,
a steep transition of the steady state 3OC6-HSL concentration from 30-40 nM
to 60-100 nM for OD600 values respectively of 0.09 and 0.12.
Hence, it has to be considered the possibility to redefine the mathematical
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model in order to take into account the secondary effects above mentioned,
even though this could lead to over-parameterization. Moreover, the mathe-
matical model could be improved and used to identify those parameters (such
as RBSs strength and plasmid copy number) that can lead to different steady
state concentrations and dynamical behaviour. Finally, as the proposed circuit
aims at behaving as a close-loop controller, a deep study on disturbance re-
jection has to be performed. In summary, this work has focused on many key
aspects of Synthetic Biology and demonstrated that the bottom-up design of
an interconnected circuit is not trivial, even though mathematical modelling
can strongly support the whole design cycle.
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Appendix A
Half-life measurements of
chemical inducers for
recombinant gene expression1

Regulated promoters are widely used for optimizing heterologous protein
expression in host organisms, such as E. coli, and in several Synthetic Biology
applications. They allow to trigger and modulate their transcription rate us-
ing exogenous chemical inducers in a concentration-dependent fashion. Thus,
it is of great importance to know their stability in relation to the context of
application, in order to obtain a robust and predictable degree of control on
promoter activity.
Here, three popular inducers were considered: Isopropyl β-D-1thiogalactopyranoside
(IPTG), anhydrotetracycline (aTc) and N-(3-oxohexanoyl)-L-homoserine lac-
tone (3OC6-HSL). A factorial study to identify the conditions that mostly
impact on their decay rates was performed, using whole-cell biosensors. The
conditions considered were: temperature (30◦C - 37◦C), pH (6 - 7), growth
medium (LB - M9) and sterility (cultured broth - sterile broth). This can give
important information on inducers stability and help to define the most suit-
able experimental set-up, as it was done studying the genetic negative feedback
controller that was investigated at pH 6, as 3OC6-HSL is more stable.

1The content of this appendix has been published in [68]
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A. Half-life measurements of chemical inducers for recombinant gene expression

A.1 Methods

A.1.1 Reagents and media

IPTG (I1284, Sigma Aldrich), aTc (631310, Clontech) and 3OC6-HSL
(K3007, Sigma Aldrich) were used as inducers and stored as described in
Sec. 2.1.2. LB and M9 supplemented media were prepared as described in
Sec. 2.1.1. When appropriate, pH was adjusted with hydrochloric acid or
sodium hydroxyde.

A.1.2 Biosensors

Fig. A.1 describes the recombinant E. coli bearing the biosensors. The
IPTG-, aTc- and 3OC6-HSL- biosensor genetic devices, called BBa J107010,
BBa I13521 and BBa J107053 respectively, are BioBrick™ parts from the MIT
Registry of Standard Biological Parts [22]. They have been assembled into the
pSB3K3 medium-copy plasmid (with kanamycin-resistance marker and p15A
replication origin) by using the BioBrick™ Standard Assembly procedure [23]
and conventional molecular biology techniques [60]. Detailed description about
plasmid construction, as well as full DNA sequences, can be found in the indi-
vidual parts web pages of the Registry [22]. TOP10 (Invitrogen) E. coli strain
was used as a host for cloning. MG1655-Z1 E. coli strain [65] was used as the
final host for the biosensing plasmids, as its genome encodes constitutive LacI
and TetR over-expression cassettes. Chemically competent TOP10 were trans-
formed according to manufacturer’s instructions, while MG1655-Z1 competent
cells were prepared as described in [60] and were heat-shock transformed at
42◦C. The described whole-cell biosensors were routinely stored at -80◦C in
20% glycerol stocks and they were always grown in selective media with 20
mg/L of kanamycin.

A.1.3 Sampling

1 mM of IPTG, 50 ng/mL of aTc or 50 nM of 3OC6-HSL were added
to 3 mL of sterile medium (sterile broth) or to 3 mL of a non-recombinant
MG1655-Z1 E. coli culture (cultured broth), prepared by inoculating 3 mL of
sterile medium (LB or M9) with a bacterial colony isolated from a streaked LB
agar plate. Sterile and cultured broths, in 15-mL tubes, were incubated with
shaking at 220 rpm at 30◦C or 37◦C. The pH of media was set at 6.0 or 7.0.
As a result, each inducer was tested in 16 conditions (cultured/sterile broth; pH
6.0/7.0; 30/37◦C; LB/M9 medium). At appropriate time points, 100 µL were
taken from the cultured broth and centrifuged (13000 rpm, 1 min), bacteria-free
supernatant was taken and stored at -20◦C before analysis. For sterile broth,
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Figure A.1: Biosensors used in this study. IPTG- (A), aTc- (B) and 3OC6-HSL- (C)

biosensor constructs and functioning. The BioBrick™ code (BBa code) of the biosensor-encoding sequences

and the microbial host are reported for each construct. All of them were used in the pSB3K3 medium-copy

BioBrickTM vector backbone with the p15A replication origin and kanamycin resistance marker. Symbols:

curved arrows represent promoters, straight arrows represent coding sequences, ovals represent RBSs, oc-

tagons represent transcriptional terminators, “&” means that both inducer and gene product are required

to activate the promoter, circles represent chemical inducers, bulbs represent a red fluorescence output and

finally dashed lines represent MG1655-Z1 genomic DNA. PLlacO1 and PLtetO1 are synthetic promoters that

can be repressed by LacI and TetR respectively. PluxI is the wild type luxI promoter from V. fischeri that

can be activared by the LuxR-3OC6-HSL complex. In the 3OC6-HSL-biosensor (panel C), LuxR expression

was always induced by 500 µM of IPTG, as gene expression is driven by the PLlacO1 promoter.
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100 µL were taken and directly stored at -20◦C. For each investigated condition,
at least two independent tubes were prepared and sampled in different days.
When required, cultured broths were prepared by inoculating a colony of the
lacY-deficient strain DB3.1 [69, 70] or MC1061 [71] instead of MG1655-Z1. The
growth of cultures was measured by optical density at 600 nm (OD600) in a 96-
well microplate (Greiner) in the Infinite F200 reader (Tecan). The presented
OD600 measurements are background (sterile media)-subtracted absorbance
values, relative to the pathlength of 200 µL of liquid in microplate.

A.1.4 Biosensor-based fluorescence assays

3OC6-HSL was measured with the procedure described in Sec. 2.7. IPTG
and aTc were measured via analogous procedures, using the specific biosensors
described above.

A.1.5 Data analysis

The acquired time series were processed as described in Sec. 2.5 to obtain
a value proportional to the average RFP protein synthesis rate per cell (Scell),
which is related to the inducer concentration in the wells. Briefly, raw ab-
sorbance and fluorescence time series were background-subtracted over time
by using sterile medium and non-fluorescent culture as background to obtain
the actual fluorescence (F) and absorbance (OD600) signals in the well, pro-
portional to the per-well RFP molecules and number of bacteria, respectively.
The dF/dt/OD600 signal was averaged at its steady state to obtain Scell. The
steady state is reached after a time that depends on the dynamics of each spe-
cific biosensor. Scell is measured as arbitrary units (A.U.r) of RFP per minute
per cell.
The obtained standard calibration curve was fitted with the Hill function
Eq. A.1.

SSS
cell = δpX +

αpX

1 +
(

kpX
[I]

)ηpX
(A.1)

αpX is the Scell at maximum induction, kpX is the inducer concentration
that yields Scell = αpX/2, ηpX is the Hill coefficient, δpX is the basic activity of
the biosensor in absence of inducer and [I] is the inducer concentration. The
inducer concentration of the unknown samples was computed from their Scell

value via the identified Hill function representing the calibration curve. When
required, the resulting value was multiplied by the applied dilution factor of
the sample. Each inducer decay curve was expressed as percentage of its value
at t=0 and, for each tested condition, the independently measured time series
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were pooled in a single time series c(t).
Assuming a first-order exponential decay for c(t), its natural logarithm was
fitted with the linear function shown in Eq. A.2.

ln(c(t)) = ln(c(0))− k · t (A.2)

In Eq. A.2, k is the degradation rate of the inducer. Fitting was performed
with MATLAB R2011b (MathWorks, Natick, MA) via the regress routine,
which also computes the 95% confidence intervals of k. When required, inducer
half-life was computed as ln(2)/k. The measurement unit of k is h−1.
For each inducer, the linear model shown in Eq. A.3 with interactions was used
to determine the experimental factors that significantly affect the decay rate.

ln(c(t)) = α + αTemp · Temp+ αpH · pH + αMed ·Med+ αSter · Ster+
+αTemp,pH · Temp · pH + αTemp,Med · Temp ·Med+
+αTemp,Ster · Temp · Ster + αpH,Med · pH ·Med+
+αpH,Ster · pH · Ster + αMed,Ster ·Med · Ster+
−(βt + βTemp · Temp+
+βpH · pH + βMed ·Med+
+βSter · Ster + βTemp,pH · Temp · pH+
+βTemp,Med · Temp ·Med+ βTemp,Ster · Temp · Ster+
+βpH,Med · pH ·Med+ βpH,Ster · pH · Ster+
+βMed,Ster ·Med · Ster) · t

(A.3)

Eq. A.3 model describes ln(c(t)) behaviour by using time (t) as continu-
ous independent variable and pH, temperature (Temp), sterility (Ster) and
medium (Med) as Boolean independent variables assuming the -1 or +1 value,
where -1 corresponds to pH 6.0, 30◦C, sterile broth and LB, while +1 corre-
sponds to pH 7.0, 37◦C, cultured broth and M9, respectively.
The MATLAB regstats routine was used to estimate the regression coefficients
and their p-value (P). To test if an experimental factor (or interaction between
two factors) significantly contributes to inducer degradation, its β coefficient
was considered, i.e., the coefficient of the factor * time term. When P<0.05
for a given coefficient, the related factor (or interaction) is considered to signif-
icantly affect the inducer decay rate. The variability of ln(c(t)) explained by
the j-th factor (SSj) or an interaction term was quantified and compared with
the residual unexplained variability of the (reference) null model in Eq. A.4.

117



A. Half-life measurements of chemical inducers for recombinant gene expression

ln(c(t)) = α + αTemp · Temp+ αpH · pH + αMed ·Med+ αSter · Ster+
+αTemp,pH · Temp · pH + αTemp,Med · Temp ·Med+
+αTemp,Ster · Temp · Ster + αpH,Med · pH ·Med+
+αpH,Ster · pH · Ster + αMed,Ster ·Med · Ster+
−βt · t

(A.4)
In particular, SStot, SSj and the residual unexplained variability SSE can

be calculated as follows:

SStot =
N∑
i

(yi − ynull,i)
2 (A.5)

SSj = SStot −
N∑
i

(yi − ynull,i + βj ·Xi,j · ti)2 (A.6)

SSE =
N∑
i

(yi − yfull,i)
2 (A.7)

yi are the experimental data, yfull,i is the full model (Eq. A.3) output
prediction computed in the i-th experimental point, ynull,i is the null model
(Eq. A.4) output prediction computed in the i-th experimental point, βj is
the regression coefficient of the j-th factor or interaction term and Xi,j is the
value (-1 or +1) of the j-th factor or interaction term in the i-th experimental
point. When Xi,j is an interaction term, it is computed as the product of the
individual factors values (-1 or +1) in the i-th point. As a result, SSj is the
variability of the output that is explained by the βj · Xj · t term alone, thus
quantifying the importance of the j-th factor or interaction term. SSE repre-
sents the output variability that remains unexplained by the full model (which
includes all the considered factors and interaction terms). When appropriate,
the linear model was used without considering cultured broth data and, in this
case, sterility was not included as a factor.

A.1.6 Measurement of aTc with High Performance Liq-
uid Chromatography (HPLC)

HPLC is known to enable aTc measurements via UV detection [72]. Here,
a 10AD/vp HPLC (Shimadzu) was used with a Discovery C18 HPLC column
150x4.6 mm, 5 µm (Supelco) and a Diode Array UV Detector SPD-M10AVP
(Shimadzu). The column was kept at 25◦C. The flow rate of the mobile phase
was 0.8 mL/min. Gradient elution was performed with solutions A (0.1%
formic acid in water) and B (0.1% formic acid in acetonitrile) following the
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profile: 0-2 min 10% of B, 2-8 min 10% to 30% of B (linear increase), 8-12
min 30% to 80% of B (linear increase), 12-17 min 80% of B (constant) and
17-19 min 80% to 10% of B (linear decrease) and 19-25 min 10% (constant).
Each single analysis was run for 25 min with additional 3 min for column con-
ditioning. The injection of 100 µL was performed via automatic injector. A
standard calibration curve was prepared in sterile M9 at pH 7.0. The LabSo-
lutions software (Shimadzu) was used to analyze HPLC data. As identified by
analyses of standard solutions, aTc retention time is 14.26 min and the maxi-
mum absorbance of aTc is observed at a wavelength of 430 nm. Experiments
and sampling were performed as described above with the following excep-
tions: culture broth volume was 7 mL, the initial aTc concentration was 200
ng/mL, at appropriate time points 1.5 ml were taken and filter-sterilized (0.2
µm) for HPLC analysis and 100 µL were taken as described above for analysis
via biosensor. All the samples were stored at -20◦C before the analyses.

A.2 Results

Fig. A.2 shows calibration curves of the IPTG, aTc and 3OC6-HSL biosen-
sors in a representative experiment. Each biosensor yields reproducible mea-
surements of the same samples in different days with a CV of 7%, 21% and
11% for IPTG, aTc and 3OC6-HSL, respectively (data not shown). No rel-
evant difference in biosensor activity can be detected when a known inducer
amount was diluted in either exhausted or sterile medium (see Fig. A.3), thus
demonstrating that these biosensors can be successfully used to detect inducer
concentration in sterile or cultured broth conditions. Tab. A.1 reports the
degradation rates of IPTG, aTc and 3OC6-HSL estimated from experimental
data in all the investigated conditions, while Fig. A.4, Fig. A.5 and Fig. A.6
show all the data and fitted curves. IPTG is stable over 32 hours in all the
sterile broth conditions (the 95% confidence interval of k contains zero in all
the conditions, i.e., k is not distinguishable from zero from a statistical point
of view), while in all the cultured broth conditions IPTG disappears in the
supernatant (see Tab. A.1 and Fig. A.4). IPTG uptake by lactose permease
(LacY) of the MG1655-Z1 strain could explain the observed phenomenon, as
described in [73]. Correlation between OD600 and residual percent IPTG over
time (see Fig. A.7 A) is consistent with this statement.

To further validate this, we measured IPTG in the LB pH 7.0 at 37◦C cul-
tured broth condition, inoculated with the DB3.1 or MC1061 strains, both
deficient in LacY. Results (see Fig. A.7 B - C) showed that IPTG is not
degraded in this condition and the inducer disappearance in the medium of
MG1655-Z1 was actually due to uptake by LacY. These results confirm the
high stability of the IPTG molecule, previously found in literature in different
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Figure A.2: Calibration curve of the IPTG (A), aTc (B) and 3OC6-
HSL (C) biosensors in a representative experiment. Each curve was obtained

in a single representative experiment. In all the three experiments, serial dilutions of the calibration samples

were prepared in M9 at pH 7.0. The final inducer concentrations in the microplate well are reported in the

X-axis, while the corresponding Scell values (two replicates) are reported in the Y-axis (circles). Solid line

represents data fitting with a Hill function, as described in Sec. 2.7.

Figure A.3: Effect of exhausted vs fresh medium on the activity of
the IPTG (A), aTc (B) or 3OC6-HSL (C) biosensors. The activity of the

three biosensors was measured in terms of Scell when assaying samples of known concentrations of IPTG,

aTc or 3OC6-HSL. Inducers were diluted in different fresh (LB pH 6.0, LB pH 7.0, M9 pH 6.0 and M9 pH

7.0) or exhausted (from the supernatant of 32-h cultures grown at 37◦C in LB pH 6.0, LB pH 7.0, M9 pH

6.0 and M9 pH 7.0) media. Assays were performed as described in the Methods section, except that the

cultures used to prepare the exhausted media were grown in absence of inducers. The final concentration

of IPTG, aTc and 3OC6-HSL in the microplate wells was 20 µM, 2 ng/mL and 5 nM, respectively. Bars

represent the average of at least two independent replicates, while error bars represent the 95% confidence

intervals of the average value.
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Table A.1: Degradation rate measurements, expressed as h−1, for
IPTG, aTc and 3OC6-HSL in all the tested conditions. Estimated lower (L)

and upper (U) 95% confidence intervals of the measured decay rates (k) are also reported. According to the

first-order decay model (see Sec. A.1.5), negative values of k are due to experimental noise and indicate a

non-significant decaying trend of the inducer. In this table, cultured broth conditions were tested with the

MG1655-Z1 strain.

pH Temperature Sterility Medium k(L;U) IPTG k(L;U) aTc k(L;U) 3OC6-HSL
6 30◦C Sterile LB 0.001 0.021 0.001

(-0.002;0.005) (0.018;0.024) (-0.001;0.003)
6 30◦C Sterile M9 -0.005 0.029 0.021

(-0.017;0.007) (0.022;0.035) (0.012;0.029)
6 37◦C Sterile LB 0.001 0.039 0.01

(-0.002;0.004) (0.03;0.049) (0.007;0.014)
6 37◦C Sterile M9 -0.002 0.044 0.034

(-0.01;0.006) (0.042;0.047) (0.024;0.044)
7 30◦C Sterile LB 0.005 0.017 0.019

(0;0.01) (0.016;0.019) (0.013;0.024)
7 30◦C Sterile M9 -0.001 0.021 0.085

(-0.005;0.004) (0.012;0.031) (0.069;0.102)
7 37◦C Sterile LB -0.004 0.029 0.039

(-0.011;0.002) (0.019;0.038) (0.037;0.042)
7 37◦C Sterile M9 -0.003 0.041 0.076

(-0.01;0.003) (0.036;0.046) (0.037;0.114)
6 30◦C Cultured LB 0.116 0.021 -0.006

(0.09;0.143) (0.007;0.035) (-0.009;-0.003)
6 30◦C Cultured M9 0.037 0.026 0.007

(0.027;0.048) (0.018;0.033) (0.002;0.012)
6 37◦C Cultured LB 0.115 0.051 0.027

(0.089;0.141) (0.035;0.067) (0.013;0.04)
6 37◦C Cultured M9 0.114 0.053 0.013

(0.07;0.158) (0.032;0.073) (0.003;0.024)
7 30◦C Cultured LB 0.096 0.02 0.063

(0.072;0.12) (0.006;0.033) (0.032;0.094)
7 30◦C Cultured M9 0.096 0.031 0.062

(0.069;0.122) (0.011;0.052) (0.045;0.079)
7 37◦C Cultured LB 0.075 0.042 0.091

(0.024;0.126) (0.021;0.064) (0.066;0.116)
7 37◦C Cultured M9 0.093 0.058 0.088

(0.071;0.114) (0.038;0.079) (0.062;0.114)
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A. Half-life measurements of chemical inducers for recombinant gene expression

Figure A.4: Data and fitting in IPTG degradation assays. Fitting of

IPTG measurements over time during the performed degradation assays. Data points represent the average

concentration values, error bars represent the 95% confidence intervals of the average value of at least two

independent experiments and solid lines are the fitted first-order exponential model curves.

conditions [74, 75, 73], and the role of lactose permease in IPTG uptake by
LacY+ strains. None of the tested environmental factors have been found to
affect IPTG stability.
aTc is degraded in all the tested conditions with an average half life of about 20
hours (see Tab. A.1). The factors that give a significant contribution in degra-
dation were identified by fitting a linear regression model (see Sec. A.1.5).
According to Tab. A.2, the statistically significant factors (see p-values) are
temperature, sterility and medium. Temperature was found to be the main sig-
nificant factor affecting degradation, while sterility and medium give a minor
contribution (see Fig. A.8).

In particular, 42% of the total variability is explained by temperature, while
sterility and medium together account for only 11%. The decay rate of aTc
is 2-fold higher at 37◦C (β + βTemp = 0.045h−1) than at 30◦C (β − βTemp =
0.023h−1), which corresponds to half-lives of 15 h and 30 h, respectively, with-
out considering the other factors. Conversely, degradation is only 1.26-fold
higher in cultured broth or M9 (β + βSter = 0.038h−1, β + βMed = 0.038h−1)
than in sterile broth or LB (β − βSter = 0.03h−1, β − βMed = 0.03h−1). Con-
clusions do not substantially change if cultured broth conditions are excluded
from the study (see Table Tab. A.3 and Fig. A.9): temperature is confirmed to
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Figure A.5: Data and fitting in aTc degradation assays. Fitting of aTc

measurements over time during the performed degradation assays. Data points represent the average con-

centration values, error bars represent the 95% confidence intervals of the average value of at least two

independent experiments and solid lines are the fitted first-order exponential model curves.

Figure A.6: Data and fitting in 3OC6-HSL degradation assays. Fitting

of 3OC6-HSL measurements over time during the performed degradation assays. Data points represent the

average concentration values, error bars represent the 95% confidence intervals of the average value of at

least two independent experiments and solid lines are the fitted first-order exponential model curves.
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Figure A.7: IPTG measured in the supernatant of cultures of strains
with or without lactose permease, as a function of cell density. Mea-

sured IPTG in supernatants of MG1655-Z1 (lacY+) cultured broth conditions as a function of cell density,

expressed as OD600 (A). Measured IPTG in supernatants of DB3.1 and MC1061 (lacY-) cultured broth

conditions in LB pH 7.0 at 37◦C over time (B). Growth of DB3.1 and MC1061, expressed as OD600, in

a representative experiment performed in LB pH 7.0 at 37◦C (C). In all the panels, circles represent data

points, with colours specified in the legends, and error bars represent the 95% confidence intervals of the

average.

Figure A.8: Quantification of the main factors and their interaction
terms contributing to the degradation of aTc (A) and 3OC6-HSL
(B). The pie charts show the variability of the linear model output explained by each of the considered

factors and interaction terms (SSj , Eq. A.6). 100% of the pie corresponds to the residual error of the null

model (SStot, Eq. A.5), while the error term represents the residual error that remains unexplained by the

full linear model (SSE, Eq. A.7). Colon indicates an interaction between two factors. Only sterile broth

conditions are considered for 3OC6-HSL and, as a result, the sterility factor and its related interaction terms

are not present in panel B.
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Table A.2: Parameters of the linear model. Estimated regression coefficients and p-

values are reported for the study of aTc. The regression coefficients β with (p<0.05, t-test) are significantly

different from zero and identify the main factor or interaction terms that significantly contribute to inducer

decay.

aTc
Parameter Identified Value p-value

α 4.0562 1.2e-165
αTemp 0.0003582 0.99
αpH 0.002346 0.93
αMed 0.02576 0.31
αSter 0.01122 0.66

αTemp,pH -0.01358 0.59
αTemp,Med 0.02222 0.38
αTemp,Ster 0.004408 0.86
αpH,Med 0.02403 0.34
αpH,Ster 0.01493 0.56
αMed,Ster 0.04917 5.4e-2

βt 0.03398 2.7e-52
βTemp 0.01076 1.5e-12
βpH -0.001510 0.28
βMed 0.003901 5.4e-3
βSter 0.003825 6.4e-3

βTemp,pH -0.0006518 0.64
βTemp,Med 0.0004395 0.75
βTemp,Ster 0.002527 0.07
βpH,Med 0.001577 0.26
βpH,Ster 0.01638 0.24
βMed,Ster 0.0002971 0.83
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Table A.3: Parameters of the linear model for aTc considering only
the sterile broth conditions. Estimated regression coefficients and p-values are reported for

the study of aTc in sterile broth. The regression coefficients β with (p<0.05, t-test) are significantly different

from zero and identify the main factor or interaction terms that significantly contribute to inducer decay.

Parameter Identified Value p-value
α 4.551 1.48e-98

αTemp -0.004049 0.83
αpH -0.01258 0.51
αMed -0.02341 0.23

αTemp,pH -0.01977 0.31
αTemp,Med 0.02053 0.29
αpH,Med 0.01120 0.56

βt 0.03016 3.5e-39
βTemp 0.008235 4.1e-11
βpH -0.003148 3.6e-3
βMed 0.003604 9.7e-4

βTemp,pH -0.0003665 0.73
βTemp,Med 0.0007120 0.50
βpH,Med 0.0004307 0.68

be the most important factor, while the other statistically significant factors
(in this case pH and medium) give a much lower contribution.

HPLC was used to confirm the obtained results of aTc decay in one rep-
resentative condition (M9 cultured broth at 30◦C, pH 7.0), yielding consistent
aTc measurements and degradation rates (see Fig. A.10).
3OC6-HSL spans a wide range of decay rates, from zero (i.e., no detectable
degradation in 32 hours) to a half-life of about 8 hours (see Tab. A.1). Degra-
dation was firstly studied in sterile broth conditions by fitting a linear regres-
sion model, since pH is already known to affect inducer decay and in cul-
tured broth conditions bacteria can change medium acidity during growth (see
Fig. A.11). Tab. A.4 shows that the identified significant factors affecting
3OC6-HSL degradation are medium and pH with a significant interaction be-
tween them. They explain 38% (pH), 35% (Med) and 6% (pH:Med) of the
output variability, respectively (see Fig. A.8). In particular, 3OC6-HSL degra-
dation is negligible in the LB pH 6.0 condition (β−βpH−βMed+βpH,Med =∼ 0
h−1). Degradation increases in the LB pH 7.0 (β+βpH−βMed−βpH,Med = 0.029
h−1) and M9 pH 6.0 (β− βpH + βMed − βpH,Med = 0.029 h−1) conditions, while
in M9 pH 7.0 degradation further increases because of the individual contri-
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Figure A.9: Quantification of the main factors and their interaction
terms affecting the degradation of aTc in sterile broth. The pie chart shows

the variability explained by each of the considered factors and interaction terms (SSj , Eq. A.6). 100% of

the pie corresponds to the residual error of the null model (SStot, Eq. A.5), while the error term represents

the residual error that remains unexplained by the full linear model (SSE, Eq. A.7). Colon indicates an

interaction between two factors.
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Table A.4: Parameters of the linear model for 3OC6-HSL decay. Esti-

mated regression coefficients and p-values are reported for the study of 3OC6-HSL considering only sterile

broth conditions. The regression coefficients β with (p<0.05, t-test) are significantly different from zero and

identify the main factor or interaction terms that significantly contribute to inducer decay.

3OC6-HSL
Parameter Identified Value p-value

α 4.441 9.4e-74
αTemp -0.09555 3.5e-2
αpH -0.1136 1.3e-2
αMed -0.1403 2.4e-3

αTemp,pH -0.05275 0.24
αTemp,Med -0.01082 1.8e-2
αpH,Med -0.1057 0.02

βt 0.03560 1.8e-22
βTemp 0.004155 0.091
βpH 0.01911 4.4e-11
βMed 0.01827 1.8e-10

βTemp,pH -0.001483 0.54
βTemp,Med 0.003336 0.17
βpH,Med 0.007504 2.9e-3

butions of pH, medium and their interaction (β+βpH +βMed+βpH,Med = 0.08
h−1). Taken together, the results indicate that pH and medium can tune 3OC6-
HSL half life from ∼9 hours (M9 pH 7.0) to a time that is much longer than
the performed experiments, which are 32-hour long (LB pH 6.0). 3OC6-HSL
decay data from cultured broth conditions were then considered. Fig. A.12)
shows the 3OC6-HSL degradation rates (k) reported in Tab. A.1, measured in
the eight cultured broth conditions, as a function of the average pH of a culture
in those conditions, computed from the data shown in Fig. A.11. As expected,
in both the LB and M9 conditions there is a significant pH-dependent trend
(p<0.05, t-test). Moreover, k is systematically higher in M9 than in LB for
a wide range of pH. These results confirm the significant contribution of pH
and growth medium on 3OC6-HSL decay. However, since the linear regression
model was fitted on sterile broth data, the precise prediction of 3OC6-HSL
degradation in cultured broth may not be inferred by the model, although a
similar medium- and pH-dependent trend is qualitatively observed.
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Figure A.10: aTc measurements via HPLC. Panel A shows the specific peak of aTc,

starting at the retention time of 14.26 min, for samples with different inducer concentrations. No detectable

peak is observed in samples without aTc (data not shown). Panel B shows the standard calibration curve,

expressing aTc concentration vs aTc peak area, and the corresponding regression line (R2>0.99). Red

circles are the average values and blue squares indicate the 95% confidence intervals of the average value

of three independent measurements. The linearity range lower limit of the curve is 50 ng/mL (data not

shown). Samples of panels A and B were prepared by adding known amounts of aTc to sterile M9 at pH

7.0. Panel C shows the result of an aTc decay experiment in M9 cultured broth at 30◦C, pH 7.0, when

measured via HPLC (red) or aTc biosensor (blue). Circles represent the average values and error bars are

the 95% confidence intervals of the average values of two independent experiments. Lines represent the fitted

first-order exponential model curves. Data and fitted curves are shown in absolute units (ng/mL of aTc).

Results show good agreement between HPLC and biosensor measurements (CV of 8%) and fitted decay rates

(k=0.013±0.004 for HPLC and k=0.011±0.006 for biosensor).
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Figure A.11: pH of cultured broths. Because the presence of a growing bacterial popula-

tion can affect the pH of the medium, pH measurements were taken at specific time points in cultured broth

experiments. Data points represent the measured pH value of a representative experiment or the average

value of 8-10 replicates. In the latter case, error bars represent their 95% confidence intervals. Panel A:

growth at 30◦C; panel B: growth at 37◦C.

Figure A.12: 3OC6-HSL degradation rate (k) as a function of the av-
erage pH of bacterial culture in LB or M9. Data points represent the estimated

decay rates as a function of pH, taken from Tab. A.1 and Fig. A.11, respectively. Solid lines represent data

fitting via regression line with the indicated equation and R2.
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A.3 Conclusions

The decay rates of the commonly used chemical inducers IPTG, aTc and
3OC6-HSL have been studied in different conditions. Temperature has been
found to be the major factor affecting aTc, increasing degradation rate by
2-fold from 30◦C to 37◦C. Medium and pH have been found to highly affect
3OC6-HSL in sterile broth, with a significant interaction: while no significant
degradation occurs in LB pH 6.0 over a 32-h experiment, the increase of pH
from 6.0 to 7.0 or the use of M9 instead of LB yield a significant degradation,
which further increases in the M9 pH 7.0 condition. Data from cultured broth
experiments qualitatively confirmed the medium and pH contribution. This
study of 3OC6-HSL degradation confirms the important contribution of pH
previously found in literature [76, 77]. Temperature was previously identified
as a key factor for 3OC6-HSL decay, yielding a significantly higher degrada-
tion rate at 37◦C than at 22◦C [76], but in the temperature conditions used
here (30◦C and 37◦C), no difference in degradation was detected. Finally, no
significant degradation was observed for IPTG among the tested conditions.
The knowledge of degradation rate in several contexts can support the ratio-
nal design of synthetic biological systems by improving the predictability of
induction effects, especially for prolonged experiments.
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